JPS62204429A - Magnetic recording medium and magnetic head - Google Patents

Magnetic recording medium and magnetic head

Info

Publication number
JPS62204429A
JPS62204429A JP4543186A JP4543186A JPS62204429A JP S62204429 A JPS62204429 A JP S62204429A JP 4543186 A JP4543186 A JP 4543186A JP 4543186 A JP4543186 A JP 4543186A JP S62204429 A JPS62204429 A JP S62204429A
Authority
JP
Japan
Prior art keywords
magnetic
layer
head
core
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4543186A
Other languages
Japanese (ja)
Inventor
Hiromichi Shibatani
柴谷 弘道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP4543186A priority Critical patent/JPS62204429A/en
Publication of JPS62204429A publication Critical patent/JPS62204429A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled magnetic recording medium wherein recording density is remarkably improved in the thickness direction and the titled magnetic head capable of magnetically recording in high recording density by laminating plural magnetic layers having different magnetic orientation and coercive force on a base. CONSTITUTION:From the first to the fourth magnetic layer 1-4 have different uniaxial magnetic orientation as shown by the arrows. Namely, the first layer 1 has the direction easy for magnetization in the in-plane longitudinal direction, the second layer 2 and the third layer 3 have the oblique directions easy for magnetization opposite to each other toward the surface of the magnetic layer, and the fourth layer 4 has the direction easy for magnetization in the vertical direction. The respective magnetic layers having different magnetic orientation are formed with magnetic paints having different coercive force, hence information can be independently recorded on the four layers of the same recording medium, the thickness of the base which has been heretofore needed for each magnetic layer can be saved, and the density can be accordingly enhanced in the thickness direction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は磁気記録媒体と磁気ヘッドに関し、特にベー
ス上に磁気特性の異なる複数の磁性層を設けて多層記録
を可能にする磁気記録媒体と、多層磁気記録媒体へ情報
を記録、再生するための磁気ヘッドに関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magnetic recording medium and a magnetic head, and particularly to a magnetic recording medium that enables multilayer recording by providing a plurality of magnetic layers with different magnetic properties on a base. , relates to a magnetic head for recording and reproducing information on a multilayer magnetic recording medium.

(従来の技術) 磁気記録媒体に記録する情報の記録密度は、第14図に
示すようにトラック幅方向(X軸)、記録波長方向(Y
IIl1)、テープ厚方向(Z軸)の三軸で表わされる
。記録密度の向上としてトラック幅を狭くすることによ
るX軸方向の密度向上、記録波長を短かくすることによ
るY軸方向の密度向上および媒体の薄形化によるZ f
d1方向の密度向上がはかられているが、Z軸について
考えるとテープのベー・ス5の厚さが全厚に占める割合
が大きく、磁性層5^の厚さを薄くしても全厚はほとん
ど変らない。
(Prior Art) The recording density of information recorded on a magnetic recording medium is determined in the track width direction (X axis) and the recording wavelength direction (Y axis) as shown in FIG.
IIl1), expressed by three axes in the tape thickness direction (Z-axis). Improvements in recording density include increasing density in the X-axis direction by narrowing the track width, increasing density in the Y-axis direction by shortening the recording wavelength, and increasing Z f by making the medium thinner.
Efforts have been made to improve the density in the d1 direction, but when considering the Z-axis, the thickness of the base 5 of the tape accounts for a large proportion of the total thickness, and even if the thickness of the magnetic layer 5^ is thinned, the total thickness remains almost unchanged.

一方、ベース厚を極j、S5に薄くすることは記録媒体
の機械的強度、記録媒体走行特性の面から限界がある。
On the other hand, there are limits to reducing the base thickness to extremely thin S5 in terms of the mechanical strength of the recording medium and the running characteristics of the recording medium.

したがって従来のベース一層につき磁性層一層の記録媒
体構造では厚さ方向の記録密度を大幅に上げることは不
可能であった。
Therefore, with the conventional recording medium structure of one magnetic layer per base layer, it has been impossible to significantly increase the recording density in the thickness direction.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上述した従来の欠点を除去し、厚さ方向の記録
密度を大幅に向上させた磁気記録媒体および高記録密度
で磁気記録することのできる磁気ヘッドを1是イ共する
ことを目的する。
The present invention aims to eliminate the above-mentioned conventional drawbacks and to provide a magnetic recording medium with significantly improved recording density in the thickness direction and a magnetic head capable of magnetic recording at high recording density. .

〔問題点を解決するための手段〕[Means for solving problems]

このような目的を達成するために、本発明の磁気記録媒
体においては、ベース上に磁気配向性および抗磁力の異
なる複数の磁性層が積層されている。
In order to achieve such an object, in the magnetic recording medium of the present invention, a plurality of magnetic layers having different magnetic orientations and coercive forces are laminated on a base.

また本発明の磁気ヘッドは、積層された異なる磁性層に
磁気記録を行なうための複数の磁気ヘッドからなり、複
数の磁気ヘッドはそれぞれの磁気ギャップが形成する磁
界の分布および磁界強度が異なっている。
Further, the magnetic head of the present invention includes a plurality of magnetic heads for performing magnetic recording on different stacked magnetic layers, and the plurality of magnetic heads have different magnetic field distributions and magnetic field strengths formed by respective magnetic gaps. .

〔作 用〕[For production]

多層記録媒体の各層に、別個の情報を同時に3次元的に
記録することができるので、媒体厚さ方向の記録密度、
ひいては媒体全体の記録密度を上げることができる。
Since separate information can be simultaneously recorded three-dimensionally on each layer of a multilayer recording medium, the recording density in the media thickness direction can be increased.
As a result, the recording density of the entire medium can be increased.

〔実施例〕〔Example〕

以下に図面を参照して本発明の詳細な説明する。 The present invention will be described in detail below with reference to the drawings.

実施例1 第1図は本発明の実施例として、ベースフィルム上に4
層の磁性層を積層した磁気テープの長手方向に沿った断
面図を示したものである。図において、1は第1磁性層
、2,3.4はそれぞれ第2、第3.第4磁性層、5は
ベースフィルムである。第1ないし第4の磁性層は図中
矢印で示すように異なる一軸的磁気配向をもっている。
Example 1 FIG. 1 shows an example of the present invention in which 4
1 is a cross-sectional view along the longitudinal direction of a magnetic tape in which magnetic layers are laminated. In the figure, 1 is the first magnetic layer, 2, 3.4 are the second, third . The fourth magnetic layer 5 is a base film. The first to fourth magnetic layers have different uniaxial magnetic orientations as indicated by arrows in the figure.

すなわち、第1図の例では第1層1は面内長手方向を磁
化容易方向、第2層および第3層は磁性層の面に対して
互いに逆方向の斜めI、向を磁化容易方向、第4層は垂
直方向をIi、Ju ’iシ?L易力方向している。こ
のように磁気配向の異なる各磁性層を抗磁力の異なる磁
性材料で構成することによって、同一記録媒体の4層の
磁性層に独立に情報を記録することができるので、従来
磁性層一層ごとに必要だったベースの厚さを節約でき、
その分厚さ方向に高密度化できる。
That is, in the example shown in FIG. 1, the in-plane longitudinal direction of the first layer 1 is the easy magnetization direction, and the second and third layers are diagonal I in opposite directions with respect to the plane of the magnetic layer, and the directions are the easy magnetization direction. The fourth layer has vertical direction Ii, Ju'i? It's in the L-yield direction. By configuring each magnetic layer with a different magnetic orientation from a magnetic material with a different coercive force, information can be recorded independently in the four magnetic layers of the same recording medium. The thickness of the base that was needed can be saved,
Accordingly, the density can be increased in the thickness direction.

第1表に各磁性層の厚さ、抗磁力、磁性層を構成する材
料の例を示す。磁気記録を安定して行なうために、各磁
性層の抗磁力はヘッドに近い側の第1層からヘッドに遠
い側の第4層へ順次大きくするのがよい。特に第1層な
いし第4層の厚さをそれぞれδ1.δ2.δ3.δ4と
した時、それぞれの層の抗磁力の比をほぼ(δ、−(δ
2+δ3 +δ4))/2:(δ1−(δ2+63+δ
4)):δ1 : (δ1+δ2+δ3+δ4)とする
とよい。このような比の抗磁力をもつ材料として、第1
表に示すように、γ−Fe2O3のFeの一部をCoで
置換した(Co) y −Fe2O3針状粒子、Fe膜
、Fe−Co1tj、Go −[:r %を用いること
ができる。
Table 1 shows the thickness of each magnetic layer, coercive force, and examples of materials constituting the magnetic layer. In order to perform magnetic recording stably, it is preferable that the coercive force of each magnetic layer is increased sequentially from the first layer closer to the head to the fourth layer farther from the head. In particular, the thickness of the first to fourth layers is set to δ1. δ2. δ3. When δ4, the ratio of coercive force of each layer is approximately (δ, −(δ
2+δ3 +δ4))/2:(δ1-(δ2+63+δ
4)): δ1 : (δ1+δ2+δ3+δ4) is preferable. The first material with such a coercive force ratio is
As shown in the table, (Co) y -Fe2O3 acicular particles in which part of Fe in γ-Fe2O3 is replaced with Co, Fe film, Fe-Coltj, and Go-[:r % can be used.

第1表 ff11図および第1表に示した多層磁気記録媒体の製
法について、第2図ないし第5図を参照して説明する。
The manufacturing method of the multilayer magnetic recording medium shown in Table 1 ff11 and Table 1 will be explained with reference to FIGS. 2 to 5.

まず、厚さlO〜12ル腸のポリエチレンテレフタレイ
ト(PET)またはポリイミドなどの可撓性高分子樹脂
化合物のフィルムよりト(′lるベース5上に(Co)
 y −Fe20z (7)針状va粒1′・kバイン
ダとともに塗布し、厚さ2ル■の第一層を形成する。第
2図に示すように、ベース5を供給リールSRから巻取
りリールTRに走らせながら、ホッパHから(Go)γ
−Fe2O3の針状微粒子とバインダの混合物をベース
面上に供給すると、針状微粒子の長手方向がベースの走
行方向に揃い、面内長手方向を磁化容易方向とする磁気
配向の第1磁性層1が形成される。次に第1磁性層の形
成された記録媒体を電子ビーム蒸着装置と複数の移動可
能なボートを備えた真空槽に移す。ボートBfには純鉄
、ボートBfcにはFe−Go金合金ボートBccには
Go−Cr合金を載せておく。まずボートBfを冷却筒
CTの直下に位置廿しめ、電子ビーム蒸着用電源GSを
ボートBfに接続する。電源GSは電子ビームを照射さ
せるために、ボートに正の電位を与える電源である。ボ
ートBfからのFe原子が、冷却筒CTに沿うベース5
の面に入射角θ、=30”〜45°で入射するようシャ
ッタS11をボートBf上にセットする。記録媒体を供
給リールS11から冷却筒CTを経て巻取りリールTR
へ走らせながら、第1層1の上面にFeを電子ビーム蒸
着し、膜面に対して斜め方向を磁化容易方向とする磁気
配向をもった0、2μ厚さの第2層2を第1層1の上に
形成する。次にボートBfcを冷却筒の直下に移し、電
源GSの接続をボートBfcへ切りかえる。シャッタS
HをボートBfcからのFeとGoの原子が第2層と逆
の斜め方向の入射角θ「=−30°〜−45°で第2層
2の表面に入射するようにセットし、記録媒体を走行さ
せながらFe −G。
First, a film of a flexible polymeric resin compound such as polyethylene terephthalate (PET) or polyimide with a thickness of 10 to 12 mm is laid on a base 5 (Co).
y -Fe20z (7) Coat with acicular VA grains 1' and K binder to form a first layer with a thickness of 2 l. As shown in FIG. 2, while running the base 5 from the supply reel SR to the take-up reel TR, from the hopper H to (Go)γ
- When a mixture of acicular fine particles of Fe2O3 and a binder is supplied onto the base surface, the longitudinal direction of the acicular fine particles is aligned with the running direction of the base, and the first magnetic layer 1 is magnetically oriented so that the in-plane longitudinal direction is the direction of easy magnetization. is formed. Next, the recording medium on which the first magnetic layer has been formed is transferred to a vacuum chamber equipped with an electron beam evaporator and a plurality of movable boats. Boat Bf is loaded with pure iron, boat Bfc is loaded with Fe-Go gold alloy, and boat Bcc is loaded with Go-Cr alloy. First, the boat Bf is positioned directly below the cooling cylinder CT, and the power source GS for electron beam evaporation is connected to the boat Bf. The power supply GS is a power supply that applies a positive potential to the boat in order to irradiate the boat with an electron beam. Fe atoms from the boat Bf are located at the base 5 along the cooling tube CT.
The shutter S11 is set on the boat Bf so that the incident light enters the surface of the camera at an incident angle θ, = 30” to 45°.The recording medium is transferred from the supply reel S11 to the take-up reel TR via the cooling tube CT.
Fe is electron beam evaporated on the top surface of the first layer 1 while the film is running, and a second layer 2 with a thickness of 0.2 μm is formed on the first layer, and the second layer 2 has a magnetic orientation in which the direction of easy magnetization is diagonal to the film surface. Form on top of 1. Next, move the boat Bfc directly below the cooling cylinder and switch the connection of the power supply GS to the boat Bfc. Shutter S
H is set so that the Fe and Go atoms from the boat Bfc are incident on the surface of the second layer 2 at an angle of incidence θ = -30° to -45° in the opposite oblique direction to the recording medium. Fe-G while running.

合金を電子ビーム蒸着して第2層2の上に 0.2μ口
厚さの第3層3を形成する。最後にボート11ccを冷
却筒CTの直下に移し、電源GSをボート[1ccに接
続する。シャッタSl+をボートBccからのGoとC
「の原子が第3層の面に対しほぼ垂直(入射角θ、≦±
5°)に入射するようにセットする。
A third layer 3 having a thickness of 0.2 μm is formed on the second layer 2 by electron beam evaporation of the alloy. Finally, move the boat 11cc directly below the cooling cylinder CT, and connect the power supply GS to the boat [1cc. Go and C from boat Bcc with shutter SL+
`` atoms are almost perpendicular to the surface of the third layer (incident angle θ, ≦±
5°).

記録媒体を走行させながらボートBccよりGo−Cr
合金を電子ビーム蒸着して、第3層3の上に膜面に垂直
な方向を磁化容易方向とする磁気配向をもつ厚さ0.2
μmの第4層4を形成する。なお、第2層ないし第4層
はスパッタ、熱蒸着などによって形成することもでキ、
′、。
Go-Cr from boat Bcc while running the recording medium
The alloy is deposited by electron beam evaporation onto the third layer 3 to a thickness of 0.2 mm with a magnetic orientation in which the direction of easy magnetization is perpendicular to the film surface.
A fourth layer 4 having a thickness of μm is formed. Note that the second to fourth layers can also be formed by sputtering, thermal evaporation, etc.
',.

このようにして作製された多層記録媒体に対し、まず水
平方向の磁界を発生する第1の磁気ヘッドによって第1
層1のテープ長手方向に第1情報を記録し、次に斜め方
向に磁界を発生する第2の磁気ヘッドによって第2層2
の斜め方向に第2の情報を記録し、次に第2の磁気ヘッ
ドと逆の斜め方向に磁界を発生する第3の磁気ヘッドに
よって第3層3の逆斜め方向に第3の情報を記録し、最
後に垂直方向に磁界を発生する第4の磁気ヘッドによっ
て第4層4の膜面と垂直方向に第4の情報を記録するこ
とができる。
First, a first magnetic head that generates a horizontal magnetic field is applied to the multilayer recording medium manufactured in this way.
The first information is recorded in the longitudinal direction of the tape on layer 1, and then the second information is recorded on the second layer 2 by a second magnetic head that generates a magnetic field in an oblique direction.
The second information is recorded in the diagonal direction of the third layer 3, and then the third information is recorded in the opposite diagonal direction of the third layer 3 by the third magnetic head that generates a magnetic field in the diagonal direction opposite to that of the second magnetic head. Finally, fourth information can be recorded in a direction perpendicular to the film surface of the fourth layer 4 by a fourth magnetic head that generates a magnetic field in the perpendicular direction.

このように多層記録すると、例えばベースの厚みを10
μmとすると、第1ないし第4を従来のように別個のベ
ースで支持した場合には((2+ 1o)+ (0,2
+10)  + (0,2+10)  + (0,2+
10))=42.6μmの厚さが必要であったのに対し
、本発明によればベースが一層でよいので((2+0.
2 +0.2 +0.2) + 101 = 12.6
μmの厚さですみ、42.6712.6=3,4倍の高
密度化が達成できる。
When recording in multiple layers in this way, for example, the thickness of the base can be set to 10
μm, if the first to fourth are supported on separate bases as in the past, ((2+1o)+(0,2
+10) + (0,2+10) + (0,2+
10)) = 42.6 μm, whereas according to the present invention, the base only needs to have a thickness of ((2+0.
2 +0.2 +0.2) + 101 = 12.6
It only requires a thickness of μm, and a density increase of 42.6712.6=3 or 4 times can be achieved.

次に上述した第1ないし第4のヘッドについて、第6図
ないし第9図を参照して説明する。
Next, the first to fourth heads described above will be explained with reference to FIGS. 6 to 9.

第6図は前に述べた磁気テープの第1層1に情報を記録
するための磁気ヘッドHhの概要を示す断面図である。
FIG. 6 is a sectional view schematically showing the magnetic head Hh for recording information on the first layer 1 of the magnetic tape mentioned above.

ヘッドllhは2個の対称で同質のコアA、コアBをギ
ャップGをはさんでガラス溶着などで接合し、コイルC
を設けたものである。
The head llh consists of two symmetrical and homogeneous cores A and B, which are joined by glass welding with a gap G in between, and a coil C.
It has been established.

ギャップGの部分にはSiO□などを堆積させておく。SiO□ or the like is deposited in the gap G portion.

なお2個のコアA、Bを接合するのでなく、1個のコア
から成形してもよい。ギャップGから漏洩する磁束は図
に示すように、ヘッドからある距離のところ、すなわち
磁気テープのある深さのところで実質的に水平方向を向
くので面内長手方向に記録ができる。第1図および第1
表に示した磁気テープの第1層1の記録のためには、A
、  B両コアには、フェライト、例えば飽和磁束密度
が3.000〜4,000ガウスのMn−Znフェライ
トを用いることができる。ギャップ長g1は0.6μm
程度とするのがよい。コアの大きさはコア!−Qx、j
2aを0.3mmないし3mm程度の間で任意に選ぶこ
とができる。
Note that instead of joining the two cores A and B, one core may be molded. As shown in the figure, the magnetic flux leaking from the gap G is directed substantially horizontally at a certain distance from the head, that is, at a certain depth of the magnetic tape, so that recording can be performed in the longitudinal direction within the plane. Figure 1 and 1
For recording on the first layer 1 of the magnetic tape shown in the table, A
, B. Ferrite, for example Mn-Zn ferrite having a saturation magnetic flux density of 3.000 to 4,000 Gauss, can be used for both cores. Gap length g1 is 0.6 μm
It is better to set it as a degree. The size of the core is the core! −Qx,j
2a can be arbitrarily selected from about 0.3 mm to 3 mm.

第7図は第2層2に情報を記録するために斜め方向の磁
界を発生する磁気ヘッドHsの断面図である。ヘッド)
Isの構造は、高い飽和磁化をもつ磁性合金薄膜のAコ
アと、低い飽和磁化をもつ厚いフェライト材料のBコア
を組み合わせた非対称構造となっている。コイルCにB
コアを飽和させるがAコアは飽和させない電流を流すと
、ギャップGから洩れる磁束は図に示す斜め方向の分布
をとるので、斜め方向の記録を行なうことができる。
FIG. 7 is a cross-sectional view of a magnetic head Hs that generates an oblique magnetic field in order to record information on the second layer 2. head)
The structure of Is is an asymmetric structure that combines an A core made of a thin magnetic alloy film with high saturation magnetization and a B core made of a thick ferrite material with low saturation magnetization. Coil C to B
When a current is passed that saturates the core but does not saturate the A core, the magnetic flux leaking from the gap G has a distribution in the diagonal direction as shown in the figure, so that recording in the diagonal direction can be performed.

先に述べた磁気テープの第2層への記録には、Aコアに
例えばコア1らが2〜15μm1飽和磁束密度[1sが
6,000〜7.000ガウスのパーマロイ膜を、Bコ
アに例えばコア長1.が0.3〜3mm 、飽和磁束密
度が約2200ガウスのフエロクスプレーナを用いるこ
とができる。ギャップ長g2は0.4μm程度とするの
がよい。
For recording on the second layer of the magnetic tape mentioned above, the A core is made of a permalloy film having a saturation magnetic flux density [1s of 6,000 to 7.000 Gauss] for example in the core 1, and the B core is made of a permalloy film having a saturation magnetic flux density [1s of 6,000 to 7,000 gauss]. Core length 1. A ferrox planer having a magnetic flux density of 0.3 to 3 mm and a saturation magnetic flux density of about 2200 Gauss can be used. The gap length g2 is preferably about 0.4 μm.

第7図に示した斜め方向記録用のヘッドHsは次のよう
にして作ることができる。
The diagonal recording head Hs shown in FIG. 7 can be manufactured as follows.

ガラスなどの非磁性基板上にパーマロイなどの磁性合金
膜をめっき、蒸着、スパッタリングなどの薄膜形成法に
よって、トラック幅だけ2〜15μmの厚さに形成し、
非磁性基板表面と磁性合金膜との段差をガラスなどで埋
めて、Aコアとする。Aコアと、所定の形状に適宜の方
法で成形されたBコアとを接合し、BコアにコイルCを
捲回する。また他の方法としては、Bコアに薄膜形成法
によってコイルCを形成した後、コイル捲回用の窓部W
、ギャップGの部分に5in2を堆積して、BコアのA
コアとの対向面を平担にし、その上にトラック幅の磁性
合金膜を形成し、さらに磁性合金膜の段差をガラスなど
で埋める方法もある。またコイルCをあらかじめrg膜
形成法で作成しておかずに上に述べた方法でAコアとそ
の段差を埋めるガラス層までを形成した後、例えばレー
ザ加工などによって窓部Wの部分の5in2を除去して
コイルCを捲回してもよい。
A magnetic alloy film such as permalloy is formed on a non-magnetic substrate such as glass to a thickness of 2 to 15 μm for the track width by a thin film forming method such as plating, vapor deposition, or sputtering.
The step between the surface of the nonmagnetic substrate and the magnetic alloy film is filled with glass or the like to form an A core. The A core and the B core formed into a predetermined shape by an appropriate method are joined, and the coil C is wound around the B core. Another method is to form the coil C on the B core by a thin film forming method, and then form the coil winding window W.
, 5in2 is deposited in the gap G part, and the A of the B core is
There is also a method of flattening the surface facing the core, forming a track-width magnetic alloy film thereon, and then filling the steps in the magnetic alloy film with glass or the like. In addition, instead of creating the coil C in advance using the RG film forming method, after forming the A core and the glass layer that fills the step by the method described above, remove 5 in2 of the window W portion by, for example, laser processing. Alternatively, the coil C may be wound.

第8図は第7図に示した斜め方向記録用ヘッドItsと
逆の斜め方向に記録するためのヘッド旧Sの断面図であ
る。構造はヘッドItsと逆の構造で、Aコアに低飽和
磁化でコアJ、R^の大きなコア、Bコアに高飽和磁化
でコア長ILaの小さなコアを用いている。上述した磁
気テープの第3層に記録するために、Aコアとして例え
ばj2Aが0.3〜3ms+ 、飽和磁束密度が3,0
00〜4,000ガウスのMn−Znフェライトを、B
コアとして例えば18が2〜15μm、飽和磁束密度が
10,000〜11,000ガウスのセンダスト膜を用
いることができる。ギャップ長g3は062μm程度と
するのがよい。ヘッド11isは先に述べたヘッドIt
sと全く同様にして作ることができる。
FIG. 8 is a sectional view of an old head S for recording in an oblique direction opposite to the oblique direction recording head Its shown in FIG. The structure is the opposite of the head Its, using a core with low saturation magnetization and a large core J and R^ as the A core, and a core with high saturation magnetization and a small core length ILa as the B core. In order to record on the third layer of the magnetic tape mentioned above, the A core has j2A of 0.3 to 3 ms+ and a saturation magnetic flux density of 3.0 ms.
00~4,000 Gauss Mn-Zn ferrite, B
As the core, for example, a Sendust film having 18 mm of 2 to 15 μm and a saturation magnetic flux density of 10,000 to 11,000 Gauss can be used. The gap length g3 is preferably about 062 μm. The head 11is is the head It mentioned earlier.
It can be made in exactly the same way as s.

第9図は第4層4に情報を記録するための、垂直方向に
磁界を発生する磁気ヘッドHpの断面図である。ヘッド
tlpは対称かつ同質の2個のコアB。
FIG. 9 is a cross-sectional view of a magnetic head Hp that generates a magnetic field in the perpendicular direction for recording information on the fourth layer 4. The head tlp has two symmetrical and homogeneous cores B.

Baに狭まれた高飽和磁化の薄いAコアにコイルCを捲
回した構造の単磁極ヘッドである。Aコアの先端から垂
直方向に磁束が洩れるので垂直記録ができる。この場合
のギャップ長g4はAコアの膜厚になる。先に述べた磁
気テープの第4層4に情報を記録するために、Aコアと
して例えば飽和磁束密度12,000ガウス以上のCo
−Zr合金膜を、Bコアとして飽和磁束密度3,000
〜4,000ガウスのMn −Znフェライトを用いる
ことができる。ギャップ長84は0.1μI程度がよい
。ヘッドlipは次のようにして作ることができる。コ
アBにガラスブロックg1を、コアBaにガラスブロッ
クglaをそれぞれ溶着し、それぞれのAコアと対向す
る面は平担にしておく。そして例えばコア8aとガラス
ブロックgllaに0.1μm程度の厚さのCo−Zr
合金膜をトラック幅だけめっき、蒸着、スパッタリング
などで形成し、磁性合金膜の段差をガラスで埋めてから
Bコアとガラス接合し、ガラスブロックgρ、gll 
a上にコイルCを捲回する。コイルCはガラスブロック
の周囲でなく、内側に設けることもできる。
This is a single magnetic pole head with a structure in which a coil C is wound around a thin A core with high saturation magnetization narrowed by Ba. Perpendicular recording is possible because magnetic flux leaks in the vertical direction from the tip of the A core. The gap length g4 in this case is the film thickness of the A core. In order to record information on the fourth layer 4 of the magnetic tape mentioned above, the A core is made of Co, for example, with a saturation magnetic flux density of 12,000 Gauss or more.
-Zr alloy film as B core with saturation magnetic flux density of 3,000
~4,000 Gauss Mn-Zn ferrite can be used. The gap length 84 is preferably about 0.1 μI. The head lip can be made as follows. A glass block g1 is welded to the core B, and a glass block gla is welded to the core Ba, and the surfaces facing the A cores are kept flat. For example, Co-Zr with a thickness of about 0.1 μm is applied to the core 8a and the glass block gla.
An alloy film is formed by plating, vapor deposition, sputtering, etc. by the track width, and the step of the magnetic alloy film is filled with glass, and then glass is bonded to the B core to form glass blocks gρ, gll.
Wind coil C on top of a. The coil C can also be provided inside the glass block instead of around it.

各ヘッドはトラック幅に相当する厚さに切り出される。Each head is cut to a thickness corresponding to the track width.

第1表に示した諸元をもつ多層磁気テープに情報を記録
するに適する磁気ヘッドの構成例を第2表に示す。
Table 2 shows an example of the configuration of a magnetic head suitable for recording information on a multilayer magnetic tape having the specifications shown in Table 1.

\、 第2表 これらのヘッドllb%Hs、■S%N9を、ヘッドH
hのBコアがヘッドIIsのAコアと、ヘッドHsのB
コアがヘッド旧SのAコアと、ヘッドHisのBコアと
ヘッドIlpのBコアがそれぞれ隣り合うようにして、
ヘッド支持具上に配設し、磁気テープを11h11ts
、 His 、 Ilpの順に各ヘッドと対向するよう
に走行させながら、各ヘッドのコイルに記録電流を流す
と、磁気テープの同一垂直面上では、第1層から第4層
が順次記録され、その結果各層間の干渉を少なくして多
層記録ができる。
\, Table 2 These heads llb%Hs, ■S%N9, head H
B core of h is A core of head IIs and B of head Hs
The cores are the A core of the old head S, the B core of the head His, and the B core of the head Ilp, so that they are adjacent to each other.
Place the magnetic tape on the head support and hold the magnetic tape at 11h11ts.
, His, and Ilp, and when a recording current is applied to the coil of each head, the first to fourth layers are sequentially recorded on the same vertical plane of the magnetic tape, and the As a result, multilayer recording is possible with less interference between each layer.

第2表には、第1表に示した諸元をもつ磁気テープへの
多層記録を行なうためのヘッドを例示したが、一般的に
は、磁気テープの第1層ないし第4層をそれぞれ抗磁力
HCI 、Hc2 、Hc= 、HC4の材料で形成し
、それぞれの厚さをδ1.δ2゜δ8.δ4とした時、
各ヘッドの飽和磁束密度BSを、第1層用のヘッドHh
では両コアとも8s≧5Xtlc、、第2層用のヘッド
tlsでは高飽和磁束密度のコアのBs≧5xllc2
、低飽和磁束密度のコアのBs<4XIIc2.第3層
用ヘッド1lisでは高磁束密度のコアBs≧5XII
C3,低磁束密度のコアのBS<4 X 1103 、
第4層用の単磁極ヘッドlipでは単磁極膜のOs≧5
 X Hc4 とするのがよく、また各ヘッドのギャッ
プ長は第1層用のヘッドHhではg1郊(δ2+63+
64)、第2層用のヘッドIIsではg2り(δ3+δ
4 )、第3層用のヘッドl1isではg3zδ9、第
4層のヘッドHpでは膜厚g、七δ/2とすると、多層
記511(こ際して各層間の干渉を小さくすることがで
きる。各コアの長さとしては、ヘッドHhの両コア、ヘ
ッドHs、ヘッドHisの低飽和磁化ヘッドの長さを0
.3〜3mm 、ヘッドHs、ヘッド旧Sの高飽和磁の
ヘッドの長さを2〜15μmとするとよい。
Table 2 shows examples of heads for performing multilayer recording on magnetic tape having the specifications shown in Table 1, but generally, the first to fourth layers of the magnetic tape are They are made of materials with magnetic forces HCI, Hc2, Hc=, and HC4, and have a thickness of δ1. δ2゜δ8. When δ4,
The saturation magnetic flux density BS of each head is determined by the head Hh for the first layer.
Then, both cores are 8s≧5Xtlc, and in the second layer head tls, Bs≧5xllc2 of the core with high saturation magnetic flux density.
, Bs<4XIIc2. of the core with low saturation magnetic flux density. In the third layer head 1lis, high magnetic flux density core Bs≧5XII
C3, BS of core with low magnetic flux density<4×1103,
In the single magnetic pole head lip for the fourth layer, Os≧5 of the single magnetic pole film
The gap length of each head is preferably g1 (δ2+63+) for the first layer head Hh.
64), in head IIs for the second layer, g2 = (δ3 + δ
4), the third layer head l1is has a film thickness of g3zδ9, and the fourth layer head Hp has a film thickness of g and a film thickness of 7δ/2, then the multilayer equation 511 (at this time, interference between each layer can be reduced). As for the length of each core, the length of the low saturation magnetization heads of both cores of head Hh, head Hs, and head His is 0.
.. It is preferable that the length of the highly saturated magnetic heads of Head Hs and Head Old S be 2 to 15 μm.

4個のヘッドllh、 )Is、 His 、 )lp
を一体のものとして作ることができる。すなわち、第6
図ないし第9図に示した各ヘッド、Hh、 Hs、 H
is 、 Hp用のコアを、それぞれトラック幅数個あ
るいは数10個以上の奥行きをもたせて作成しておき、
それらを互いにガラス溶着などで接合し、その後1トラ
ック分に相当する厚さに切り出せばよい。第1θ図はそ
の1例を示す斜視図である。図において、lOは第1層
用のヘッドllh用のコア、20は第2層のヘッドHs
用のコア、30は第3層用のヘッドl1is用のコア、
40は第4層用のヘッドHp用のコアである。
4 heads llh, )Is, His, )lp
can be made as a single unit. That is, the sixth
Each head shown in the figure to figure 9, Hh, Hs, H
Create cores for is and HP each with a depth of several track widths or several dozen track widths or more,
They may be joined together by glass welding or the like, and then cut out to a thickness equivalent to one track. FIG. 1θ is a perspective view showing one example. In the figure, IO is the core for the first layer head llh, and 20 is the second layer head Hs.
30 is the core for the third layer head l1is,
40 is a core for the fourth layer head Hp.

ヘッドHh用のコア10を先に述べたようにコア11と
コア12をたとえばガラス溶着しておく。先に述べた各
種の方法で高飽和磁化の合金膜23を低飽和磁化のコア
22に対向させてヘッドIts用コア20とし、同様に
低飽和磁化のコア31と高飽和磁化のコア32を対向さ
せてヘッド旧S用コア30とし、コア42.43の間に
高飽和磁化のコア41を挟んでヘッドHp用コア40と
する。図において、23.33.46はトラック幅Tの
高飽和磁化膜21.32.41の隙間を埋めるガラス部
、44.45はそれぞれコア42.43にガラス(8E
tされたガラスブロックである。コア12とコア21、
 コア22とコア31.コア32とコア42を順次にそ
れぞれガラス溶着などで接合すると第1O図に示すm合
ヘッドコアブロックができる。接合に際し、各ヘッド相
互の干、渉を防ぐため、シールド用金属漠例えばCr膜
51.52.53をめっき、スパッタリングなどで各ヘ
ッド用コアの界面に形成してからコア間を接合してもよ
い。接合が終った後に図示の噴線L−L、X2−×2・
・・に沿ってヘッドブロックを切断すると、4個のヘッ
ドのためのコアが一体となった複合コアを同時に多数旧
作ることができる。切断後窓W、外窓W′を利用してそ
れぞれのヘッドのためのコイルを捲回し、ヘッド固定板
にコア、コイル端子を固定して複合ヘッドが完成する。
As described above, the core 10 for the head Hh is made by welding the core 11 and the core 12 with glass, for example. The alloy film 23 with high saturation magnetization is made to face the core 22 with low saturation magnetization using the various methods described above to form the head Its core 20, and similarly the core 31 with low saturation magnetization and the core 32 with high saturation magnetization are made to face each other. A core 30 for the old head S is obtained, and a core 41 for the head Hp is obtained by sandwiching a core 41 with high saturation magnetization between the cores 42 and 43. In the figure, 23, 33, and 46 are glass parts that fill the gaps between the high saturation magnetization films 21, 32, and 41 with a track width T, and 44, 45 are glass parts (8E
It is a glass block that has been polished. core 12 and core 21,
Core 22 and Core 31. By sequentially joining the cores 32 and 42 by glass welding or the like, an m-joint head core block shown in FIG. 1O is obtained. In order to prevent mutual interference between the heads when bonding, it is also possible to form a shielding metal film, such as a Cr film, on the interface of each head core by plating or sputtering, and then bond the cores together. good. After the joining is completed, the jet line L-L shown in the figure, X2-×2・
By cutting the head block along the ..., it is possible to simultaneously make many composite cores in which the cores for four heads are integrated. After cutting, the coils for each head are wound using the window W and the outer window W', and the core and coil terminals are fixed to the head fixing plate to complete the composite head.

ヘッドllh、 Its、 l1isのギャップ部はS
iOの堆積などによって埋めておく。なお、コイルは薄
膜形成法によって設けることもできる。。
The gap between the heads llh, Its, and l1is is S.
It is buried by depositing iO or the like. Note that the coil can also be provided by a thin film formation method. .

これまで磁気テープは4層の例について説明し、磁気ヘ
ッドも磁気テープに相当する4種類について説明してき
た。もちろん磁気テープは任意の2層ないし3層の組合
せによる多層テープでもよく、その場合磁気ヘッドは磁
気テープの各層に適合するヘッドを組合わせ用いればよ
い。
Up to now, an example of a four-layer magnetic tape has been described, and four types of magnetic heads corresponding to the magnetic tape have been described. Of course, the magnetic tape may be a multilayer tape consisting of any combination of two or three layers, and in that case, the magnetic head may be a combination of heads suitable for each layer of the magnetic tape.

このような多層記録はディジタル記録において特に有効
である。記録に用いる磁気ヘッドは再生のためにも使用
できる。
Such multilayer recording is particularly effective in digital recording. The magnetic head used for recording can also be used for reproduction.

実施例2 実施例1で示した多層磁気テープの第1磁性層ないし第
3磁性層について、磁化容易方向を面内で回転させて、
さらに記録チャネルを増すことができる。
Example 2 For the first to third magnetic layers of the multilayer magnetic tape shown in Example 1, the easy magnetization direction was rotated in the plane,
Furthermore, the number of recording channels can be increased.

第11図は第1磁性層の磁化容易方向を示す図で、実施
例1の第1層における磁化容易方向Pに加え、同じ面内
にあって、PIとは角度の異なる磁化容易方向P2、P
3が混在している。第12図は第2磁性層の磁化容易方
向であって、実施例1の第2層における磁化容易方向群
に加え、膜面に斜めで篩とは角度の異なる磁化容易方向
爾、nが混在している。一層にOP、 OQ、 011
を混在させるのでなく、それぞれを独立の磁性層とする
こともできる。
FIG. 11 is a diagram showing the easy magnetization direction of the first magnetic layer. In addition to the easy magnetization direction P in the first layer of Example 1, the easy magnetization direction P2, which is in the same plane but has a different angle from PI, P
3 are mixed. FIG. 12 shows the easy magnetization directions of the second magnetic layer, in addition to the easy magnetization directions group in the second layer of Example 1, there are also easy magnetization directions n, which are oblique to the film surface and have a different angle from the sieve. are doing. Even more OP, OQ, 011
Instead of mixing them together, each can be made into an independent magnetic layer.

第13図は第11図に示した3方向の面内磁化容易方向
P1、P2、P3をもつ第1磁性層lの形成法を説明す
るための平面図である。ベース5を走行させながら、ホ
ッパHから例えば(Go)γ−Fe203針状微粒子と
バインダの混合物をベース面上に供給する。矢印P7、
P3方向の磁界を持つ棒磁石61.62を、ホッパHの
近くで磁性層1面に近接して配設しておくと、針状微粒
子の一部はP1方向からP2またはP、方向に回転し、
磁性塗料の固化によって固定されるので、面内3方向の
磁化容易方向が実現できる。
FIG. 13 is a plan view for explaining a method of forming the first magnetic layer l having the three easy in-plane magnetization directions P1, P2, and P3 shown in FIG. 11. While the base 5 is running, a mixture of, for example, (Go)γ-Fe203 acicular fine particles and a binder is supplied onto the base surface from the hopper H. Arrow P7,
If bar magnets 61 and 62 with a magnetic field in the P3 direction are placed close to the first surface of the magnetic layer near the hopper H, some of the acicular fine particles will rotate from the P1 direction to the P2 or P direction. death,
Since it is fixed by solidifying the magnetic paint, three directions of easy magnetization in the plane can be realized.

第12図に示した斜め3方向の磁化容易方向は、例えば
第3図に示した剥、1・方向に磁化容易方向を持つ第2
層の作製法において、ボートB「を紙面垂直方向に3個
配置して、磁気テープの幅方向の異なる角度からFeを
蒸着すればよい。または第3図に示した方法で斜め方向
の磁化容易方向を実現した後、リールSR%TR,冷却
筒CTからなる磁気テープの走行系を傾けて、先の斜め
磁化容易方向01層の上に面内角度の異なる斜め磁化容
易方向n層を形成し、さらに磁気テープ走行系を逆に傾
けて磁化容易方向n層を形成してもよい。
The three diagonal directions of easy magnetization shown in FIG.
In the layer manufacturing method, it is sufficient to arrange three boats B in the direction perpendicular to the plane of the paper and deposit Fe from different angles in the width direction of the magnetic tape. Alternatively, the method shown in Fig. 3 can be used to easily magnetize in an oblique direction. After realizing the direction, the magnetic tape running system consisting of the reel SR%TR and the cooling cylinder CT is tilted to form the diagonal easy magnetization direction n layer with different in-plane angles on the previous diagonal magnetization easy direction 01 layer. Furthermore, the easy magnetization direction n layer may be formed by tilting the magnetic tape running system in the opposite direction.

第3層における磁化容易方向の多数化の状態およびその
形成方法は第2層の場合と全く同様である。
The state of multiplication of easy magnetization directions in the third layer and its formation method are exactly the same as in the case of the second layer.

このように複数の磁化容易方向をもつ磁性層を積層する
と記録チャネル数を増すことができる。
By laminating magnetic layers having a plurality of easy magnetization directions in this manner, the number of recording channels can be increased.

上に述べた例では第1、第2、第3層でそれぞれ3チヤ
ネル、第4層1チヤネル、合計10チヤネルの記録チャ
ネルを同一記録媒体上に設けることができる。このよう
な多層記録媒体への情報の記録・再生は、実施例1で説
明し゛た磁気ヘッドの磁気ギャップの方向をそれぞれの
層の磁化容易方向に適合させて、組み合わせて用いるこ
とにより、各磁性層の各磁化容易方向について、選択的
に記録・再生ができる。
In the example described above, a total of 10 recording channels, 3 channels each in the first, second and third layers and one channel in the fourth layer, can be provided on the same recording medium. Information can be recorded and reproduced on such a multilayer recording medium by adapting the direction of the magnetic gap of the magnetic head described in Example 1 to the direction of easy magnetization of each layer and using the combination. Recording and reproduction can be performed selectively in each direction of easy magnetization of the layer.

以上の実施例は磁気記録媒体として磁気テープを例示し
たが、本発明の多層記録媒体は磁気ディスクにも適用で
きることは当然である。
Although the above embodiments have exemplified a magnetic tape as the magnetic recording medium, it goes without saying that the multilayer recording medium of the present invention can also be applied to a magnetic disk.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、多層記録媒体の
各層に、別個の情報を同時に3次元的に記録することが
できるので、媒体厚さ方向の記録密度、ひいては媒体全
体の記録密度を上げることができる。
As explained above, according to the present invention, separate information can be simultaneously recorded three-dimensionally on each layer of a multilayer recording medium, thereby increasing the recording density in the thickness direction of the medium and, by extension, the recording density of the entire medium. can be raised.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例としての多層記録磁気テープの
断面図、 第2図、第3図、第4図、第5図はそれぞれ第1図の実
施例の第1磁性層、第2磁性層、第3磁性層、第4磁性
層の作製法を説明する断面図、第6図は水平方向磁界を
発生する磁気ヘッドの断面図、 第7図は斜め方向磁界を発生する磁気ヘッドの断面図、 第8図は逆斜め方向磁界を発生する磁気ヘッドの断面図
、 第9図は垂直方向の磁界を発生する磁気ヘッドの断面図
、 第10図は本発明の実施例の複合磁気ヘッドの斜視図、 第11図は面内に複数の磁化容易をもつ磁性層の平面図
、 第12図は膜面斜め方向に複数の磁化容易方向をもつ磁
性層の斜視図、 第13図は第11図の磁性層の作製法を説明する平面図
、 第14図は従来の磁気記録媒体の斜視図である。 1・・・第1磁性層、 2・・・第2磁性層、 3・・・第3磁性層、 4・・・第4磁性層、 5・・・ベース、 10・・・ヘッドllh用コア、 11.12,22,31,42.43・・・フェライト
ブロック、20・・・ヘッドIIs用コア、 21.32.41・・・高磁束密度合金膜、23.33
.46・・・ガラス、 30・・・ヘッド1lis用コア、 40・・・ヘッドl(p用コア、 44゜45・・・ガラスブロック、 51.52.53・・・シールド用金属膜。
FIG. 1 is a cross-sectional view of a multilayer recording magnetic tape as an embodiment of the present invention, and FIGS. A cross-sectional view illustrating the manufacturing method of the magnetic layer, the third magnetic layer, and the fourth magnetic layer. Figure 6 is a cross-sectional view of a magnetic head that generates a horizontal magnetic field. Figure 7 is a cross-sectional view of a magnetic head that generates an oblique magnetic field. 8 is a sectional view of a magnetic head that generates a magnetic field in a reverse oblique direction. FIG. 9 is a sectional view of a magnetic head that generates a vertical magnetic field. FIG. 10 is a composite magnetic head according to an embodiment of the present invention. 11 is a plan view of a magnetic layer with multiple directions of easy magnetization in the plane, FIG. 12 is a perspective view of a magnetic layer with multiple directions of easy magnetization diagonally to the film surface, and FIG. FIG. 11 is a plan view illustrating a method of manufacturing a magnetic layer, and FIG. 14 is a perspective view of a conventional magnetic recording medium. DESCRIPTION OF SYMBOLS 1... 1st magnetic layer, 2... 2nd magnetic layer, 3... 3rd magnetic layer, 4... 4th magnetic layer, 5... Base, 10... Core for head llh , 11.12, 22, 31, 42.43... Ferrite block, 20... Core for head IIs, 21.32.41... High magnetic flux density alloy film, 23.33
.. 46...Glass, 30...Core for head 1lis, 40...Core for head l (p), 44°45...Glass block, 51.52.53...Metal film for shielding.

Claims (1)

【特許請求の範囲】 1)ベース上に磁気配向性および抗磁力の異なる複数の
磁性層が積層されていることを特徴とする磁気記録媒体
。 2)積層された異なる磁性層に磁気記録を行なうための
複数の磁気ヘッドからなり、該複数の磁気ヘッドはそれ
ぞれの磁気ギャップが形成する磁界の分布および磁界強
度が異なっていることを特徴とする磁気ヘッド。
[Scope of Claims] 1) A magnetic recording medium characterized in that a plurality of magnetic layers having different magnetic orientations and coercive forces are laminated on a base. 2) It consists of a plurality of magnetic heads for performing magnetic recording on different stacked magnetic layers, and the plurality of magnetic heads are characterized in that the magnetic field distribution and magnetic field strength formed by the respective magnetic gaps are different. magnetic head.
JP4543186A 1986-03-04 1986-03-04 Magnetic recording medium and magnetic head Pending JPS62204429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4543186A JPS62204429A (en) 1986-03-04 1986-03-04 Magnetic recording medium and magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4543186A JPS62204429A (en) 1986-03-04 1986-03-04 Magnetic recording medium and magnetic head

Publications (1)

Publication Number Publication Date
JPS62204429A true JPS62204429A (en) 1987-09-09

Family

ID=12719108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4543186A Pending JPS62204429A (en) 1986-03-04 1986-03-04 Magnetic recording medium and magnetic head

Country Status (1)

Country Link
JP (1) JPS62204429A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363932A (en) * 1989-06-12 1991-03-19 Digital Equip Corp <Dec> Magnetic medium for longitudinal recording

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5256510A (en) * 1975-11-05 1977-05-10 Mitsubishi Heavy Ind Ltd Magnetic recording material
JPS54145105A (en) * 1978-05-02 1979-11-13 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPS59129936A (en) * 1983-01-14 1984-07-26 Sony Corp Magnetic tape

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5256510A (en) * 1975-11-05 1977-05-10 Mitsubishi Heavy Ind Ltd Magnetic recording material
JPS54145105A (en) * 1978-05-02 1979-11-13 Matsushita Electric Ind Co Ltd Magnetic recording medium
JPS59129936A (en) * 1983-01-14 1984-07-26 Sony Corp Magnetic tape

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5431969A (en) * 1987-10-05 1995-07-11 Quantum Corporation Method of making a magnetic medium for longitudinal recording
JPH0363932A (en) * 1989-06-12 1991-03-19 Digital Equip Corp <Dec> Magnetic medium for longitudinal recording

Similar Documents

Publication Publication Date Title
JPH0542726B2 (en)
JPS62204429A (en) Magnetic recording medium and magnetic head
JPS62200517A (en) Vertical magnetic recording magnetic head and its manufacture
JPH0475564B2 (en)
KR0155468B1 (en) Magnetic head and method of fabrication thereof
JPS62183012A (en) Magnetic head and its manufacture
KR100200861B1 (en) Recording and reproducing magnetic head and the manufacturing method
KR960005113B1 (en) Thin film magnetic head
JPS58161127A (en) Composite magnetic head and its manufacture
JPS59203210A (en) Magnetic core and its production
JPS63124208A (en) Magnetic head
JPS6387606A (en) Composite magnetic head
JPS60234209A (en) Magnetic head
JPH04117606A (en) Magnetic head device
JPH0770023B2 (en) Magnetic head
JPH02302908A (en) Magnetic head
JPH05143917A (en) Magnetic head
JPS6148113A (en) Two-element magnetic head
JPH0426906A (en) Magnetic recorder
JPS6174118A (en) Magnetic head
JPS6299903A (en) Magnetic head for vertical recording
JPH01251409A (en) Coil thin film magnetic head and its substrate
JPS6314314A (en) Magnetic head for plural channels
JPS62117116A (en) Magnetic head and its production
JPH05114113A (en) Magnetic head and production thereof