JPS6219946Y2 - - Google Patents

Info

Publication number
JPS6219946Y2
JPS6219946Y2 JP1979057296U JP5729679U JPS6219946Y2 JP S6219946 Y2 JPS6219946 Y2 JP S6219946Y2 JP 1979057296 U JP1979057296 U JP 1979057296U JP 5729679 U JP5729679 U JP 5729679U JP S6219946 Y2 JPS6219946 Y2 JP S6219946Y2
Authority
JP
Japan
Prior art keywords
axis direction
light
sample
wavelength
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1979057296U
Other languages
Japanese (ja)
Other versions
JPS55155950U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1979057296U priority Critical patent/JPS6219946Y2/ja
Publication of JPS55155950U publication Critical patent/JPS55155950U/ja
Application granted granted Critical
Publication of JPS6219946Y2 publication Critical patent/JPS6219946Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 この考案は多チヤンネルダブルビーム二波長分
光光度計に関するものである。
[Detailed description of the invention] This invention relates to a multi-channel double beam dual wavelength spectrophotometer.

生化学自動分析装置の分野において、検査項目
を異にする多数の検体を同時分析する二波長分光
光度計として従来からのフイルター方式すなわち
試料を透過した光を二波長に分光するものに比
し、エネルギー効率が高く、かつ1つまたは2つ
の収差の少ないツエルニ・ターナ形分光器を含む
光学系だけで多(数)項目の同時分析ができる多
チヤンネル二波長分光光度計が開発されている。
これはX軸方向に配列された多数の試料セルから
の透過光をX軸方向に長さをもつ一つのスリツト
を介して、その分光された各セル透過光のスペク
トル帯がY軸方向に分散されたスペクトルとなる
ように配置した波長分散光学系上に投光するとと
もに、スペクトルの受光部を有し、この受光部は
Y軸方向に配置される2個以上の検出素子から成
る検出部をもち、この各検出部は各スペクトル帯
の出現位置に対応してX軸方向に板状に配列され
ているものである。この多チヤンネル二波長分光
光度計は以上の構成によつてフイルター方式の装
置に比しきわめて高い分解能が得られ、フイルタ
ー方式で特に明るさが問題となる短波長領域での
良効率の測定が可能となり、さらに波長の選択が
検出位置だけで行えるなどの利点を有している。
しかしながら上記装置は従来シングルビームを用
いたものであり、その光源の輝度変化は直接測定
値に影響を与えるものである。このため光源の輝
度安定のために定電圧装置が用いられ、しかも電
源投入後1時間以上の安定時間を必要とした。し
かるに生化学自動分析装置としては搬入または採
取された検体を直ちに分析しなければならない緊
急検査が往々にして行われる。これに対応して上
記光源を定格電圧の約80%位に逓減し待機させる
必要がある。このような光源ランプの使用条件で
はランプの寿命からしても従来のシングルビーム
方式ではその劣化による輝度変化を補償できず、
そのまま測定誤差となり、実用化できなかつた。
また光源の波長に対するエネルギーは外気温の急
変などでも変化するし、特に短波長において光源
のエネルギー変動すなわち色温度の変動はシング
ルビーム方式では補償できない。最近臨床検査の
重要性が一段と増し、上記のような緊急検体の24
時間待機状態が要求され、その光源の経年変化そ
の他の原因によるエネルギー変動を補償し常に一
定の輝度を保つことによつて分析精度の高い装置
が強く要望される現状である。
In the field of automatic biochemical analyzers, this dual-wavelength spectrophotometer can simultaneously analyze a large number of samples with different test items. A multi-channel dual-wavelength spectrophotometer has been developed that is highly energy efficient and capable of simultaneous analysis of multiple items using only an optical system including one or two Zerny-Turner spectrometers with few aberrations.
In this process, the transmitted light from a large number of sample cells arranged in the X-axis direction is passed through a single slit with a length in the X-axis direction, and the spectral bands of the transmitted light from each cell are dispersed in the Y-axis direction. In addition to projecting light onto a wavelength dispersion optical system arranged to obtain a spectrum, the light receiving part has a light receiving part for receiving the spectrum, and this light receiving part has a detecting part consisting of two or more detecting elements arranged in the Y-axis direction. The detection units are arranged in a plate shape in the X-axis direction corresponding to the appearance position of each spectral band. With the above configuration, this multi-channel dual-wavelength spectrophotometer can achieve extremely high resolution compared to filter-type devices, and can perform highly efficient measurements in the short wavelength region, where brightness is an issue with filter-type devices. Furthermore, it has the advantage that the wavelength can be selected only by the detection position.
However, the above device conventionally uses a single beam, and changes in the brightness of the light source directly affect the measured value. Therefore, a constant voltage device was used to stabilize the brightness of the light source, and moreover, a stabilization time of one hour or more was required after the power was turned on. However, automatic biochemical analyzers are often used for emergency tests in which samples brought in or collected must be analyzed immediately. Correspondingly, it is necessary to gradually reduce the voltage of the light source to about 80% of the rated voltage and put it on standby. Under these conditions of use of the light source lamp, the conventional single beam method cannot compensate for changes in brightness due to deterioration, even considering the lamp's lifespan.
This resulted in measurement errors and could not be put to practical use.
Furthermore, the energy of the light source with respect to the wavelength changes due to sudden changes in the outside temperature, etc., and the single beam method cannot compensate for energy fluctuations of the light source, that is, fluctuations in color temperature, especially at short wavelengths. Recently, the importance of clinical testing has increased, and 24
Currently, there is a strong demand for an apparatus that can maintain a constant brightness by compensating for energy fluctuations due to aging of the light source and other causes, and has high analysis precision.

この考案は以上の現況に鑑みてなされたもの
で、近年開発された上記多チヤンネル二波長分光
光度計を改良し、上記長時間連続点灯による光源
の劣化やその他の因によるエネルギーの変動を完
全に補償するについて、構造に大幅な変更を加え
ず、従来のシングルビーム方式をダブルビーム方
式として光源の輝度を常に一定に自動補償し、分
析精度の向上と光源ランプの寿命の長期化を目的
とするものである。すなわち複数個の試料セルを
X軸方向に1列に配列し、これら各試料セルから
の透過光をそれぞれX軸方向に長い1本のスリツ
トを通した後分光しその分光された各試料セル透
過光のスペクトル帯がそれぞれY軸方向に分散さ
れたスペクトルとなるよう波長分散光学系を配置
するとともに、一平面内に、前記各試料セルに対
応してそれぞれY軸方向に配置される少なくとも
2個の検出素子からなる検出部列を、前記各スペ
クトル帯の出現位置に対応して前記試料セルの数
と同数だけX軸方向に配列してなるスペクトルの
受光部を設けた多チヤンネルダブルビーム二波長
分光光度計において、前記試料セルの列に1個の
標準試料セルを追加して配列するとともに、前記
スペクトルの受光部に、前記1個の標準試料セル
に対応して1個の検出素子を、そのスペクトル帯
の出現位置に対応して追加して設け、かつ前記標
準試料セル透過光の特定スペクトルの強度を一定
に保つよう光源輝度を自動制御する回路を付設し
たことを特徴とする多チヤンネルダブルビーム二
波長分光光度計にかかるものである。
This idea was made in view of the above-mentioned current situation, and it is an improvement on the multi-channel dual-wavelength spectrophotometer that has been developed in recent years, and completely eliminates energy fluctuations caused by deterioration of the light source due to continuous lighting for long periods of time and other factors. With regard to compensation, the conventional single-beam method is replaced with a double-beam method without making any major changes to the structure, and the brightness of the light source is automatically compensated to always remain constant, with the aim of improving analysis accuracy and extending the life of the light source lamp. It is something. In other words, a plurality of sample cells are arranged in a row in the X-axis direction, and the transmitted light from each of these sample cells is separated after passing through a single long slit in the X-axis direction. A wavelength dispersion optical system is arranged so that the spectral bands of light are respectively dispersed in the Y-axis direction, and at least two wavelength dispersion optical systems are arranged in the Y-axis direction in correspondence with each of the sample cells in one plane. A multi-channel double beam dual-wavelength system is provided with a spectral light-receiving section in which a detection section array consisting of detection elements is arranged in the X-axis direction in the same number as the number of sample cells corresponding to the appearance position of each spectral band. In the spectrophotometer, one standard sample cell is added and arranged in the row of sample cells, and one detection element is provided in the spectrum receiving section corresponding to the one standard sample cell. A multi-channel double, characterized in that it is additionally provided corresponding to the appearance position of the spectral band and is equipped with a circuit that automatically controls the light source brightness so as to keep the intensity of the specific spectrum of the light transmitted through the standard sample cell constant. This is related to a beam dual wavelength spectrophotometer.

以下、図面によつてこの考案の実施例装置を説
明する。第1図は装置正面より見た装置の光学
系の構成図でこの分散光学系の子午面での光束を
示すもの、第2図は装置上面から見た平面図
で、同じく分散光学系の球欠面での光束を示すも
のである。1は光源でたとえば径約1mm長さ約10
mmのコイル状タングステンフイラメントであり図
のようにその長さ方向をX軸にして設けてある。
2はその点灯電圧自動制御器、3は熱線吸収フイ
ルター、4は絞り、5はシリンドリカルレンズ、
6は球面レンズで以上が光源からの光を集光する
集光レンズ系である。7は平面鏡、8は球面鏡
で、この8は図に示すようにフローセル9a〜
9fおよび標準セル10の各1個ごとに対応し、
セルの数だけX軸に一列に並べられている。フロ
ーセル9a〜9fは中央の標準セル10の左右に
たとえば3個づつX軸に垂直のY軸に配列され、
試料溶液が注入され、標準セル10はフローセル
ではなく空気または水などを充填し、純溶媒と
し、これを透過した光の強さを標準するもので、
セルを置かない空洞部でもよい。この10がこの
装置の特徴の一つである。11はX軸方向に長い
入射スリツト、12,13は球面鏡、14は回折
格子(分散素子)、15は受光部で、第2図で説
明する半導体光検出素子を配列している。以上の
光学系と同一の構成の光学系が今一つ1′,3′の
み示し全体を図示しないが、この装置に設けら
れ、チヤンネル数を増している。図に示すよう
に光源1からの光はフローセル9および標準セル
10を3回透過し、入射スリツト11の幅方向D
Yには光源1の像が、入射スリツトの長さ方向DX
にはほぼ各セルの境界線が結像されるようにして
ある。このようにすれば、14の回折格子の焦点
面は、X軸方向には各セルの透過光のスペクトル
帯(図の一点鎖線Ba〜Bfが対応し、Y軸方向
には通常の分光器と同様スペクトル(図の一点
鎖線Bu〜Blが対応する。第2図は第1図の受光
部(検出器部)15を示すもので、A,B,C,
D,E,Fは各フローセル9a〜9fに1対1で
対応してそのスペクトル帯出現位置に検出素子1
6を配列したものであり、点線は選択しない検出
素子16を示す。たとえば340nmから700nmの間
に11個のホトダイオードを配置する。中央のSは
この装置の特徴の今一つのもので前記標準セル1
0に対応し、中央付近に600nmのスペクトルの検
出用ホトダイオードを1個配置したものである。
このSの検出素子に入射する波長600nmの光束は
他のA〜Eへの光束とは異なるもので、これがダ
ブルビーム方式であり、上記Sに入射する光束は
空洞または水などの純溶媒の透過光であり、光源
ランプ固有の光エネルギー分布にて一定の光量を
示すものである。第3図はその一例を示す図で、
横軸は波長λ、タテ軸はそれに対する光エネルギ
ーの相対強度e%で、たとえばこのランプの
600nmの相対強度esは71%であり、このesはラ
ンプのフイラメントの温度、すなわち色温度の変
化によつて増減するものである(色温度が下がれ
ば減少する)。上記esを常にモニタする上記Sの
ホトダイオードの光電流の変化を第1図中の回路
17で2の光源電圧自動制御器にフイードバツク
させることによつて、その点灯電圧を自動制御し
sを一定に保つ動作をする。これがこの考案の
装置の特徴である光源輝度自動補償装置である。
つぎに9a〜9fの各フローセルの試料液透過光
が第2図のA〜Eの検出素子16に入射される
が、それぞれの試料によつて異なる検査項目に対
応する2つの波長を選定する。たとえばフローセ
ル9aの試料の検査を第3図の370nmを対称波λ
R1とし、480nmを試料波λsとしてその透過光の
強度をA1,A2のホトダイオードで検出し、その
電気信号ER,ESを装置の演算回路(図示しな
い)でlog1/E−log1/E=△Aの演算をすれば
(△ A)すなわち吸光度差が測定できる。このように
各フローセルの試料における分析項目に必要な二
波長がA〜E列において上記340〜700nm間でそ
れぞれ任意に選択し、同時に6種の分析、更に今
一つの光学系と併せ12種の同時分析ができるもの
である。この二波長によつて同一フローセル内の
試料での吸光度差を測定するこの方法は前述した
既に開発され用いられているシングルビーム方式
二波長分光光度計と全く同一であり、その高精度
その他の特色は改めて説明をしない。しかし上記
標準セルとその透過光の600nmの光量を一定にす
るダブルビーム方式のこの装置は光源ランプの劣
化、外気温の急変、さらに短波長域における色温
度の変動などによつて第3図に示したような光源
ランプの固有の光強度分布が変動するのを補償
し、常に正しい強度分布の光エネルギーを供給
し、高い分析精度を保つものとなる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the invention will be explained below with reference to the drawings. Figure 1 is a configuration diagram of the optical system of the device seen from the front of the device, showing the luminous flux of this dispersive optical system on the meridian plane, and Figure 2 is a plan view seen from the top of the device, which also shows the sphere of the dispersive optical system. This shows the luminous flux on the defective surface. 1 is a light source with a diameter of about 1 mm and a length of about 10
It is a coiled tungsten filament of mm diameter, and its length direction is set as the X axis as shown in the figure.
2 is its lighting voltage automatic controller, 3 is a heat ray absorption filter, 4 is an aperture, 5 is a cylindrical lens,
Reference numeral 6 denotes a spherical lens, which is a condensing lens system that condenses light from a light source. 7 is a plane mirror, 8 is a spherical mirror, and this 8 is a flow cell 9a~ as shown in the figure.
Corresponding to each one of 9f and standard cell 10,
The number of cells is arranged in a line on the X axis. The flow cells 9a to 9f are arranged on the Y axis perpendicular to the X axis, for example, three on each side of the central standard cell 10.
A sample solution is injected into the standard cell 10, which is not a flow cell but is filled with air or water to form a pure solvent, and the intensity of light transmitted through this is used as a standard.
It may also be a cavity where no cells are placed. These 10 are one of the features of this device. Reference numeral 11 is an entrance slit long in the X-axis direction, 12 and 13 are spherical mirrors, 14 is a diffraction grating (dispersion element), and 15 is a light receiving section, in which semiconductor photodetecting elements described in FIG. 2 are arranged. An optical system having the same structure as the optical system described above is provided in this apparatus, although only 1' and 3' are shown and the whole is not shown, and the number of channels is increased. As shown in the figure, the light from the light source 1 passes through the flow cell 9 and the standard cell 10 three times, and
The image of light source 1 is shown in Y in the longitudinal direction of the entrance slit D
In this image, almost the boundary line of each cell is imaged. In this way, the focal plane of the 14 diffraction gratings corresponds to the spectral band of the transmitted light of each cell (dotted chain lines Ba to Bf in the figure) in the X-axis direction, and corresponds to the normal spectrometer in the Y-axis direction. Similar spectra (dotted and dashed lines Bu to Bl in the diagram correspond to each other. FIG. 2 shows the light receiving section (detector section) 15 of FIG. 1;
D, E, and F correspond one-to-one to each flow cell 9a to 9f, and the detection element 1 is located at the position where the spectral band appears.
6 are arranged, and dotted lines indicate detection elements 16 that are not selected. For example, 11 photodiodes are arranged between 340 nm and 700 nm. The S in the center is another feature of this device, and is similar to the standard cell 1.
0, and one photodiode for detecting a 600 nm spectrum is placed near the center.
The light flux with a wavelength of 600 nm that enters the detection element of this S is different from the light flux to other A to E, and this is the double beam method, and the light flux that enters the above S is transmitted through a cavity or a pure solvent such as water. It is light that shows a constant amount of light based on the light energy distribution unique to the light source lamp. Figure 3 shows an example of this.
The horizontal axis is the wavelength λ, and the vertical axis is the relative intensity e% of the light energy to it. For example, for this lamp,
The relative intensity e s at 600 nm is 71%, and this e s increases or decreases with changes in the temperature of the lamp filament, ie, the color temperature (it decreases as the color temperature decreases). The lighting voltage is automatically controlled by feeding back the change in the photocurrent of the photodiode S, which constantly monitors the e s , to the light source voltage automatic controller 2 in the circuit 17 in FIG. Take action to keep it constant. This is the automatic light source brightness compensation device that is a feature of the device of this invention.
Next, the sample liquid transmitted light from each of the flow cells 9a to 9f is incident on the detection elements 16 shown in A to E in FIG. 2, and two wavelengths corresponding to different inspection items are selected depending on each sample. For example, when inspecting a sample in flow cell 9a, use the symmetrical wave λ of 370 nm as shown in Figure 3.
R1 , 480 nm is the sample wave λ s , the intensity of the transmitted light is detected by photodiodes A 1 and A 2 , and the electric signals E R and E S are converted into log1/E S − by the arithmetic circuit (not shown) of the device. By calculating log1/E R =ΔA, (ΔA), that is, the absorbance difference can be measured. In this way, the two wavelengths necessary for the analysis items of the sample in each flow cell are arbitrarily selected from the above 340 to 700 nm in rows A to E, and 6 types of analysis can be performed at the same time. It is something that can be analyzed. This method of measuring the absorbance difference of samples in the same flow cell using these two wavelengths is exactly the same as the single-beam dual-wavelength spectrophotometer that has already been developed and is in use, and its high accuracy and other features are will not be explained again. However, the above standard cell and this device, which uses a double beam method to keep the amount of transmitted light constant at 600 nm, suffer from deterioration of the light source lamp, sudden changes in outside temperature, and fluctuations in color temperature in the short wavelength range, as shown in Figure 3. This compensates for fluctuations in the light intensity distribution specific to the light source lamp as shown, always supplies light energy with the correct intensity distribution, and maintains high analytical accuracy.

以上の実施例装置はフローセル6個と、標準セ
ル1個を1つの光学系とし、同じ構成の光学系を
今一つに設けた例であるがそのフローセルの個数
は6個に限定されるものではない。またX軸,Y
軸として説明したが、これら両軸が入れ換つた構
成も可能であることはいうまでもない。
The above embodiment device is an example in which six flow cells and one standard cell are used as one optical system, and another optical system with the same configuration is provided, but the number of flow cells is not limited to six. . Also, the X axis, Y axis
Although the axes have been described, it goes without saying that a configuration in which these two axes are interchanged is also possible.

この考案は以上のように構成されているので、
生化学自動分析の分野において多数の検体を多数
の検査項目について一度に検査することができる
二波長分光光度計を、ダブルビーム方式に改良す
ることによつて緊急検査に待機することが多いた
めに劣化しやすい光源ランプの光エネルギーの変
動およびその他の因による変動を常に自動補償
し、ランプを長寿命に使用しうるとともに良好な
精度で安定した分析測定のできる有用な装置を提
供しえたものである。
This idea is structured as above, so
In the field of automatic biochemical analysis, we have improved the dual-wavelength spectrophotometer, which can test many specimens for many test items at once, to a double-beam method, which is often on standby for emergency testing. We have been able to provide a useful device that constantly automatically compensates for fluctuations in the light energy of the light source lamp, which is prone to deterioration, and fluctuations due to other factors, allowing the lamp to be used for a long time, and allowing stable analytical measurements with good accuracy. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例の多チヤンネルダブルビーム
二波長分光光度計の光学系の正面図、第1図は
同じくその平面図、第2図はこの装置の受光部で
中央に標準セルに対応する光検出素子1個と、そ
の左右に各3個の試料フローセルに対応する光検
出素子が11個Y方向に配列され〓はそれを検査項
目によつてそれぞれ2個選定した状態を示す説明
図、第3図は光源ランプの波長数に対応する光エ
ネルギーの相対強度を示す例図である。 1……光源、2……光源点灯電圧制御器、9A
〜9F……試料セル(フローセル)、10……標
準試料セル(空気または水などの純溶媒充填)、
X−X……X軸方向(光源1長さ方向および9,
10のセル配列方向)、Y−Y……Y軸方向(試
料セルの長さ方向)、11……X軸方向に長いス
リツト、Ba〜Bf……各セル透過光のスペクトル
帯、Bu〜Bl……Y軸方向に分散された各セル透
過光のスペクトル帯(たとえば340nm〜
700nm)、15……スペクトル受光部、S……標
準試料セルに対応する光検出素子、A〜F……試
料セル(9a〜9f)に対応する光検出素子、λ
……波長、e……光エネルギーの相対強度
(%)、es……600nmの(e)(標準試料透過光の
特定スペクトル強度)。
Figure 1 is a front view of the optical system of the multi-channel double beam two-wavelength spectrophotometer of the embodiment, Figure 1 is a plan view of the same, and Figure 2 is the light receiving section of this device, with a light beam corresponding to the standard cell in the center. An explanatory diagram showing a state in which one detection element and 11 photodetection elements corresponding to three sample flow cells on each side are arranged in the Y direction, and two of them are selected according to inspection items. FIG. 3 is an example diagram showing the relative intensity of light energy corresponding to the number of wavelengths of the light source lamp. 1...Light source, 2...Light source lighting voltage controller, 9A
~9F...Sample cell (flow cell), 10...Standard sample cell (filled with pure solvent such as air or water),
X-X...X-axis direction (light source 1 length direction and 9,
10 cell arrangement direction), Y-Y...Y-axis direction (sample cell length direction), 11...Slit long in the X-axis direction, Ba~Bf...spectral band of transmitted light from each cell, Bu~Bl ... Spectral band of each cell transmitted light dispersed in the Y-axis direction (for example, 340 nm ~
700nm), 15...Spectrum light receiving section, S...Photodetection element corresponding to standard sample cell, A to F...Photodetection element corresponding to sample cell (9a to 9f), λ
... Wavelength, e ... Relative intensity of light energy (%), e s ... (e) of 600 nm (specific spectral intensity of light transmitted through the standard sample).

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 複数個の試料セルをX軸方向に1列に配列し、
これら各試料セルからの透過光をそれぞれX軸方
向に長い1本のスリツトを通した後分光しその分
光された各試料セル透過光のスペクトル帯がそれ
ぞれY軸方向に分散されたスペクトルとなるよう
波長分散光学系を配置するとともに、一平面内
に、前記各試料セルに対応してそれぞれY軸方向
に配置される少なくとも2個の検出素子からなる
検出部列を、前記各スペクトル帯の出現位置に対
応して前記試料セルの数と同数だけX軸方向に配
列してなるスペクトルの受光部を設けた多チヤン
ネルダブルビーム二波長分光光度計において、前
記試料セルの列に1個の標準試料セルを追加して
配列するとともに、前記スペクトルの受光部に、
前記1個の標準試料セルに対応して1個の検出素
子を、そのスペクトル帯の出現位置に対応して追
加して設け、かつ前記標準試料セル透過光の特定
スペクトルの強度を一定に保つよう光源輝度を自
動制御する回路を付設したことを特徴とする多チ
ヤンネルダブルビーム二波長分光光度計。
A plurality of sample cells are arranged in a row in the X-axis direction,
The transmitted light from each of these sample cells is separated after passing through a long slit in the X-axis direction, and the spectral bands of the separated light transmitted through each sample cell become spectra dispersed in the Y-axis direction. In addition to arranging a wavelength dispersive optical system, a detection section array consisting of at least two detection elements arranged in the Y-axis direction corresponding to each of the sample cells is arranged in one plane at the appearance position of each of the spectral bands. In a multi-channel double-beam dual-wavelength spectrophotometer that is provided with spectrum receiving sections arranged in the X-axis direction in the same number as the sample cells, one standard sample cell is arranged in the column of sample cells. are added and arranged, and at the light receiving part of the spectrum,
One additional detection element is provided corresponding to the one standard sample cell, and the intensity of the specific spectrum of the light transmitted through the standard sample cell is kept constant. A multi-channel double beam two-wavelength spectrophotometer characterized by being equipped with a circuit that automatically controls light source brightness.
JP1979057296U 1979-04-26 1979-04-26 Expired JPS6219946Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1979057296U JPS6219946Y2 (en) 1979-04-26 1979-04-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1979057296U JPS6219946Y2 (en) 1979-04-26 1979-04-26

Publications (2)

Publication Number Publication Date
JPS55155950U JPS55155950U (en) 1980-11-10
JPS6219946Y2 true JPS6219946Y2 (en) 1987-05-21

Family

ID=29291378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1979057296U Expired JPS6219946Y2 (en) 1979-04-26 1979-04-26

Country Status (1)

Country Link
JP (1) JPS6219946Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858440A (en) * 1981-09-30 1983-04-07 Shimadzu Corp Two wavelength multi-item spectroscopic analyzing apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242782A (en) * 1975-09-29 1977-04-02 Ibm Hadamard transformation spectrometer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242782A (en) * 1975-09-29 1977-04-02 Ibm Hadamard transformation spectrometer

Also Published As

Publication number Publication date
JPS55155950U (en) 1980-11-10

Similar Documents

Publication Publication Date Title
US4241998A (en) Spectrophotometer
US6320662B1 (en) Determination of light absorption pathlength in a vertical-beam photometer
US6496260B1 (en) Vertical-beam photometer for determination of light absorption pathlength
US4781456A (en) Absorption photometer
CN101782428B (en) Spectrum self-correction photometer and measuring method thereof
JPS591971B2 (en) Bunko Koudokei
EP0771417B1 (en) Determination of light absorption pathlength in a vertical-beam photometer
JPS6250641A (en) Analyzing instrument having absorption spectrophotometer
US3817633A (en) Spectroradiometric apparatus and method for measuring radiation
JPS631937A (en) Spectroscopic analyser
JP2005062192A (en) Method for obtaining angle spectrum, gonio spectrophotometer and method for inspecting product during machining
JPS6219946Y2 (en)
JP2010048640A (en) Absolute spectroradiometer
Boivin et al. Realization of the New Candela (1979) at NRC
JPH0650814A (en) Multispectral reflectometer
JPS6219945Y2 (en)
JPS61266925A (en) Double luminous flux measurement system using photoelectric converting element array
Zwinkels et al. Development of a new reference spectrofluorimeter
US11692874B2 (en) Peak alignment for the wavelength calibration of a spectrometer
JPS6183922A (en) Spectrometric apparatus of colorimetry
JPS63289426A (en) Fourier transform spectroanalyser
KR890001688B1 (en) Color-measuring spectrophotometer system for source
Schneider et al. Spectroradiometry methods
JPS61233326A (en) Multiwaveform simultaneous photometric photometer
JP2507820B2 (en) Spectrometer