JPS62196082A - Ultrasonic motor - Google Patents

Ultrasonic motor

Info

Publication number
JPS62196082A
JPS62196082A JP61035964A JP3596486A JPS62196082A JP S62196082 A JPS62196082 A JP S62196082A JP 61035964 A JP61035964 A JP 61035964A JP 3596486 A JP3596486 A JP 3596486A JP S62196082 A JPS62196082 A JP S62196082A
Authority
JP
Japan
Prior art keywords
ultrasonic motor
fiber
motor according
fixed part
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61035964A
Other languages
Japanese (ja)
Inventor
Yoshinobu Imasaka
喜信 今坂
Masanori Sumihara
正則 住原
Hiroshi Komeno
米野 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61035964A priority Critical patent/JPS62196082A/en
Publication of JPS62196082A publication Critical patent/JPS62196082A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/005Mechanical details, e.g. housings
    • H02N2/0065Friction interface
    • H02N2/007Materials
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/166Motors with disc stator

Abstract

PURPOSE:To suppress the generation of noise and increase driving torque and reduce abrasion loss, by organizing a stationary section with a fitted piezo-electric unit, with a composite plastic member including fiber at least. CONSTITUTION:A moving section 3 is made to come in pressure contact with a stationary section 1 with a fitted piezo-electric unit 2, and on the piezo-electric unit 2, slight oscillation along with a progressive wave is generated. The moving section 3 is moved by the slight oscillation via a frictional force. The stationary section 3 is organized with a plastic member including fiber at least, for example, a plastic member including approx. 70% carbon fiber.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、圧電体を用いて進行波をともなう超音波振動
を発生させることにより駆動することのできるモータに
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a motor that can be driven by generating ultrasonic vibrations accompanied by traveling waves using a piezoelectric body.

従来の技術 超音波モータにおいては、固定部と移動部が相互に接触
加圧されることにより圧電体による進行波をともなう固
定部の振動が、摩擦力を介して移動部へと伝えられ移動
部が駆動される。その固定部と移動部の接触加圧状態に
より超音波モータとしての起動トルク、無負荷回転数、
モータ効率、寿命などの緒特性を決定ずける一つの要因
となる。圧電体を装着してなる固定部に移動部を加圧接
触させ、圧電体の進行波をともなう微少振動により移動
部が移動する超音波モータにおいて、従来固定部は金属
により構成されていた。また、移動部も金属により構成
されていた。別法として、スライダーというゴムなどの
摩擦係数の大きな第三の物体を移動部に装着し、固定部
に加圧接触させるという方法もとられていた。さらに、
圧電体から発生する超音波振動を効率良く伝えるため、
固定部は複数のスリットの入った形状をとることが望ま
しいと提案されている。
Conventional technology In an ultrasonic motor, when a fixed part and a moving part are pressed into contact with each other, the vibration of the fixed part accompanied by a traveling wave caused by a piezoelectric body is transmitted to the moving part through frictional force. is driven. The starting torque, no-load rotation speed, and
It is one of the factors that determines motor characteristics such as motor efficiency and life. In an ultrasonic motor in which a movable part is brought into pressure contact with a fixed part equipped with a piezoelectric body, and the movable part is moved by minute vibrations accompanied by traveling waves of the piezoelectric body, the fixed part has conventionally been made of metal. Furthermore, the moving part was also made of metal. Another method has been to attach a third object called a slider, which has a high coefficient of friction, such as rubber, to the moving part and bring it into pressure contact with the fixed part. moreover,
In order to efficiently transmit the ultrasonic vibrations generated from the piezoelectric material,
It has been proposed that the fixing part preferably has a shape with a plurality of slits.

発明が解決しようとする問題点 超音波モータにおいて、固定部と移動部の接触面におい
て、モータとしての良好な性能を得、実用に耐えうるち
のは、いまだ存在しない。固定部をステンレス、アルミ
ニウム、鉄鋼などの金属材料で構成し、金属の移動部を
用いる金属どうしの接触では、固定部および回転部の接
触面は、超精密加工を施し平面加工精度をミクロンオー
ダーにする必要があった。さらに、超音波振動下では金
属どうしの接触による騒音が発生し実用上問題であった
。金属以外の接触として、スライダーという考えのちと
に異方性を持たせたスライダー、可きょう性を有するス
ライダー、ゴムなどの摩擦係数の大きなスライダーなど
の提案が成されているが、通常の市販のそのような摩擦
材料を用いると、接触面が摩擦することによって生じる
磨耗が原因で、起動トルク、無負荷回転数、効率等の諸
性能の劣化が起こり、モータの寿命が非常に短(なると
いう欠点を有しており、かつスライダーという余分な構
成部品が必要となり構造が複雑となる。さらに、固定部
を複数のスリットの入った形状を金属材料で構成する場
合、切削加工に手間がかかり、固定部の作成が非常に困
難であった。
Problems to be Solved by the Invention There is still no ultrasonic motor that achieves good performance as a motor at the contact surface between the fixed part and the moving part and is suitable for practical use. In metal-to-metal contact where the fixed part is made of metal materials such as stainless steel, aluminum, or steel, and the moving part of the metal is used, the contact surfaces of the fixed part and rotating part are subjected to ultra-precision machining to achieve flat surface machining accuracy on the order of microns. I needed to. Furthermore, under ultrasonic vibration, noise is generated due to metal-to-metal contact, which is a practical problem. As non-metallic contacts, proposals have been made after the idea of a slider, such as sliders with anisotropy, sliders with flexibility, and sliders with a large coefficient of friction such as rubber. When such friction materials are used, the wear caused by the friction of the contact surfaces causes deterioration of various performances such as starting torque, no-load rotation speed, efficiency, etc., and the life of the motor is extremely short. It has disadvantages, and requires an extra component called a slider, making the structure complicated.Furthermore, if the fixing part is made of metal material with multiple slits, cutting is time-consuming; It was extremely difficult to create the fixing part.

実用に供しつる超音波モータの固定部の要件としては、
(1)簡単に作成可能なこと、(2)モータ駆動時に騒
音がでに(いこと、(3)移動部と加圧接触することに
よって生じる駆動力(トルク)が大きいこと、(4)モ
ータの駆動時に接触面が摩擦することにより発生する磨
耗量が極力少なく、長時間安定に性能が維持できること
、の四点が挙げられる。
The requirements for the fixed part of a practical ultrasonic motor are as follows:
(1) It can be easily manufactured, (2) The motor is low in noise when driven, (3) The driving force (torque) generated by pressurized contact with the moving part is large, (4) The motor The following four points can be mentioned: the amount of wear caused by the friction of the contact surfaces during driving is as small as possible, and performance can be maintained stably for a long period of time.

一φ− 問題を解決するための手段 圧電体を装着してなる固定部に移動部を加圧接触させ、
圧電体の進行波をともなう超音波振動により移動部が移
動する超音波モータにおいて、固定部を少な(とも繊維
を含有する複合プラスチック材から構成する。
1φ- Means for solving the problem A moving part is brought into pressure contact with a fixed part equipped with a piezoelectric body,
In an ultrasonic motor in which a moving part is moved by ultrasonic vibration accompanied by a traveling wave of a piezoelectric body, a fixed part is made of a composite plastic material containing a small amount of fiber.

作用 固定部を少なくとも繊維を含有する複合プラスチック材
で構成することにより、金属どうしの接触による騒音は
発生しない。さらに、この複合プラスチック材からなる
固定部が、移動部との接触表面において従来提案されて
いたスライダーの役目も兼ねfAllえるので、スライ
ダーという余分な構成部品を用いる必要もなく単純化さ
れる。繊維を含有しているので、移動部との接触面が摩
擦することにより発生する磨耗量を少な(することがで
きる。加えて、このような複合プラスチック材で固定部
を構成する際、スリットの入った複雑な形状も、金属加
工するのに比べ容易に作成することができるという利点
を有する。
By constructing the working and fixing part from a composite plastic material containing at least fibers, no noise is generated due to metal-to-metal contact. Furthermore, since the fixed part made of this composite plastic material can also serve as a slider, which has been proposed in the past, on the contact surface with the moving part, there is no need to use an extra component called a slider, and the structure is simplified. Since it contains fibers, it is possible to reduce the amount of wear caused by friction between the contact surface with the moving part.In addition, when constructing the fixed part with such a composite plastic material, the slit It also has the advantage that complex shapes can be easily created compared to metal processing.

実施例 連続繊維からなる炭素繊維織布にエポキシ樹脂を含浸さ
せてなるプリプレグを、マンドレルを用いて通常の筒巻
き法により巻き取り、円環状に予備成型した。その際複
数のスリットの入った構造にするため、巻き付ける前に
予めスリットの部分を切断しておいた。これを温度15
0℃、圧力10 kg / cdの条件で2時間放置す
ることにより、樹脂を硬化させ円環状の成型体を得た。
EXAMPLE A prepreg made by impregnating a carbon fiber woven fabric made of continuous fibers with an epoxy resin was wound up using a mandrel by a conventional tube winding method and preformed into a ring shape. At that time, in order to create a structure with multiple slits, the slit portions were cut in advance before winding. This temperature is 15
The resin was left to stand for 2 hours at 0° C. and a pressure of 10 kg/cd to harden the resin, and a ring-shaped molded product was obtained.

ここにおいて、炭素繊維の体積含有率は約70%であっ
た。
Here, the volume content of carbon fiber was about 70%.

別法として円筒状の成型体を作成後、切断加工してスリ
ットの入った構造にすることもできる。得られた円環状
の成型体は、第1図に示すごと(、円環状の円周方向a
および軸方向すには繊維が配向し、一方中心から遠ざか
る方向Cには配向していない。それ故得られた成型体は
弾性率に異方性を有していた。
Alternatively, after creating a cylindrical molded body, it can be cut into a structure with slits. The obtained annular molded body is as shown in FIG.
The fibers are oriented in the axial direction, whereas they are not oriented in the direction C away from the center. Therefore, the obtained molded body had anisotropy in elastic modulus.

この円環状の成型体を固定部1として、圧電体2を市販
の接着剤を用いて張り合わせ、移動部3をその重力を利
用することにより固定部に加圧接触させた。ここで移動
部3は摩擦熱の放散ができるように熱伝導の良好である
材料として金属を用いた。このようにして得られた超音
波モータを圧電体2による進行波を伴う振動により駆動
させると、従来、固定部を金属材料で構成した場合には
キーキーという騒音が発生していたのに比べ全く騒音は
しなかった。また駆動力に関しても、接触加圧力を調整
することにより金属どうしの接触の場合およびスライダ
ーを用いた接触の場合と同等以上の駆動力が得られた。
This annular molded body was used as a fixed part 1, and a piezoelectric body 2 was attached using a commercially available adhesive, and the movable part 3 was brought into pressure contact with the fixed part by utilizing its gravity. Here, the moving part 3 is made of metal as a material with good thermal conductivity so that frictional heat can be dissipated. When the ultrasonic motor obtained in this way is driven by vibration accompanied by a traveling wave caused by the piezoelectric body 2, there is no squeaking noise compared to the conventional case where the fixed part was made of metal material. There was no noise. In addition, as for the driving force, by adjusting the contact pressure force, a driving force equal to or higher than that in the case of metal-to-metal contact or the case of contact using a slider was obtained.

これは固定部を繊維を用いることにより、弾性率に異方
性を有する構造にし、振動を効率良く移動部に伝達する
ことができたためであると思われる。また、スライダー
という余分な構成部品も不必要で超音波モータとしての
構成が非常に単純化され作成が容易になった。
This seems to be because the use of fibers in the fixed part makes it possible to have a structure with anisotropic elastic modulus and to efficiently transmit vibrations to the movable part. Additionally, an extra component called a slider is not required, making the configuration of the ultrasonic motor extremely simple and easy to manufacture.

さらに実際に超音波モータを100万回転駆動させた後
その磨耗した深さを表面形状測定器にて測定した。磨耗
したのは固定部であり、その磨耗量は100万回後でも
3.0μmと非常に少なかった。また、駆動中回転数の
変化あるいは騒音の発生などは全くみられず初期状態と
同様の条件にて回転していた。駆動条件としては、回転
角90”のステップ回転にて負荷を300gf・Cl1
1とし、見掛けの回転数が100rpnで行った。これ
は同条件でおこなった金属どうしの磨耗量よりはるかに
少ない。さらに比較のため、スライダーを介在させる方
式で、スライダーとして従来からクラッチのライニング
材として用いられている摩擦係数の比較的大きな市販の
摩擦材料を試験した。比較例の場合には同条件にて約5
万回回転したところで停止した。この際、磨耗が激しく
約5万回で約60μI削れており駆動とともに回転数が
減少してゆき実用に全(耐えるものではなかった。また
、駆動中若干の騒音が発生した。
Furthermore, after actually driving the ultrasonic motor one million revolutions, the depth of wear was measured using a surface profile measuring device. It was the fixed part that was worn, and the amount of wear was very small at 3.0 μm even after 1 million cycles. Furthermore, no change in rotational speed or generation of noise was observed during driving, and the motor was rotating under the same conditions as the initial state. The driving conditions are a step rotation with a rotation angle of 90'' and a load of 300gf・Cl1.
1, and the apparent rotational speed was 100 rpm. This is much less than the amount of wear between metals under the same conditions. Furthermore, for comparison, a commercially available friction material with a comparatively high coefficient of friction, which has been conventionally used as a clutch lining material, was tested as a slider in a method that involved a slider. In the case of the comparative example, approximately 5
It stopped after spinning 10,000 times. At this time, the abrasion was severe and about 60 μI was removed after about 50,000 cycles, and the number of revolutions decreased as the drive progressed, making it unfit for practical use.Also, some noise was generated during drive.

ここでは繊維として炭素繊維を用いた場合について詳細
に述べたが、それ以外にガラス繊維、炭化けい素繊維、
アルミナ繊維、芳香族ポリアミド繊維、石英繊維などを
用いることができる。また、樹脂として熱硬化性樹脂で
あるエポキシ樹脂を用いたが、熱可そ性樹脂およびその
他の熱硬化性樹脂を用いることができる。
Here, we have described in detail the case where carbon fiber is used as the fiber, but in addition to that, glass fiber, silicon carbide fiber,
Alumina fiber, aromatic polyamide fiber, quartz fiber, etc. can be used. Furthermore, although epoxy resin, which is a thermosetting resin, was used as the resin, thermofusible resins and other thermosetting resins can also be used.

超音波モータの形状として円環状のものについて示した
が、第2図に示したような円盤状の構成からなる超音波
モータの固定部を繊維を含有する複合プラスチック材か
ら構成した場合も同様に良好な結果が得られる。本実施
例のように固定部を繊維を含有する複合プラスチック材
から構成することにより、従来金属で構成されていた場
合と比較し軽量になるという利点も有する。
Although the shape of the ultrasonic motor is shown as an annular one, the same applies when the fixing part of the ultrasonic motor has a disc-shaped structure as shown in Fig. 2 and is made of a composite plastic material containing fibers. Good results are obtained. By constructing the fixing part from a composite plastic material containing fibers as in this embodiment, there is also the advantage that it is lighter in weight compared to the case where it was conventionally constructed from metal.

発明の効果 本発明によれば、磨耗によるモータ諸性能の低下および
劣化がほとんど起こらず、トルクも大きく、かつモータ
回転時に全(騒音がでない、実用に提供しうる超音波モ
ータを実現できる。
Effects of the Invention According to the present invention, it is possible to realize an ultrasonic motor that can be practically provided, which hardly causes any deterioration or deterioration of motor performance due to wear, has a large torque, and makes no noise during motor rotation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、円環状の超音波モータの構成を示す斜視図、
第2図は、円盤状の超音波モータの構成を示す斜視図で
ある。
FIG. 1 is a perspective view showing the configuration of an annular ultrasonic motor;
FIG. 2 is a perspective view showing the configuration of a disc-shaped ultrasonic motor.

Claims (7)

【特許請求の範囲】[Claims] (1)圧電体を装着してなる固定部に移動部を加圧接触
させ、前記圧電体の進行波をともなう微少振動により摩
擦力を介して移動部が移動する超音波モータにおいて、
前記固定部が少なくとも繊維を含有する複合プラスチッ
ク材から構成されることを特徴とする超音波モータ。
(1) In an ultrasonic motor in which a movable part is brought into pressure contact with a fixed part equipped with a piezoelectric body, and the movable part moves through frictional force due to minute vibrations accompanied by traveling waves of the piezoelectric body,
An ultrasonic motor characterized in that the fixing part is made of a composite plastic material containing at least fiber.
(2)固定部が繊維を含有することにより弾性率に異方
性を有する特許請求の範囲第1項記載の超音波モータ。
(2) The ultrasonic motor according to claim 1, wherein the fixed portion contains fibers and thus has anisotropy in elastic modulus.
(3)繊維が、炭素繊維、ガラス繊維、炭化けい素繊維
、アルミナ繊維、芳香族ポリアミド繊維、石英繊維、か
らなる群の少なくとも一つからなる特許請求の範囲第1
項記載の超音波モータ。
(3) Claim 1 in which the fiber is at least one of the group consisting of carbon fiber, glass fiber, silicon carbide fiber, alumina fiber, aromatic polyamide fiber, and quartz fiber.
Ultrasonic motor as described in section.
(4)繊維が、連続繊維からなる特許請求の範囲第1項
記載の超音波モータ。
(4) The ultrasonic motor according to claim 1, wherein the fibers are continuous fibers.
(5)固定部が複数のスリットの入った形状をとる特許
請求の範囲第1項記載の超音波モータ。
(5) The ultrasonic motor according to claim 1, wherein the fixing portion has a shape with a plurality of slits.
(6)移動部が固定部との接触面においては少なくとも
金属よりなる特許請求の範囲第1項記載の超音波モータ
(6) The ultrasonic motor according to claim 1, wherein the moving part is made of metal at least at the contact surface with the fixed part.
(7)超音波モータの形状が円環状あるいは円盤状から
なる特許請求の範囲第1項記載の超音波モータ。
(7) The ultrasonic motor according to claim 1, wherein the ultrasonic motor has an annular shape or a disk shape.
JP61035964A 1986-02-20 1986-02-20 Ultrasonic motor Pending JPS62196082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61035964A JPS62196082A (en) 1986-02-20 1986-02-20 Ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61035964A JPS62196082A (en) 1986-02-20 1986-02-20 Ultrasonic motor

Publications (1)

Publication Number Publication Date
JPS62196082A true JPS62196082A (en) 1987-08-29

Family

ID=12456641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61035964A Pending JPS62196082A (en) 1986-02-20 1986-02-20 Ultrasonic motor

Country Status (1)

Country Link
JP (1) JPS62196082A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989008945A1 (en) * 1988-03-15 1989-09-21 Matsushita Electric Industrial Co., Ltd. Supersonic motor with magnetic encoder
JPH01264581A (en) * 1988-04-14 1989-10-20 Matsushita Electric Ind Co Ltd Ultrasonic motor
JPH02164284A (en) * 1988-04-12 1990-06-25 Tomio Kotaki Ultrasonic actuator
US5508581A (en) * 1993-12-17 1996-04-16 Nikon Corporation Ultrasonic motor with a stator and a mobile element made of improved materials
US6406728B1 (en) 1999-04-06 2002-06-18 Eldon Roth Method for treating ammoniated meats
US6564700B2 (en) 2000-05-26 2003-05-20 Freezing Machines, Inc. Apparatus for producing a target pH in a foodstuff
US6844018B1 (en) 2001-08-07 2005-01-18 Freezing Machines, Inc. Method for mixing meat products to produce a pH adjusted meat product
US7214398B2 (en) 1998-12-17 2007-05-08 Freezing Machines, Inc. Method for producing a pH enhanced comminuted meat product

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989008945A1 (en) * 1988-03-15 1989-09-21 Matsushita Electric Industrial Co., Ltd. Supersonic motor with magnetic encoder
JPH02164284A (en) * 1988-04-12 1990-06-25 Tomio Kotaki Ultrasonic actuator
JPH01264581A (en) * 1988-04-14 1989-10-20 Matsushita Electric Ind Co Ltd Ultrasonic motor
JPH0687673B2 (en) * 1988-04-14 1994-11-02 松下電器産業株式会社 Ultrasonic motor
US5508581A (en) * 1993-12-17 1996-04-16 Nikon Corporation Ultrasonic motor with a stator and a mobile element made of improved materials
US7214398B2 (en) 1998-12-17 2007-05-08 Freezing Machines, Inc. Method for producing a pH enhanced comminuted meat product
US6406728B1 (en) 1999-04-06 2002-06-18 Eldon Roth Method for treating ammoniated meats
US7004065B2 (en) 1999-04-06 2006-02-28 Freezing Machines, Inc. Apparatus for treating ammoniated meats
US7322284B2 (en) 1999-04-06 2008-01-29 Freezing Machines, Inc. Apparatus and method for exposing comminuted foodstuff to a processing fluid
US8043644B2 (en) 1999-04-06 2011-10-25 Freezing Machines, Inc. Method for exposing comminuted foodstuffs to a processing fluid
US6564700B2 (en) 2000-05-26 2003-05-20 Freezing Machines, Inc. Apparatus for producing a target pH in a foodstuff
US6844018B1 (en) 2001-08-07 2005-01-18 Freezing Machines, Inc. Method for mixing meat products to produce a pH adjusted meat product

Similar Documents

Publication Publication Date Title
US5013956A (en) Lining material and ultrasonic wave driven motor using lining material
JPS62196082A (en) Ultrasonic motor
JP3792790B2 (en) Vibration wave motor
JPH0532994B2 (en)
KR910003669B1 (en) Ultrasonic motor
US5440191A (en) Ultrasonic motor
JPS63265574A (en) Ultrasonic motor
JPS62114480A (en) Ultrasonic motor
JPS6258888A (en) Ultrasonic motor
JPS62193567A (en) Ultrasonic motor
JPH06233567A (en) Vibrating motor
CN215968294U (en) Combined diamond grinding wheel
JPH01227669A (en) Vibration wave motor
JP3241703B2 (en) Ultrasonic motor and ultrasonic motor manufacturing method
JPS6244080A (en) Ultrasonic motor
JP2615871B2 (en) Ultrasonic motor
JPH03273877A (en) Friction material for supersonic motor and supersonic motor using it
JPS63302773A (en) Ultrasonic wave motor
JPH0744854B2 (en) Ultrasonic motor
SU956864A1 (en) Torsion oscillation damper
JPH01138979A (en) Ultrasonic wave motor
JPH02184275A (en) Ultrasonic motor
JPH0217872A (en) Ultrasonic motor
JP3403100B2 (en) Manufacturing method of friction material used for vibration wave motor
JPS63103674A (en) Ultrasonic wave motor