JPS62203362A - Semiconductor memory - Google Patents

Semiconductor memory

Info

Publication number
JPS62203362A
JPS62203362A JP61045555A JP4555586A JPS62203362A JP S62203362 A JPS62203362 A JP S62203362A JP 61045555 A JP61045555 A JP 61045555A JP 4555586 A JP4555586 A JP 4555586A JP S62203362 A JPS62203362 A JP S62203362A
Authority
JP
Japan
Prior art keywords
layer
diffusion layer
conductivity type
groove
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61045555A
Other languages
Japanese (ja)
Inventor
Toshiro Yamada
俊郎 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61045555A priority Critical patent/JPS62203362A/en
Publication of JPS62203362A publication Critical patent/JPS62203362A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate

Abstract

PURPOSE:To make a high temperature process applicable by a method wherein one conductivity type diffused layer is formed on a groove part, sidewalls and bottom thereof formed on one conductivity type semiconductor substrate and then a diffused layer of the other conductivity type is provided through the intermediary of insulator layers. CONSTITUTION:A P-type diffused layer 10 is formed on the sidewalls and bottom of a groove part 12 formed on a low concentration P-type semiconductor substrate 20. An N-type diffusion layer 8 is formed on the diffused layer 10 through the intermediary of insulator layers 21. Besides, a signal charge storing electrode 4 connecting to the layer 8 is formed in the groove 12 through the intermediary of a thin dielectric layer 2. Furthermore, a reading and writing MOS transistor 13 with a word line 6 is formed between the layer 8 and a bit line 5. Through these procedures, a high temperature process can be made applicable to manufacture a semiconductor memory easily composed of a CMOS structure.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体記憶装置、特にダイナミックメモリに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to semiconductor memory devices, particularly dynamic memories.

従来の技術 第2図に従来構造のトレンチキャパシター型のメモリセ
ルの構造を示す(アイイーディーエム(I EDM )
’85 、 pp 710  )aこのメモリセルにお
ける構造及び動作について第2図、第3図を用いて説明
する。このメモリセルは、高濃度P型半導体基板1上に
形成された低濃度P型半導体層9.溝部12.溝部12
の側面に形成された誘電体層2.誘電体層2を介して溝
内に形成され、N型拡散層8に接続されているストレー
ジ電極4.及び読み出し/書き込みMOSトランジスタ
部13で構成されている。書き込み時にはビット線6か
ら、信号電圧が、拡散部7゜MOSトランジスタ部13
.拡散部8を介して。
Conventional Technology Figure 2 shows the structure of a conventional trench capacitor type memory cell (IEDM).
'85, pp. 710)a The structure and operation of this memory cell will be explained using FIGS. 2 and 3. This memory cell includes a low concentration P type semiconductor layer 9. formed on a high concentration P type semiconductor substrate 1. Groove portion 12. Groove 12
A dielectric layer formed on the side surface of 2. A storage electrode 4 formed in the trench through the dielectric layer 2 and connected to the N-type diffusion layer 8. and a read/write MOS transistor section 13. During writing, a signal voltage is applied from the bit line 6 to the diffusion portion 7°MOS transistor portion 13.
.. Via the diffusion section 8.

ストレージ電極4と高濃度P型基板1間に形成されたス
トレージキャパシターに書き込まれ、信号電荷として蓄
えられる。読み出し時には逆の経路を通して、ストレー
ジ電極4と高濃度P型基板1間に形成されたストレージ
キャパシターに蓄えられた信号電荷がビット線6に信号
電圧として読み出されることになる。
The data is written into a storage capacitor formed between the storage electrode 4 and the highly doped P-type substrate 1, and stored as a signal charge. During reading, the signal charge stored in the storage capacitor formed between the storage electrode 4 and the heavily doped P-type substrate 1 is read out as a signal voltage to the bit line 6 through the reverse path.

発明が解決しようとする問題点 このような従来のメモリセル構造では、高濃度P型半導
体基板上に低濃度P型半導体層を形成しているために、
高温プロセスを通せないという欠点がある。
Problems to be Solved by the Invention In such a conventional memory cell structure, since a low concentration P-type semiconductor layer is formed on a high concentration P-type semiconductor substrate,
The drawback is that it cannot be passed through high-temperature processes.

なぜなら、高温プロセスを通すことにより高濃度P型層
が上方の低濃度P型層に熱拡散により広がってしまうか
らである。
This is because the high-concentration P-type layer spreads into the upper low-concentration P-type layer by thermal diffusion due to the high-temperature process.

さらに0MO3構造を実現しようとする場合。Furthermore, when trying to realize a 0MO3 structure.

まず第3図(a)に示すように基板3oにウェルを形成
するためにイオン注入31により第3図0))に示すよ
うな不純物分布32をもつ層を半導体基板30に形成し
1次に高温の熱処理により、不純物を半導体基板の深さ
方向に拡散せしめ第3図(c)に示すような不純物分布
33を得るわけである。ここで。
First, as shown in FIG. 3(a), in order to form a well in the substrate 3o, a layer having an impurity distribution 32 as shown in FIG. 3(0)) is formed on the semiconductor substrate 30 by ion implantation 31. The high temperature heat treatment causes impurities to be diffused in the depth direction of the semiconductor substrate, resulting in an impurity distribution 33 as shown in FIG. 3(c). here.

高温熱処理が必要になるのは、不純物密度勾配が一定に
なる領域(第3図(C)中の34で示す分布の部分)が
、ウェル中に形成されたMOSトランジスタの安定動作
、及びMOS)ランジスタの特性のバラツキを減らすた
めに不可欠なためである。
High-temperature heat treatment is necessary because the region where the impurity density gradient is constant (the distribution area indicated by 34 in FIG. 3(C)) is for stable operation of the MOS transistor formed in the well, and for the MOS transistor formed in the well. This is because it is essential for reducing variations in transistor characteristics.

このように0MO3構造を実現しようとした場合、高温
プロセスは不可避であるため、従来の構造では、その実
現もまた困難である。
When trying to realize a 0MO3 structure like this, a high temperature process is unavoidable, so it is also difficult to realize it with the conventional structure.

本発明はかかる点に鑑みてなされたもので、従来のCM
OSプロセスと同様の高温プロセスの適用を可能とする
ことを目的としている。
The present invention has been made in view of the above points, and is based on the conventional CM
The purpose is to enable the application of a high temperature process similar to the OS process.

問題点を解決するだめの手段 本発明は上記問題点を解決するために、P型半導体基板
上に形成された溝部と、前記溝部側面及び底面に形成さ
れたP散拡散層と、前記P散拡散層の上方に形成された
N型拡散層と、前記P散拡散層と前記N型拡散層を電気
的に絶縁するために。
Means for Solving the Problems In order to solve the above problems, the present invention provides a groove formed on a P-type semiconductor substrate, a P diffusion layer formed on the side and bottom surfaces of the groove, and a P diffusion layer formed on the side and bottom surfaces of the groove. To electrically insulate the N type diffusion layer formed above the diffusion layer, the P diffusion layer, and the N type diffusion layer.

前記P散拡散層と前記N型拡散層間に形成された絶縁体
層と、前記溝部側面に形成された薄い誘電体層を介して
、溝内に形成され、前記N型拡散層に接続された信号電
荷蓄積用ストレージ電極と、前記N型拡散層とビ・・ノ
ド線間に形成された読み出し用N型MOSトランジスタ
からなる構造を有するものである。
formed in the groove and connected to the N-type diffusion layer through an insulating layer formed between the P diffusion layer and the N-type diffusion layer, and a thin dielectric layer formed on the side surface of the groove. It has a structure consisting of a storage electrode for accumulating signal charges, and an N-type MOS transistor for reading formed between the N-type diffusion layer and the bi-node line.

作  用 本発明は上記した構造により、従来例とは異なり高温プ
ロセスの使用も可能であり、それにより0MO3構造の
実現を可能とするものである。
Function: Due to the above-described structure, the present invention enables the use of a high-temperature process unlike the conventional example, thereby making it possible to realize a 0MO3 structure.

実施例 第1図は1本発明の一実施例における半導体記憶装置の
構造を示す。
Embodiment FIG. 1 shows the structure of a semiconductor memory device in an embodiment of the present invention.

この実施例におけるメモリセルは低濃度P型半導体基板
20上に形成された溝部12.溝部12の側面及び底面
に形成されたP型拡散層10、P型拡散層10の上方に
形成されたN型拡散層8゜P型拡散層10とN型拡散層
8を電気的に絶縁するために、P型拡散層10とN型拡
散層8間に形成された絶縁体層21.溝部12の底部及
び側面に形成された薄い誘電体層2を介して溝12内に
形成され、N型拡散層8に接続された信号電荷蓄積用ス
トレージ電極4.N型拡散層8とビット線6間に形成さ
れ、ワード線6を有する読み出し書き込み用MOSトラ
ンジスタ部13から構成されている。22.23は絶縁
膜である。
The memory cell in this embodiment has a trench 12. formed on a low concentration P-type semiconductor substrate 20. The P-type diffusion layer 10 formed on the side and bottom surfaces of the groove portion 12 and the N-type diffusion layer 8° formed above the P-type diffusion layer 10 electrically insulate the P-type diffusion layer 10 and the N-type diffusion layer 8 Therefore, an insulator layer 21. formed between the P-type diffusion layer 10 and the N-type diffusion layer 8. A storage electrode 4 for accumulating signal charges is formed in the groove 12 through a thin dielectric layer 2 formed on the bottom and side surfaces of the groove 12 and connected to the N-type diffusion layer 8. It is formed between the N-type diffusion layer 8 and the bit line 6, and is composed of a read/write MOS transistor section 13 having a word line 6. 22 and 23 are insulating films.

従来例との違いは、N型拡散層8とP型拡散層10を垂
直方向に分離するために絶縁体層21を形成した点およ
び高濃度P型半導体基板を使用せず、低濃度P型半導体
基板2oを使用できる点にある。
The difference from the conventional example is that an insulator layer 21 is formed to vertically separate the N-type diffusion layer 8 and the P-type diffusion layer 10, and a high-concentration P-type semiconductor substrate is not used, and a low-concentration P-type semiconductor substrate is used. The advantage is that the semiconductor substrate 2o can be used.

次に本実施例の動作について説明する。書き込み時には
ビ、・、ト線6から、信号電圧が、拡散部7゜MOS)
ランジスタ部13.拡散部8を介して。
Next, the operation of this embodiment will be explained. During writing, the signal voltage is applied from the B,..., G lines 6 to the diffusion section 7°MOS).
Ransistor section 13. Via the diffusion section 8.

ストレージ電極4とP型拡散層10間に形成されたスト
レージキャパシターに書き込まれ、信号電荷として蓄え
られる。読み出し時には逆の経路を通して、ストレージ
電極4とP型拡散層10間に形成されたストレージキャ
パシターに蓄えられた信号電荷がビット線6に信号電圧
として読み出されることになる。
The data is written into a storage capacitor formed between the storage electrode 4 and the P-type diffusion layer 10, and stored as a signal charge. During reading, the signal charge stored in the storage capacitor formed between the storage electrode 4 and the P-type diffusion layer 10 is read out as a signal voltage to the bit line 6 through the reverse path.

発明の効果 以上のように本発明によれば、従来例とは異なり、高濃
度P型半導体基板を使用する必要がなく。
Effects of the Invention As described above, according to the present invention, unlike the conventional example, there is no need to use a high concentration P-type semiconductor substrate.

その結果、高温プロセスの使用が可能であるという利点
がある。さらに、高温プロセスの使用が可能であるため
に、従来構造とくらべて、CMOS構造の実現が容易で
ある。
As a result, there is the advantage that high temperature processes can be used. Furthermore, since high temperature processes can be used, CMOS structures are easier to implement than conventional structures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における半導体記憶装置の要
部構造を示す断面図、第2図は従来の装置の構造を示す
断面図、第3図は0MO3構造を実現するのに必要なウ
ェル構造を実現するのに必要とする過程を説明するだめ
の説明図である。 2・・・・・・誘電体層、4・・・・・・ストレージ電
極、6・・・・・・ビット線、e・・・・・・ワード線
、7,8・・・・・・N型拡散層、10・・・・・・P
型半導体層、13・・・・・・MOSトランジスタ、1
2・・・・・溝部、20・・・・・・半導体基板、21
・・・・・・絶縁体層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名前2
 図
FIG. 1 is a cross-sectional view showing the main structure of a semiconductor memory device according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing the structure of a conventional device, and FIG. 3 is a cross-sectional view showing the structure of a conventional device. FIG. 3 is an explanatory diagram illustrating the process required to realize a well structure. 2... Dielectric layer, 4... Storage electrode, 6... Bit line, e... Word line, 7, 8... N-type diffusion layer, 10...P
type semiconductor layer, 13...MOS transistor, 1
2...Groove portion, 20...Semiconductor substrate, 21
...Insulator layer. Name of agent: Patent attorney Toshio Nakao and 1 other name2
figure

Claims (1)

【特許請求の範囲】[Claims]  一導電型半導体板上に形成された溝部と、前記溝部側
面及び底面に形成された一導電型拡散層と、前記一導電
型拡散層の上方に形成された反対導電型拡散層と、前記
一導電量拡散層と前記反対導電型拡散層間に形成された
絶縁体層と、前記溝部側面及び底面に形成された薄い誘
電体層を介して溝内に形成され、前記反対導電量拡散層
に接続された信号電荷蓄積用ストレージ電極と、前記反
対導電型拡散層とビット線間に形成された読み出し書き
込み用MOSトランジスタからなる半導体記憶装置。
a groove formed on a semiconductor substrate of one conductivity type, a diffusion layer of one conductivity type formed on the side and bottom surfaces of the groove, a diffusion layer of an opposite conductivity type formed above the diffusion layer of one conductivity type; formed in the groove and connected to the opposite conductivity type diffusion layer through an insulator layer formed between the conductivity diffusion layer and the opposite conductivity type diffusion layer, and a thin dielectric layer formed on the side and bottom surfaces of the groove portion. A semiconductor memory device comprising a storage electrode for accumulating signal charges, and a read/write MOS transistor formed between the opposite conductivity type diffusion layer and the bit line.
JP61045555A 1986-03-03 1986-03-03 Semiconductor memory Pending JPS62203362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61045555A JPS62203362A (en) 1986-03-03 1986-03-03 Semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61045555A JPS62203362A (en) 1986-03-03 1986-03-03 Semiconductor memory

Publications (1)

Publication Number Publication Date
JPS62203362A true JPS62203362A (en) 1987-09-08

Family

ID=12722605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61045555A Pending JPS62203362A (en) 1986-03-03 1986-03-03 Semiconductor memory

Country Status (1)

Country Link
JP (1) JPS62203362A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258060A (en) * 1987-04-15 1988-10-25 Nec Corp Semiconductor memory divice

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258060A (en) * 1987-04-15 1988-10-25 Nec Corp Semiconductor memory divice

Similar Documents

Publication Publication Date Title
JP2655859B2 (en) Semiconductor storage device
US4646118A (en) Semiconductor memory device
JPS6167953A (en) Semiconductor memory device and manufacture thereof
JPS60130160A (en) Semiconductor memory device
JPH0345550B2 (en)
JPS59201461A (en) Read only semiconductor memory device and manufacture thereof
JPH0740593B2 (en) DRAM cell and manufacturing method thereof
US5010379A (en) Semiconductor memory device with two storage nodes
JPH05259405A (en) Semiconductor device and fabrication thereof
KR900005664B1 (en) Semiconductor memory device
JPS6040707B2 (en) semiconductor memory
JP2524002B2 (en) Method of manufacturing bipolar dynamic RAM having vertical structure and structure of the dynamic RAM
JPS59181661A (en) Semiconductor memory device
JPH0642534B2 (en) Method of forming a contact on a wall extending to a substrate
JPS62203362A (en) Semiconductor memory
JPS61107768A (en) Semiconductor memory device
JPS62137863A (en) Semiconductor memory device
JPH065809A (en) Semiconductor device
JPS63136559A (en) Semiconductor memory and manufacture thereof
JP2509177B2 (en) Memory cell
JPS61140171A (en) Semiconductor memory device
JPS62200758A (en) Semiconductor memory
JPS5838939B2 (en) integrated circuit
JP2770416B2 (en) Semiconductor storage device
JPS583270A (en) Semiconductor memory