JPS62197292A - Solder material for assembling semiconductor device with less residual thermal strain - Google Patents

Solder material for assembling semiconductor device with less residual thermal strain

Info

Publication number
JPS62197292A
JPS62197292A JP3852586A JP3852586A JPS62197292A JP S62197292 A JPS62197292 A JP S62197292A JP 3852586 A JP3852586 A JP 3852586A JP 3852586 A JP3852586 A JP 3852586A JP S62197292 A JPS62197292 A JP S62197292A
Authority
JP
Japan
Prior art keywords
alloy
semiconductor device
particles
solder material
residual thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3852586A
Other languages
Japanese (ja)
Other versions
JPH07121467B2 (en
Inventor
Masaki Morikawa
正樹 森川
Naoki Uchiyama
直樹 内山
Yoshio Kuromitsu
祥郎 黒光
Tadaharu Tanaka
田中 忠治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP61038525A priority Critical patent/JPH07121467B2/en
Publication of JPS62197292A publication Critical patent/JPS62197292A/en
Publication of JPH07121467B2 publication Critical patent/JPH07121467B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof

Abstract

PURPOSE:To assemble a semiconductor device with less residual thermal strains by incorporating metallic particles and carbide particles having specific average gain sizes and small coefft. of thermal expansion selectively at specific volumetric ratios into an Sn alloy or Pb alloy. CONSTITUTION:The average gain sizes of the metallic particles (Mo, Cr, etc.) and carbide particles (WC, NbC, etc.) are specified to 0.1-5mum. 1 or >=2 kinds of the metallic particles and carbide particles having the small coefft. of thermal expansion are incorporated at 5-50vol% into the Sn alloy or Pb alloy. Raw material powder which is made into dispersion particles is melted together with the solder stock for such Sn alloy, etc., and the ribbon-shaped solder material is produced therefrom. An Si chip is brazed to a lead frame by using such solder material. The residual thermal strains of the semiconductor device are considerably decreased and the generation of exfoliation is suppressed. The semiconductor device having high reliability is thus produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体装置の組立て(アッセンブリー)に
用いられるはんだ材にして、特にStなどの半導体素子
をCu合金などで形成されたリードフレーム レームにはんだ付けするのに用いた場合に、はんだ付は
後の半導体素子に残留する熱歪が著しく少ないはんだ材
に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a solder material used in the assembly of semiconductor devices, and in particular to a lead frame frame in which a semiconductor element such as St is formed of a Cu alloy or the like. Soldering is concerned with solder materials that, when used for soldering, have significantly less residual thermal strain on subsequent semiconductor devices.

〔従来の技術〕[Conventional technology]

従来、一般に、半導体装置として、トランジスタやIC
,さらにLSIなどが知られているが。
Conventionally, transistors and ICs have generally been used as semiconductor devices.
, and LSI etc. are also known.

この中で1例えばICは。Among these, one example is IC.

(a)  まず、リードフレーム素材として板厚二0.
1〜0.3 mを有する1例えばCu合金の条材を用意
し。
(a) First, as a lead frame material, the plate thickness is 20mm.
A strip of Cu alloy, for example, having a thickness of 1 to 0.3 m is prepared.

(b)  上記リードフレーム素材よりプレス打抜き加
工により製造せんとするICの形状に適合したリードフ
レームを形成し。
(b) Form a lead frame that matches the shape of the IC to be manufactured by press punching from the lead frame material.

(C)  ついで、上記リードフレームの所定個所に高
純W S iなどの半導体素子を、必要に応じて金稿M
oなどの薄板をはさみ込んだ状態で、 Agペーストな
どの導電性樹脂を用いて加熱接着するか、あるいは上記
半導体素子をAu−8i合金ろう材などを介してリード
フレームの片面にろう付けし。
(C) Next, place a semiconductor element such as high-purity WSi at a predetermined location on the lead frame, and place a gold plate M as necessary.
With a thin plate such as O sandwiched between them, the lead frame is heated and bonded using a conductive resin such as Ag paste, or the semiconductor element is brazed to one side of the lead frame via an Au-8i alloy brazing material or the like.

(d)  上記半導体素子と上記リードフレームとに渡
ってAu極細線などによるワイヤポンディングを施し。
(d) Wire bonding is performed using ultrafine Au wire or the like across the semiconductor element and the lead frame.

fe)  引続いて、上記半導体素子、結!、および半
導体素子が取付けられた部分のリードフレームを、これ
らを保護する目的で、プラスチックで封止し。
fe) Subsequently, the above semiconductor element, conclusion! , and the lead frame where the semiconductor element is attached are sealed with plastic to protect them.

(f)  最終的に、上記リードフレームにおける相互
に連なる部分を切除してICを形成する。
(f) Finally, the interconnected portions of the lead frame are cut out to form an IC.

以上(a)〜(f)の主要工程によって製造されている
、〔発明が解決しようとする問題点〕 このように半導体装置の製造に際し、半導体素子のリー
ドフレームへの接合に、AgペーストやAu−8i合金
ろう材が結合材として使用されているが。
[Problems to be Solved by the Invention] Manufactured through the main steps (a) to (f) above, in manufacturing semiconductor devices, Ag paste or Au is used to bond semiconductor elements to lead frames. -8i alloy filler metal is used as a bonding material.

これらの結合材は、主要成分がAuやAgで構成されて
いるために高価にならざるを得す、−力学導体装置の低
コスト「ヒに対する要求は、近年増々厳しくなるのが現
状であり、前記結合材においても。
Since the main components of these bonding materials are Au and Ag, they have to be expensive. -Requirements for low cost mechanical conductor devices have become increasingly strict in recent years. Also in the binding material.

より安価な材料の開発が強く望まれている。There is a strong desire to develop cheaper materials.

かかることから、半導体装置の組立てに、高価なAgペ
ーストやAu−8i合金ろう材に代って、安価な従来良
く知られているSn基合金はんだ材や、Pb基合金はん
だ材を用いる試みもなされたが、これらのはんだ材を用
いた場合、半導体素子とリードフレームとの間に存在す
る大きな熱膨張差によって、特に接合後の半導体素子に
は大きな熱歪が残留するようになり、この結果半導体素
子に著しい反りが生じ、これが割れに発展する場合がし
ばしば発生し、この傾向は、最近の64KDRAMや2
56KDRAMなどの超LSIなどの大型の半導体装置
において顕著(−現われるものであり、信頼性に問題が
あることから、実用に供することができないものである
For this reason, attempts have been made to use inexpensive and well-known Sn-based alloy solder materials and Pb-based alloy solder materials in place of expensive Ag paste and Au-8i alloy brazing materials for the assembly of semiconductor devices. However, when these solder materials are used, a large thermal strain remains in the semiconductor element after bonding due to the large difference in thermal expansion that exists between the semiconductor element and the lead frame. Significant warping occurs in semiconductor devices, which often develops into cracks, and this tendency is common in recent 64K DRAMs and
This is noticeable in large semiconductor devices such as ultra-LSIs such as 56K DRAM, and cannot be put to practical use due to reliability problems.

〔問題点を解決するための手段〕[Means for solving problems]

そこで1本発明者等は、上述のような観点から。 Therefore, the inventors of the present invention, etc., from the above-mentioned viewpoint.

上記の安価な従来Sn基合金およびPb基合金はんだ材
に看目し、これらはんだ材に生ずる残留熱歪の低減(ヒ
をはかるべく研究を行なった結果、従来はんだ材として
知られているSn基合金またはPb基合金に、0.1〜
5μmの平均粒径を有し、かつ熱膨張係の小さい、望ま
しくは熱膨張係数が10−5/に以下のMo 、 W 
、 Cr 、 Nb 、およびTaなどの金属粒子。
Considering the above-mentioned inexpensive conventional Sn-based alloy and Pb-based alloy solder materials, we conducted research to reduce the residual thermal strain that occurs in these solder materials. alloy or Pb-based alloy, from 0.1 to
Mo, W having an average particle size of 5 μm and a small coefficient of thermal expansion, preferably a coefficient of thermal expansion of 10-5/ or less
, Cr, Nb, and Ta.

およびW C−1’JbC+ MozC+およびTiC
などの炭化物粒子(以下分散粒子という)のうちの1種
または2種以上を5〜50容量%の割合で分散含有せし
めると、この結果のはんだ材は、すぐれたはんだ付は性
が損なわれることなく、はんだ付は時における半導体素
子とリードフレームの大きな熱膨張差を十分に吸収する
高いクリープ変形能を有するようになり、この結果はん
だ付は後の半導体素子における残留熱歪は著しく少なく
なって、半導体装置の作動中に発生する熱付加が起る繰
り返しの膨張と収縮によっても、半導体素子に発生する
反りや割れが著しく抑制されるようになるという知見を
得たのである。
and W C-1'JbC+ MozC+ and TiC
If one or more carbide particles (hereinafter referred to as dispersed particles) such as carbide particles are dispersed in a proportion of 5 to 50% by volume, the resulting solder material will have poor solderability. Instead, soldering has a high creep deformability that can sufficiently absorb the large thermal expansion difference between the semiconductor element and the lead frame, and as a result, the residual thermal distortion in the subsequent semiconductor element is significantly reduced. They have found that warping and cracking of semiconductor elements can be significantly suppressed even through repeated expansion and contraction caused by heat addition during operation of semiconductor devices.

この発明は、上記知見C:もとづいてなされたものであ
るが、上記分散粒子の平均粒径を0.1〜5μmと限定
したのは、原料として用いられる粉末の平均粒径が01
μm未満の粉末を製造することは、現時点ではきわめて
困難であり、またその平均粒径が5μmを越えると、は
んだ付は界面ではんだ付は性を損なうように作用するよ
うになるという理由にもとづくものであり、またその分
散割合を5〜50容量%と限定したのは、その割合が5
容量部未満では所望の残留熱歪低減効果が得られず、一
方その割合が50容量%を越えると、はんだ付は性が低
下するようになるという理由にもとづくものである。
This invention was made based on the above finding C. The reason why the average particle size of the dispersed particles is limited to 0.1 to 5 μm is that the average particle size of the powder used as a raw material is 0.1 to 5 μm.
This is based on the reason that it is extremely difficult at present to produce powder with a particle size of less than μm, and that if the average particle size exceeds 5 μm, the soldering properties will be impaired at the interface. The reason for limiting the dispersion ratio to 5 to 50% by volume is that the ratio is 5% to 50% by volume.
This is based on the reason that if the proportion is less than 50% by volume, the desired residual thermal strain reduction effect cannot be obtained, whereas if the proportion exceeds 50% by volume, the soldering properties will deteriorate.

なお、この発明のはんだ材を製造するに際して。In addition, when manufacturing the solder material of this invention.

分散粒子となる原料粉末のSn基合金またはPb基合金
に対するぬれ性を向上させる目的で、前記原料粉末の表
面を−Sn t Ag l Cd l Au l Pd
 lまたはCuなどの金属でめっきするのがよく、この
場合めっき被覆層の割合は前記原料粉末に対する割合で
1〜10重量%であることが望ましい。
In order to improve the wettability of the raw material powder, which will become the dispersed particles, to the Sn-based alloy or the Pb-based alloy, the surface of the raw material powder is coated with -Snt Ag l Cd l Au l Pd.
It is preferable to plate with a metal such as L or Cu, and in this case, the ratio of the plating coating layer to the raw material powder is preferably 1 to 10% by weight.

〔実施例〕 つぎに、この発明のはんだ材を実施例により具体的に説
明する。
[Example] Next, the solder material of the present invention will be specifically explained with reference to Examples.

それぞれ第1表に示される平均粒径をもった各種材質の
原料粉末の表面に、ぬれ性を向上させる目的で同じく第
1表に示される材質および割合のめっき被覆層を無電解
めっき法にて形成して、はんだ材において分散粒子とな
る表面被覆原料粉末を調製し、この表面被覆原料粉末を
、同じく第1表に示される組成を有し、かつ従来はんだ
材として知られているSn基合金またはPb基合金のは
んだ素材と共に、所定の配合割合のもとにるつぼ内に封
入し、アルゴン雰囲気中で高周波加熱により溶解し、攪
拌を行ないながら、前記るつぼの下部に設けたノズルを
通して、同じくアルゴン雰囲気中で、その下方に配置し
た1個の回転する鋼ロールの表面に吹付けることによっ
て、同じく第1表に示される平均粒径および割合の分散
粒子が均一に分散含有し、かつ幅:3曽×厚さ:50μ
mの寸法をもったリボン状の本発明はんだ材1〜14を
それぞれ製造した。
For the purpose of improving wettability, a plating coating layer of the materials and proportions also shown in Table 1 is applied by electroless plating to the surface of raw material powders of various materials having average particle diameters shown in Table 1. A surface coating raw material powder is prepared which becomes dispersed particles in a solder material, and this surface coating raw material powder is mixed with a Sn-based alloy having the composition shown in Table 1 and which is conventionally known as a solder material. Alternatively, it is sealed in a crucible together with a Pb-based alloy solder material at a predetermined blending ratio, melted by high-frequency heating in an argon atmosphere, and while being stirred, the same argon gas is passed through a nozzle installed at the bottom of the crucible. By spraying it onto the surface of one rotating steel roll placed below it in an atmosphere, the particles having the average particle size and proportion shown in Table 1 are uniformly dispersed, and the width is 3. So x thickness: 50μ
Ribbon-shaped solder materials 1 to 14 of the present invention having dimensions of m were manufactured, respectively.

また、比較の目的で1表面被覆原料粉末を配合しない以
外は、第1表に示される通り、同一の条件で比較はんだ
材1.2をそれぞれ製造した。
In addition, for the purpose of comparison, comparative solder materials 1 and 2 were manufactured under the same conditions as shown in Table 1, except that no surface coating raw material powder was added.

ついで、この結果得られた本発明はんだ材1〜14およ
び比較はんだ材1.2.さらに同じ寸法を有し、Au−
3,25重鎗%Siの組成をもった従来ろう材を用い、
平面: 5 鰭X 6 tin 、厚さ=0.3mの寸
法をもった半導体素子としてのSiチップを、Agめっ
きされたCu合金(CDAI 94 )製リードフレー
ムにはんだ付けし、はんだ付は後の前記チップの上面に
発生した反りを表面粗さ計にて測定し。
Next, the resulting solder materials 1 to 14 of the present invention and comparative solder materials 1.2. Furthermore, having the same dimensions, Au-
Using a conventional brazing filler metal with a composition of 3.25% Si,
A Si chip as a semiconductor element with the dimensions of plane: 5 fins x 6 tin, thickness = 0.3 m is soldered to a lead frame made of Ag-plated Cu alloy (CDAI 94), and the soldering will be done later. The warpage generated on the top surface of the chip was measured using a surface roughness meter.

さらに、残留熱歪を評価する目的で、前記リードフレー
ムの下面を水冷し、一方前記Siチップの上面に交流ア
ークを付加し、これによって10秒間でSiチップの上
面温□□□を室温から300℃に加熱し、この状態から
室温に冷却する加熱サイクルを1サイクルとし、この加
熱サイクルを繰り返し行ない、Siチップに剥離が発生
するまでの加熱サイクル数を測定した。これらの測定結
果を第1表に示した。
Furthermore, for the purpose of evaluating residual thermal strain, the lower surface of the lead frame was water-cooled, and an alternating current arc was applied to the upper surface of the Si chip, thereby increasing the temperature of the upper surface of the Si chip from room temperature to 300 m in 10 seconds. The heating cycle of heating to .degree. C. and cooling from this state to room temperature was defined as one cycle, and this heating cycle was repeated to measure the number of heating cycles until peeling occurred in the Si chip. The results of these measurements are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

第1表に示される結果から、本発明はんだ材1〜14を
用いた場合には、いずれも高価なAu−Si合金の従来
ろう材を用いた場合と同等のきわめて少ない残留熱歪し
か発生せず、したがって81チップを可能とするもので
ある。
From the results shown in Table 1, when using solder materials 1 to 14 of the present invention, very little residual thermal strain was generated, which is equivalent to when using conventional solder materials made of expensive Au-Si alloys. Therefore, 81 chips are possible.

に発生する反りも4μm以下であって、この種間の反り
ならば実用上何ら問題のないものであり。
The warpage that occurs in this case is also 4 μm or less, and this kind of warping does not pose any practical problem.

また半導体装置の作動中に発生する熱付加で起る膨張と
収縮の繰り返しによっても、Siチップが剥離しないこ
とが明らかである。
It is also clear that the Si chip does not peel off even when the semiconductor device is repeatedly expanded and contracted due to the heat applied during operation of the semiconductor device.

これに対して、分散粒子を含有しない比較はんだ材1,
2においては、残留熱歪の発生が大きく。
In contrast, comparative solder material 1, which does not contain dispersed particles,
In No. 2, the occurrence of residual thermal strain was large.

この結果Siチップにおける大きな反りと、Ssチップ
の短時間での剥離の発生を避けることができないもので
ある。
As a result, large warpage in the Si chip and rapid peeling of the Ss chip cannot be avoided.

Claims (1)

【特許請求の範囲】[Claims]  Sn基合金またはPb基合金に、0.1〜5μmの平
均粒径を有し、かつ熱膨張係数の小さい金属粒子および
炭化物粒子のうちの1種または2種以上を5〜50容量
%の割合で分散含有せしめたことを特徴とする残留熱歪
の少ない半導体装置の組立て用はんだ材。
One or more metal particles and carbide particles having an average particle size of 0.1 to 5 μm and a small coefficient of thermal expansion are added to a Sn-based alloy or a Pb-based alloy at a ratio of 5 to 50% by volume. 1. A solder material for assembling semiconductor devices with little residual thermal strain, characterized by containing a dispersed amount of .
JP61038525A 1986-02-24 1986-02-24 Method for soldering Si semiconductor element to Cu-based alloy lead frame with little residual thermal strain Expired - Lifetime JPH07121467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61038525A JPH07121467B2 (en) 1986-02-24 1986-02-24 Method for soldering Si semiconductor element to Cu-based alloy lead frame with little residual thermal strain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61038525A JPH07121467B2 (en) 1986-02-24 1986-02-24 Method for soldering Si semiconductor element to Cu-based alloy lead frame with little residual thermal strain

Publications (2)

Publication Number Publication Date
JPS62197292A true JPS62197292A (en) 1987-08-31
JPH07121467B2 JPH07121467B2 (en) 1995-12-25

Family

ID=12527692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61038525A Expired - Lifetime JPH07121467B2 (en) 1986-02-24 1986-02-24 Method for soldering Si semiconductor element to Cu-based alloy lead frame with little residual thermal strain

Country Status (1)

Country Link
JP (1) JPH07121467B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01149378A (en) * 1987-12-04 1989-06-12 Shinko Electric Ind Co Ltd Lead mounting mechanism for ceramic base substance
JPH0417994A (en) * 1990-05-10 1992-01-22 Asahi Chem Ind Co Ltd Solder composition
JPH06216167A (en) * 1993-01-20 1994-08-05 Hitachi Ltd Semiconductor device and manufacture thereof
EP0856376A1 (en) * 1996-12-03 1998-08-05 Lucent Technologies Inc. Article comprising fine-grained solder compositions with dispersoid particles
US5973405A (en) * 1997-07-22 1999-10-26 Dytak Corporation Composite electrical contact structure and method for manufacturing the same
US6187114B1 (en) * 1996-10-17 2001-02-13 Matsushita Electric Industrial Co. Ltd. Solder material and electronic part using the same
JP2005026702A (en) * 2000-06-12 2005-01-27 Hitachi Ltd Electronic apparatus, semiconductor device and semiconductor module
WO2007055308A1 (en) * 2005-11-11 2007-05-18 Senju Metal Industry Co., Ltd. Soldering paste and solder joints
DE102006039339A1 (en) * 2006-08-24 2008-03-06 Bayerische Motoren Werke Ag Hard solder joining components in solid oxide fuel cells used e.g. in electric vehicles, contains ceramic particles, fibers or intermediate layer with reduced coefficient of thermal expansion
US7663242B2 (en) 2001-05-24 2010-02-16 Lewis Brian G Thermal interface material and solder preforms
WO2012165348A1 (en) * 2011-05-27 2012-12-06 新日鐵住金株式会社 Interconnector for solar cells, and solar cell module
JP2012246536A (en) * 2011-05-27 2012-12-13 Nippon Steel Corp Interconnector for solar cell and method for manufacturing the interconnector, and solar cell module

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55126396A (en) * 1979-03-24 1980-09-30 Tokuriki Honten Co Ltd Brazing material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55126396A (en) * 1979-03-24 1980-09-30 Tokuriki Honten Co Ltd Brazing material

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01149378A (en) * 1987-12-04 1989-06-12 Shinko Electric Ind Co Ltd Lead mounting mechanism for ceramic base substance
JPH0417994A (en) * 1990-05-10 1992-01-22 Asahi Chem Ind Co Ltd Solder composition
JPH06216167A (en) * 1993-01-20 1994-08-05 Hitachi Ltd Semiconductor device and manufacture thereof
US6187114B1 (en) * 1996-10-17 2001-02-13 Matsushita Electric Industrial Co. Ltd. Solder material and electronic part using the same
EP0856376A1 (en) * 1996-12-03 1998-08-05 Lucent Technologies Inc. Article comprising fine-grained solder compositions with dispersoid particles
US5973405A (en) * 1997-07-22 1999-10-26 Dytak Corporation Composite electrical contact structure and method for manufacturing the same
KR100724030B1 (en) * 2000-06-12 2007-06-04 가부시키가이샤 히타치세이사쿠쇼 Semiconductor module
JP2005026702A (en) * 2000-06-12 2005-01-27 Hitachi Ltd Electronic apparatus, semiconductor device and semiconductor module
US7663242B2 (en) 2001-05-24 2010-02-16 Lewis Brian G Thermal interface material and solder preforms
WO2007055308A1 (en) * 2005-11-11 2007-05-18 Senju Metal Industry Co., Ltd. Soldering paste and solder joints
JP5067163B2 (en) * 2005-11-11 2012-11-07 千住金属工業株式会社 Solder paste and solder joint
US9162324B2 (en) 2005-11-11 2015-10-20 Senju Metal Industry Co., Ltd. Solder paste and solder joint
DE102006039339A1 (en) * 2006-08-24 2008-03-06 Bayerische Motoren Werke Ag Hard solder joining components in solid oxide fuel cells used e.g. in electric vehicles, contains ceramic particles, fibers or intermediate layer with reduced coefficient of thermal expansion
WO2012165348A1 (en) * 2011-05-27 2012-12-06 新日鐵住金株式会社 Interconnector for solar cells, and solar cell module
JP2012246536A (en) * 2011-05-27 2012-12-13 Nippon Steel Corp Interconnector for solar cell and method for manufacturing the interconnector, and solar cell module
CN103582954A (en) * 2011-05-27 2014-02-12 新日铁住金株式会社 Interconnector for solar cells, and solar cell module
CN103582954B (en) * 2011-05-27 2016-08-17 新日铁住金株式会社 Connectors used for solar batteries and solaode module

Also Published As

Publication number Publication date
JPH07121467B2 (en) 1995-12-25

Similar Documents

Publication Publication Date Title
EP0847828B1 (en) Solder material and electronic part using the same
CA1219104A (en) Copper alloys for suppressing growth of cu-al intermetallic compounds
US6563225B2 (en) Product using Zn-Al alloy solder
US4784974A (en) Method of making a hermetically sealed semiconductor casing
EP0435009B1 (en) Semiconductor package connecting method and semiconductor package connecting wires
US6130479A (en) Nickel alloy films for reduced intermetallic formation in solder
JPS62197292A (en) Solder material for assembling semiconductor device with less residual thermal strain
JPH02275657A (en) Composite material, thermal diffusion member in circuit system employing the material, circuit system and their manufacture
JP3752064B2 (en) Solder material and electronic component using the same
CN100404193C (en) Soldering filler metal, assembly method for semiconductor device using same, and semiconductor device
JPH09296237A (en) Metallic substrate material for semiconductor packaging
JP3754152B2 (en) Lead-free solder material and electronic parts using the same
JP2701419B2 (en) Gold alloy fine wire for semiconductor element and bonding method thereof
US4711826A (en) Iron-nickel alloys having improved glass sealing properties
US7644855B2 (en) Brazing filler metal, assembly method for semiconductor device using same, and semiconductor device
EP0100817B1 (en) A hermetically sealed casing of an electrical device and process of manufacturing
US4816216A (en) Interdiffusion resistant Fe--Ni alloys having improved glass sealing
US4905074A (en) Interdiffusion resistant Fe-Ni alloys having improved glass sealing property
JP2005177842A (en) Brazing material, manufacturing method of semiconductor device using the same and semiconductor device
JPS6244817B2 (en)
JPH01273690A (en) Material for brazing
JP2519400B2 (en) Lead terminal for electronic parts
JPH02251155A (en) Gold alloy thin wire for semiconductor elements and bonding method thereof
JPH09291323A (en) Metallic substrate material for semiconductor packaging
JPS62197291A (en) In alloy brazing filler metal for assembling semiconductor device with less residual thermal strain