JPS62189760A - High-frequency semiconductor device - Google Patents

High-frequency semiconductor device

Info

Publication number
JPS62189760A
JPS62189760A JP61032314A JP3231486A JPS62189760A JP S62189760 A JPS62189760 A JP S62189760A JP 61032314 A JP61032314 A JP 61032314A JP 3231486 A JP3231486 A JP 3231486A JP S62189760 A JPS62189760 A JP S62189760A
Authority
JP
Japan
Prior art keywords
semi
thickness
substrate
fet
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61032314A
Other languages
Japanese (ja)
Inventor
Osamu Ishikawa
修 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61032314A priority Critical patent/JPS62189760A/en
Publication of JPS62189760A publication Critical patent/JPS62189760A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To avoid increase of a transmission line loss and facilitate forming a through-hole which reduces the source inductance of an FET by a method wherein the thickness of a semi-insulating GaAs substrate beneath an FET region is made thinner than the thickness of the semi-insulating GaAs substrate beneath micro-strip lines. CONSTITUTION:The recessed part 10 of the back surface of a substrate is formed in the semi-insulating GaAs substrate 1 beneath an FET region and the thickness of the substrate 1 at that part is thin. If the thickness of the semi-insulating GaAs substrate beneath the FET region is 10-20mum, the heat resistance can be reduced and, moreover, as the thickness is small, a through- hole can be formed easily. On the other hand, as the thickness of the semi- insulating GaAs substrate 1 beneath an input side micro-strip line 7 and an output side micro-strip line 8 is as thick as about 100mum, a transmission line loss is not increased. Therefore, a signal can be transmitted to the FET and drawn out of the FET efficiently.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半絶縁性を有する半導体基板上にトランジス
タとマイクロ・ストリップ線路が一体化されたモノリシ
ック・マイクロウェーブICに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a monolithic microwave IC in which a transistor and a microstrip line are integrated on a semi-insulating semiconductor substrate.

従来の技術 半絶縁性を有する半導体基板上にトランジスタとストリ
ップ線路が一体化されたモノリシック・マイクロウェー
ブIC(以下MMICと記す)は、10Gl−1z前後
の小信号アナログ・アンプ及び電力用素子として近年そ
の用途は大きく広がってきている。半絶縁性基板として
は一般にGaAs基板が用いられ、このGaAS基板上
にトランジスタとしてMXSFETが形成される。他方
、マイクロ°ストリップ線路は、半絶縁性のGaAt基
板の両面に金属を蒸着することで形成でき、MESFK
Tと結合することによシ、入出力インピーダンスが6o
ΩのMMICが構成される。しかしながら、従来のGI
LA!!基板を用いたMMICにおいては、半絶縁性の
GaAs基板が均一厚みを有している為、MESFET
O熱抵抗を下げ、もしくはスルーホールを形成し易くす
る目的で基板厚みを薄くするとストリップ線路の損失が
急激に増加し高周波での利得が低下する結果となる。逆
に、ス) IJツブ線路の損失を軽減する為には、基板
はある一定以上の厚みを必要とし、この場合には、MI
C5FETの熱抵抗が増加したシ、FICTのソースの
スルー・ホールを形成する場合に深い溝を掘らねばなら
なくなるなど、MESNETの特性及びストリップ線路
特性の両方を満足させる構成ではなかった。
Conventional technology Monolithic microwave ICs (hereinafter referred to as MMICs), in which transistors and strip lines are integrated on a semi-insulating semiconductor substrate, have recently become popular as small-signal analog amplifiers and power devices of around 10Gl-1z. Its uses are expanding greatly. A GaAs substrate is generally used as the semi-insulating substrate, and an MXSFET is formed as a transistor on this GaAs substrate. On the other hand, microstrip lines can be formed by depositing metal on both sides of a semi-insulating GaAt substrate, and MESFK
By combining with T, the input/output impedance becomes 6o.
Ω MMIC is constructed. However, traditional G.I.
LA! ! In MMIC using a substrate, since the semi-insulating GaAs substrate has a uniform thickness, MESFET
If the thickness of the substrate is made thinner for the purpose of lowering the O thermal resistance or making it easier to form through holes, the loss of the strip line increases rapidly, resulting in a decrease in the gain at high frequencies. On the other hand, in order to reduce the loss of the IJ tube line, the board needs to be thicker than a certain level, and in this case, the thickness of the MI
The structure did not satisfy both the MESNET characteristics and the stripline characteristics, such as the increased thermal resistance of the C5FET and the need to dig a deep trench to form a through hole for the FICT source.

第4図aとbは、従来のMMrCを示す平面図及びムー
A′線の断面構造図である。第4図に示したMMICは
、中央部に位置するFITと入出力のマイクロ・ストリ
ップ線路から構成される。第4図aのS、D、Gはそれ
ぞれFITのソース端子、ドレイン端子、ゲート端子を
示す。半絶縁性GaムS基板1の主面側には、FITの
チャンネル2、ソース領域3.ドレイン領域4がそれぞ
れ拡散によシ形成される。チャンネル領域2の表面上に
はFETのゲート電極5が配置されると共に、ソース領
域3にはソース電極6が電気的に接続され、ショットキ
ー・バリア型のFETとして動作する。FITの入力で
あるゲート端子Gは、入力側マイクロ・ストリップ線路
7に接続され、又ドレイン端子りは出力側マイクロ・ス
トリップ線路8に接続され入出力のインピーダンスが6
oΩに変換される。入出力のマイクロ・ストリップ線路
は、半絶縁性GaAs基板1の裏面に形成された裏面電
極9と、基板主面側に形成された表面電極によ多構成さ
れ、入出力の信号を効率良く伝送しようとするものであ
る。
FIGS. 4a and 4b are a plan view and a cross-sectional structural view taken along the line A' of the conventional MMrC. The MMIC shown in FIG. 4 is composed of an FIT located in the center and input/output microstrip lines. S, D, and G in FIG. 4a indicate the source terminal, drain terminal, and gate terminal of the FIT, respectively. On the main surface side of the semi-insulating Ga S substrate 1, there are an FIT channel 2, a source region 3. Drain regions 4 are each formed by diffusion. A gate electrode 5 of the FET is arranged on the surface of the channel region 2, and a source electrode 6 is electrically connected to the source region 3, so that the FET operates as a Schottky barrier type FET. The gate terminal G, which is the input of the FIT, is connected to the input side microstrip line 7, and the drain terminal is connected to the output side microstrip line 8, so that the input and output impedance is 6.
converted to oΩ. The input/output microstrip line is composed of a back electrode 9 formed on the back surface of the semi-insulating GaAs substrate 1 and a front electrode formed on the main surface side of the substrate, and efficiently transmits input/output signals. This is what I am trying to do.

発明が解決しようとする問題点 第4図に示した従来の高周波半導体装置においては、半
絶縁性G&A!1基板1が、FET領域及びマイクロ・
ストリップ線路の全領域において均一な厚みを有してい
る為、FET0熱抵抗を下げる目的で半絶縁性GILA
!基板の厚みを20μm程度と薄くするとマイクロ・ス
トリップ線路の伝送線路損失が急激に増加し、信号が減
衰し十分に増幅できないという結果となっていた。逆に
、マイクロ・ストリップ線路の伝送線路損失を小さくす
る目的で、半絶縁性GaAs基板の厚みを100μm程
度と厚くすると、FICTの熱抵抗が増加し発熱が問題
となったシ、半絶縁性GaA19基板にスルーホールを
形成する時に、基板厚みが厚い為、プロセス上でも大き
な障害となってい念。以上説明したように、従来の高周
波半導体装置では、FICTの特性とマイクロ・ストリ
ップ線路の両方の特性を満足させることは極めて困難で
あった。
Problems to be Solved by the Invention In the conventional high-frequency semiconductor device shown in FIG. 4, semi-insulating G&A! 1 substrate 1 has FET area and micro-
Since the strip line has a uniform thickness over the entire area, semi-insulating GILA is used to lower the FET0 thermal resistance.
! When the thickness of the substrate is reduced to about 20 μm, the transmission line loss of the microstrip line increases rapidly, resulting in signal attenuation and insufficient amplification. On the other hand, when the thickness of the semi-insulating GaAs substrate was increased to about 100 μm in order to reduce the transmission line loss of the micro-strip line, the thermal resistance of the FICT increased and heat generation became a problem. When forming through-holes on a board, please be aware that the thick board can be a major obstacle in the process. As explained above, it is extremely difficult for conventional high-frequency semiconductor devices to satisfy both the characteristics of FICT and the characteristics of microstrip line.

本発明はかかる点に鑑みてなされたもので、熱抵抗の小
さなFICTとスルーホールを形成しやすい構造を有し
ていると同時に、マイクロ・ストリップ線路の伝送線路
損失も小さい優れたMMICを提供することを目的とし
ている。
The present invention has been made in view of these points, and provides an excellent MMIC that has a FICT with low thermal resistance and a structure in which through holes can be easily formed, and at the same time has low transmission line loss of microstrip lines. The purpose is to

間紙論決する為の手段 本発明は、上記問題点を解決する為、FET領域下に位
置する半絶縁性01ムS基板の厚さを、マイクロ・スト
リップ線路下に位置する半絶縁性GaAs基板の厚さよ
り薄くする。
In order to solve the above-mentioned problem, the present invention reduces the thickness of the semi-insulating GaAs substrate located under the FET area to the semi-insulating GaAs substrate located under the microstrip line. Thinner than the thickness of.

作用 本発明は上記した構成によシ、FET領域下の半絶縁性
GILA5!基板の厚さが薄いので、FETの熱抵抗が
下がると同時に、スルーホールを形成し易くなる。又、
マイクロ・ストリップ線路下の半絶縁性G!LA!!基
板は厚いので伝送線路損失を小さく押さえておくことが
可能となる。
Operation The present invention has the above-described structure, and the semi-insulating GILA5! below the FET region. Since the thickness of the substrate is thin, the thermal resistance of the FET is lowered, and at the same time, it becomes easier to form through holes. or,
Semi-insulating G under micro strip line! LA! ! Since the substrate is thick, transmission line loss can be kept low.

実施例 第1図は本発明の高周波半導体装置の第1の実施列を示
す平面図及びムーA′線の断面構造図である。第1図に
おいて第4図と等価な構成部分には同一の参照番号及び
記号を付して示す。第1図に示した本発明の第1の実施
列は、FET領域下に位置する半絶縁性GaAs基板1
に基板裏面凹部1゜を形成し、厚さを薄くしである。こ
のFET領域下の半絶縁性GaAs基板の厚みは10〜
20μmの厚みに形成すれば熱抵抗も下げられ、しかも
スルーホールを形成する時にも厚さが薄い為障害となら
ない。他方、入力側マイクロ・ストリップ線路7及び出
力側マイクロ・ストリップ線路8の位置する半絶縁性G
aAg基板1の厚みは100μm前後と厚いので伝送線
路損失は増加することがない。従って効率良く信号fc
F E TK伝えたシ、FETから外部に引き出すこと
ができる0以上説明した様に本発明によtば、半絶縁性
GaAg基板1のWETの位置する部分の裏面に基板裏
面凹部10を設けておシ基板厚さを薄くすると同時に、
マイクロ・ストリップ線路の位置する半絶縁性GaAs
基板は、FET領域下の基板厚さより厚くなっているの
で、FITに対しては熱抵抗が下がシ発熱による相互コ
ンダクタンスの低下も防止でき、特性を十分に引き出す
ことができるだけでなく、マイクロ・ストリップ線路に
対しては伝送線路損失を小さくおさえられ、両者の特性
を両立させることが可能となる。
Embodiment FIG. 1 is a plan view and a sectional view taken along the line A' of the high frequency semiconductor device of the present invention. Components in FIG. 1 that are equivalent to those in FIG. 4 are designated with the same reference numbers and symbols. A first embodiment of the present invention, shown in FIG.
A 1° concave portion was formed on the back surface of the substrate to reduce the thickness. The thickness of the semi-insulating GaAs substrate under this FET region is 10~
If it is formed to a thickness of 20 μm, the thermal resistance can be lowered, and since the thickness is thin, it will not become an obstacle when forming through holes. On the other hand, the semi-insulating G where the input side microstrip line 7 and the output side microstrip line 8 are located
Since the aAg substrate 1 is thick, approximately 100 μm, transmission line loss does not increase. Therefore, the signal fc can be efficiently
As explained above, according to the present invention, a recess 10 on the back surface of the semi-insulating GaAg substrate 1 is provided on the back surface of the portion where the WET is located. At the same time as reducing the thickness of the board,
Semi-insulating GaAs on which microstrip lines are located
Since the substrate is thicker than the substrate thickness under the FET area, it has lower thermal resistance for the FIT and prevents deterioration of mutual conductance due to heat generation. Compared to a strip line, the transmission line loss can be kept low, making it possible to achieve both characteristics.

第2図は本発明の高周波半導体装置の第2の実施列を示
す平面図及び断面構造図である。第1図に示した本発明
の第1の実施例と同様に、半絶縁性GaAs基板1はF
ETの位置する部分のみ薄くなっているが、半絶縁性G
aAs基板全体をシリコン半導体基板11上1/i:成
長したものである。シリコン半導体基板11は、高濃度
に不純物を含んだ飼えば0.1 IIIΩ1 程度のも
のであれば裏面の電極として利用できる。この様な構成
でも、FETの低い熱抵抗と低損失なマイクロ・ストリ
ップ線路を同時に実現できる。
FIG. 2 is a plan view and a sectional structural view showing a second implementation row of the high frequency semiconductor device of the present invention. Similar to the first embodiment of the present invention shown in FIG.
Only the part where ET is located is thinner, but it is semi-insulating G.
The entire aAs substrate is grown on a silicon semiconductor substrate 11 at a ratio of 1/i. The silicon semiconductor substrate 11 can be used as the back electrode if it contains impurities at a high concentration and has a resistance of about 0.1 Ω1. Even with such a configuration, a low thermal resistance of the FET and a low-loss microstrip line can be realized at the same time.

第3図は本発明の高周波半導体装置の第3の実施列を示
す平面図及び断面構造図である。第3図は、半絶縁性e
aAs基板の裏面に金メッキ層12を10μm以上形成
し、基板裏面凹部10を金メッキ層で埋めることによシ
、パッケージ等へのチップの接合を容易にし、基板裏面
凹部1oの部分に空孔ができるのを防ぐものである。
FIG. 3 is a plan view and a sectional structural view showing a third implementation row of the high frequency semiconductor device of the present invention. Figure 3 shows semi-insulating e
By forming a gold plating layer 12 with a thickness of 10 μm or more on the back surface of the aAs substrate and filling the recess 10 on the back surface of the substrate with the gold plating layer, bonding of the chip to a package, etc. is facilitated, and holes are formed in the recess 1o on the back surface of the substrate. This is to prevent

本発明の実施列として、半絶縁性GaAs基板を列にと
シ説明を加えたが、他の半導体材料であってもトランジ
スタ部分の半絶縁性基板厚さが、マイクロ・ストリップ
線路の部分の半絶縁性基板厚さより薄ければ同様の効果
が得られることは言うまでもない。
Although the present invention has been described in terms of a semi-insulating GaAs substrate, the thickness of the semi-insulating substrate in the transistor part is half the thickness of the microstrip line part even in the case of other semiconductor materials. It goes without saying that the same effect can be obtained if the thickness is thinner than the thickness of the insulating substrate.

発明の効果 以上述べてきたように、本発明によシ次の効果がもたら
される。
Effects of the Invention As described above, the present invention provides the following effects.

(1)FET領域下に位置する半絶縁性基板の厚さが薄
いので熱抵抗を小さく押さえることができると同時に、
マイクロ・ストリップ線路領域下の半絶縁性基板厚さは
一定以上の厚さを確保しているので、伝送線路損失の上
昇がな込。
(1) Since the thickness of the semi-insulating substrate located under the FET area is thin, thermal resistance can be kept low, and at the same time,
The thickness of the semi-insulating substrate under the micro-strip line area is kept above a certain level, so the increase in transmission line loss is minimized.

(2)FET領域下に位置する半絶縁性基板の厚みが薄
いので、FITのンースインダクタンスを下げる目的で
スルーホールを形成することが容易である。
(2) Since the thickness of the semi-insulating substrate located under the FET region is thin, it is easy to form through holes for the purpose of lowering the source inductance of the FIT.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は本発明の高周波半導体装置の
実施列を示す平面及び断面構造図、第4図は従来の高周
波半導体装置を示す平面膵及び断面構造図である。 1・・・・・・半絶縁性GaAs基板、2・・・・・・
チャンネル、3・・・・・・ソース領域、4・・・・・
・ドレイン領域、5・・・・・・ゲート電極、7・・・
・・・入力側マイクロ・ストリップ線路、8・・・・・
・出力([111マイクロ・ストリ、−)ブ綿路−9・
・・・・・裏面電極、1o・・・・・・基板裏面凹部、
11・・・・・・シリコン半導体基板、12・・・・・
・金メッキ層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 第4図
FIGS. 1, 2, and 3 are plan and cross-sectional structural views showing implementation rows of the high-frequency semiconductor device of the present invention, and FIG. 4 is a plan view and cross-sectional structural view showing a conventional high-frequency semiconductor device. 1... Semi-insulating GaAs substrate, 2...
Channel, 3... Source area, 4...
・Drain region, 5...Gate electrode, 7...
...Input side micro strip line, 8...
・Output ([111 Micro Street, -) Buwataji-9・
... Back electrode, 1o... Recessed part on the back surface of the substrate,
11... Silicon semiconductor substrate, 12...
・Gold plated layer. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)半絶縁性を有する第1半導体基板に、トランジス
タ領域とマイクロ・ストリップ線路領域とが一体化され
た高周波モノリシック半導体装置において、前記トラン
ジスタ領域下に位置する半絶縁性の半導体基板の厚さが
、マイクロ・ストリップ線路下に位置する半絶縁性の半
導体基板の厚さより薄いことを特徴とする高周波半導体
装置。
(1) In a high-frequency monolithic semiconductor device in which a transistor region and a microstrip line region are integrated into a first semi-insulating semiconductor substrate, the thickness of the semi-insulating semiconductor substrate located below the transistor region. is thinner than the thickness of a semi-insulating semiconductor substrate located under a microstrip line.
(2)半絶縁性を有する半導体基板が、導電性を有する
シリコン半導体基板上に形成されていることを特徴とす
る特許請求の範囲第1項記載の高周波半導体装置。
(2) The high frequency semiconductor device according to claim 1, wherein the semi-insulating semiconductor substrate is formed on a conductive silicon semiconductor substrate.
(3)半絶縁性を有する半導体基板の裏面に10μm以
上の厚みを有する金メッキ層を有していることを特徴と
する特許請求の範囲第1項記載の高周波半導体装置。
(3) The high frequency semiconductor device according to claim 1, further comprising a gold plating layer having a thickness of 10 μm or more on the back surface of a semi-insulating semiconductor substrate.
JP61032314A 1986-02-17 1986-02-17 High-frequency semiconductor device Pending JPS62189760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61032314A JPS62189760A (en) 1986-02-17 1986-02-17 High-frequency semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61032314A JPS62189760A (en) 1986-02-17 1986-02-17 High-frequency semiconductor device

Publications (1)

Publication Number Publication Date
JPS62189760A true JPS62189760A (en) 1987-08-19

Family

ID=12355475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61032314A Pending JPS62189760A (en) 1986-02-17 1986-02-17 High-frequency semiconductor device

Country Status (1)

Country Link
JP (1) JPS62189760A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236854A (en) * 1989-12-11 1993-08-17 Yukio Higaki Compound semiconductor device and method for fabrication thereof
JP4909489B2 (en) * 2000-10-16 2012-04-04 株式会社横田製作所 Fluid discharge device and pipeline system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236854A (en) * 1989-12-11 1993-08-17 Yukio Higaki Compound semiconductor device and method for fabrication thereof
JP4909489B2 (en) * 2000-10-16 2012-04-04 株式会社横田製作所 Fluid discharge device and pipeline system

Similar Documents

Publication Publication Date Title
US5034347A (en) Process for producing an integrated circuit device with substrate via hole and metallized backplane
US4956697A (en) Microwave monolithic integrated circuit with heat radiating electrode
US4298879A (en) Field effect transistor
JPS62189760A (en) High-frequency semiconductor device
D'Asaro et al. Improved performance of GaAs microwave field-effect transistors with low inductance via-connections through the substrate
JP2001093914A (en) Semiconductor active element and semiconductor integrated circuit
JPS63276276A (en) Manufacture of semiconductor device
JP2554672B2 (en) Field effect type semiconductor device
JP2510544B2 (en) Manufacturing method of monolithic microwave IC
JP3365380B2 (en) High frequency semiconductor device and manufacturing method thereof
JPH05335487A (en) Transmission circuit element
JPH0348430A (en) Semiconductor device
JPS62211962A (en) Manufacture of high-frequency semiconductor device
JPH0521474A (en) Semiconductor device
JPH079980B2 (en) Method for manufacturing semiconductor device
JPH05235194A (en) Microwave monolithic integrated circuit
JP2674750B2 (en) Semiconductor device
JPS58206170A (en) Compound semiconductor device
JPS62291975A (en) High-frequency semiconductor device
JP3196752B2 (en) Semiconductor integrated circuit device and manufacturing method thereof
JPH0228334A (en) Integrated circuit device having substrate through-hole and metallized rear and manufacture of the device
JP2549795B2 (en) Compound semiconductor integrated circuit and manufacturing method thereof
JPS62243370A (en) High frequency field effect transistor
JPH05152340A (en) Field-effect transistor
JPH0436112Y2 (en)