JPS62185488A - X-ray diagnostic device - Google Patents

X-ray diagnostic device

Info

Publication number
JPS62185488A
JPS62185488A JP61026770A JP2677086A JPS62185488A JP S62185488 A JPS62185488 A JP S62185488A JP 61026770 A JP61026770 A JP 61026770A JP 2677086 A JP2677086 A JP 2677086A JP S62185488 A JPS62185488 A JP S62185488A
Authority
JP
Japan
Prior art keywords
filter
ray
processor
video signal
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61026770A
Other languages
Japanese (ja)
Inventor
Midori Oshika
大鹿 緑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61026770A priority Critical patent/JPS62185488A/en
Publication of JPS62185488A publication Critical patent/JPS62185488A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To use the limited dynamic range of an image pickup tube effectively as much as possible and to improve the picture quality by providing a processor for determining an input and output position of respective rod shape filters in plural steps and a driving part for realizing a wedge filter for displacing and driving the input and output position of the respective rod shape filters based on the output of this processor. CONSTITUTION:The processor 6 sets an avaluation area R with respectic to the same picture on a monitor 7, a safety ratio is optionally set based on an average video signal of this evaluation area R and a threshold level I is decided. The processor 6 feeds one dimentional arrays (z), (y) and the quantity Z (n) of a protrusion as information to the driving part 9. The driving part 9 passes the current corresponding to the Z (n) to an aluminium rod at the position corresponding to the (y, z) based on the Z (n) to drive a motor and push out to an instructed (x) position, namely, the quantity of the protrusion Z (n). According to such a means, the step like wedge filter 10 according to an object 2 is constituted and the above-mentioned operation is repeated on all lines (y=1 to ny). Thereby, a deformable and reproducible wedge filter can be realized. Thereby, the dynamic range of the image pickup tube can be effectively used to improve the picture quality.

Description

【発明の詳細な説明】 し発明の技術分野] 本発明は、X線コントローラにより制御されるX線管と
、該X線管より@射され、被写体を透過したX線を光学
像に変換するイメージインテンシファイアと、該イメー
ジインテンシファイアで得られた光学像の光量を可変す
る光学絞りを有する光学系と、該光学系を介して得ら社
る光学像をビデオ信号に変換する撮像管とを有するX線
テレビ藏彰装置等のX線診断装置に関する。
[Detailed Description of the Invention] Technical Field of the Invention The present invention relates to an X-ray tube controlled by an X-ray controller, and a method for converting X-rays emitted from the X-ray tube and transmitted through a subject into an optical image. An optical system having an image intensifier, an optical aperture that changes the amount of light of an optical image obtained by the image intensifier, and an image pickup tube that converts the optical image obtained through the optical system into a video signal. The present invention relates to an X-ray diagnostic apparatus such as an X-ray television system having the following.

[発明の技術的背景とその問題点] 一般にこの種のX線診断装置においては撮像管のダイナ
ミックレンジが限られているため、厚さの差の著しい被
写体については、画質が著しく低下する。このため、従
来は鉛、アルミニウム、岩塩、粘土、水枕等のフィルタ
を用い、被写体の補正をほどこしていた。
[Technical Background of the Invention and Problems Therewith] In general, in this type of X-ray diagnostic apparatus, the dynamic range of the image pickup tube is limited, so the image quality of an object with a significant difference in thickness is significantly degraded. For this reason, conventionally, filters such as lead, aluminum, rock salt, clay, water pillow, etc. have been used to correct the subject.

しかしながら、粘土、水枕等は変形自在であるが、再現
性がないという問題があり、鉛、アルミニウム、岩塩等
は、再現性1.Lあるが、被写体の形状に適応しにくい
という問題があった。
However, although clay, water pillows, etc. are deformable, they have a problem of lack of reproducibility, while lead, aluminum, rock salt, etc. have a reproducibility of 1. L is available, but it has the problem that it is difficult to adapt to the shape of the subject.

またこのようなフィルターの選定は透視像を照らし合わ
せながら、行なう経験的なcut and try方式
であり、透視による被写体情報を@極内に利用していな
かった。
Further, such selection of filters is an empirical cut-and-try method that is performed while comparing fluoroscopic images, and object information obtained from fluoroscopy is not fully utilized.

[発明の目的] 本発明は上記事情に鑑みてなされたものであり、変形自
在で、かつ再現性があり、透視時の画像情報を積極的に
利用することにより、ビデオ信号の均一化をはかり、限
られたR@!管のダイナミックレンジを最大限有効に活
用して画質の向上をはかることのできるX線診断装置を
促供することを目的とする。
[Object of the Invention] The present invention has been made in view of the above circumstances, and is capable of achieving uniformity of video signals by being deformable and reproducible, and actively utilizing image information during fluoroscopy. , limited R@! The purpose of the present invention is to provide an X-ray diagnostic apparatus that can improve image quality by making the most effective use of the tube's dynamic range.

[発明の概要] 上記目的を達成するための本発明の概要は、X線コント
ローラにより制御されるX線管と、該X線管より曝射さ
れ被検体を透過したX線を光学像に変換するイメージイ
ンテンシファイアと、該イメージインテンシファイアで
得られた光学像の光量を可変する光学絞りを有する光学
系と、該光学系を介して得られる光学像をビデオ信号に
変換する躍像管とを有するX線診断装置において、前記
被検体に大剣されるX線量を規制するフィルタであって
、X線曝射領域内の2次元平面を所定巾で分割した各ラ
イン毎に棒状フィルタを前記X線曝射領域内に入出自在
としたウェッジフィルタと、前記11i1像管からの前
記ビデオ信号に基づき、このビデオ信号を均一化すべく
前記各ラインについて複数段の各棒状フィルタの入出位
置を決定する演算手段と、この演算手段からの出力に基
づき各棒状フィルタの入出位置を変位駆動して階段状フ
ィルタを実現する駆動手段とを有することである。
[Summary of the Invention] The outline of the present invention for achieving the above object is to include an X-ray tube controlled by an X-ray controller, and converting X-rays emitted from the X-ray tube and transmitted through a subject into an optical image. an optical system having an optical aperture that changes the amount of light of an optical image obtained by the image intensifier; and a video tube that converts the optical image obtained through the optical system into a video signal. In the X-ray diagnostic apparatus, the filter regulates the amount of X-rays applied to the subject, and the rod-shaped filter is installed for each line obtained by dividing a two-dimensional plane within the X-ray irradiation area by a predetermined width. Based on the wedge filter that can freely move in and out of the X-ray irradiation area, and the video signal from the 11i1 picture tube, the entrance and exit positions of each of the plurality of stages of rod-shaped filters are determined for each line in order to equalize the video signal. The present invention has a calculation means for determining the calculation means, and a drive means for displacing and driving the input and output positions of each rod-shaped filter based on the output from the calculation means to realize a stepped filter.

[発明の実施例] 以下本発明の実施例について図面を参照しながら説明す
る。
[Embodiments of the Invention] Examples of the present invention will be described below with reference to the drawings.

第1図に本発明に係るX線診断装置の一実施例を示す。FIG. 1 shows an embodiment of an X-ray diagnostic apparatus according to the present invention.

このX線診断装置は、X線コントローラ8により制御さ
れるX線管1と、該X線管1より曝射され、被検体2を
透過したX線を光学像に変換するイメージインテンシフ
ァイア3と、該イメージインテンシファイア3で得られ
る光学像の光量を可変する光学絞りを有する光学系4と
、該光学系4を介して得られる光学像をビデオ信号に変
換するi像管5と、咳撮像管5から得られるビデオ信号
を処理するプロセッサ(演算手段)6と、該プロセッサ
6からの画像を表示するモニタ7と、前記プロセッサ6
より情報を得て駆動する駆動部9と、該駆動部9により
任意に変形し、被写体2の補正を行なう左右両側°のウ
ェッジフィルタ10とを有している。
This X-ray diagnostic apparatus includes an X-ray tube 1 controlled by an X-ray controller 8, and an image intensifier 3 that converts X-rays emitted from the X-ray tube 1 and transmitted through a subject 2 into an optical image. an optical system 4 having an optical aperture that changes the amount of light of the optical image obtained by the image intensifier 3; and an i-image tube 5 that converts the optical image obtained through the optical system 4 into a video signal. A processor (calculating means) 6 that processes the video signal obtained from the cough imaging tube 5, a monitor 7 that displays images from the processor 6, and the processor 6.
It has a driving section 9 that obtains more information and drives it, and wedge filters 10 on both left and right sides that are arbitrarily deformed by the driving section 9 and correct the subject 2.

以下、その主要部について詳しく説明する。The main parts will be explained in detail below.

ウェッジフィルタ10を構成する基本単位は第2図に示
すごとく、巾W、厚ざり、長さlで、lをm等分した目
盛aを持つ棒状の直方体(棒状フィルタ)であり、その
材質は、人体の構成を水と仮定して、水に近い管電圧依
存性のあるものが望ましい。ここでは、−例としてAI
を用いている。
As shown in FIG. 2, the basic unit that constitutes the wedge filter 10 is a rod-shaped rectangular parallelepiped (rod-shaped filter) with a width W, a thickness, and a length l, with a scale a obtained by dividing l into m equal parts, and its material is Assuming that the human body consists of water, it is desirable to have a tube voltage dependence similar to that of water. Here - as an example AI
is used.

Alは5Qkvから150kv付近の管電圧において、
およそ水と比較して3〜4倍の吸収特性を有するため、
例えば体圧30cmの差を補正するに当たり、100m
程度の厚さで補正が可能であり、しかも軽金属であるた
め、操作も容易である。
At tube voltages from 5Qkv to around 150kv, Al
Because it has approximately 3 to 4 times the absorption properties compared to water,
For example, when correcting a difference in body pressure of 30 cm, 100 m
Correction is possible with a certain thickness, and since it is made of light metal, it is easy to operate.

ウェッジフィルタ10の全体構成は、このようなアルミ
棒を第3図に示すごとくy方向、2方向に並べたもので
、被写体2の補正は、WXj!/mの四辺形単位で濃度
方向2に対しては、厚ざhで、量子化した補正を行なう
ようになっている。
The overall configuration of the wedge filter 10 is such that aluminum rods like this are arranged in two directions, the y direction, as shown in FIG. 3, and the correction of the subject 2 is WXj! For density direction 2, quantized correction is performed in the thickness direction h in quadrilateral units of /m.

次に、このウェッジフィルタ10を用いた制御手段につ
いて説明する。
Next, a control means using this wedge filter 10 will be explained.

先ず、前記プロセッサ6は透視時に得られた画像を第4
図に示ずようにnxxny個のメツシュ状に分割し、各
マス内のビデオ信号の平均ビデオ信号値I (x、y)
を求める。分割サイズnx。
First, the processor 6 converts the image obtained during fluoroscopy into a fourth image.
As shown in the figure, the average video signal value I (x, y) of the video signal in each square is divided into nxxny meshes.
seek. Division size nx.

nyは、第5図に示すように前記ウェッジフィルタにお
けるWXi!/mの四辺形を被写体表面に投影した大き
ざAに基づいて分割することにより求まる。
ny is WXi! in the wedge filter as shown in FIG. It is found by dividing a quadrilateral of /m based on the size A projected onto the surface of the subject.

一方、プロセッサ6は、第4図に示すようにモニター7
上の同一画像に対して評価領域Rを設定し、該評価領域
Rの平均ビデオ信号値を基準に、安全率αを任意に設定
しスレッショールドレベル11を決定する。第4図のグ
ラフは評価領域Rを含んだX−Xのビデオ信号とスレッ
ショールドレベル11の関係を表わしたものである。こ
こで評価領域が複数のマスにまたがる場合は、平均ビデ
オ信号値の最大値を基準に選び、前記同様にスレッショ
ールドレベル11を決定する。
On the other hand, the processor 6 controls the monitor 7 as shown in FIG.
An evaluation region R is set for the same image above, and a safety factor α is arbitrarily set based on the average video signal value of the evaluation region R to determine a threshold level 11. The graph in FIG. 4 shows the relationship between the video signal XX including the evaluation area R and the threshold level 11. If the evaluation area spans a plurality of squares, the maximum value of the average video signal value is selected as a reference, and the threshold level 11 is determined in the same manner as described above.

次に前記プロセッサ6は、透視時の管電圧Vに応じたA
lの平均吸収計数μ(V)を内部テーブルより求め、ス
レッショールドレベルIlのA1当lteを次式(1)
により計算する。
Next, the processor 6 calculates A according to the tube voltage V during fluoroscopy.
The average absorption coefficient μ(V) of l is determined from the internal table, and the threshold level Il corresponding to A1 is calculated using the following formula (1).
Calculate by

te= (A n lo−l1n Ii’ )/μ(V
)・・・(1)ここでInは被検体入射信号とづ−る。
te= (An lo-l1n Ii')/μ(V
)...(1) Here, In is the subject incident signal.

次に上式(1)により求まったte及び先に決定したス
レッショールドレベルIJlを用いて以下の処理をnx
、nyに分割した画像のX方向■ラインX−X(nx個
)ごとに行なう。
Next, the following process is performed using te obtained by the above equation (1) and the threshold level IJl determined previously.
, ny for every (nx) lines in the X direction.

すなわち、分割された各マス内の先に求めた平均ビデオ
信号値1 (x、y)をスレッショールドレベルIlと
比較し、I (x、y)> IAのとぎは、平均ビデオ
信号値のl当ff1t (x、 y)を次式(2)で計
算し、 j (X、V)=lnIo−Ilnl (X、V))/
μ(V)・・・(2) このt (x、y)と前記t1との差を計算し、ウェッ
ジフィルタの厚ざhで量子化したs度z方向厚ざT (
x)を次式(3)で計算する。
That is, the previously obtained average video signal value 1 (x, y) in each divided square is compared with the threshold level Il, and when I (x, y) > IA, the average video signal value 1 (x, y) is compared with the threshold level Il. Calculate ff1t (x, y) using the following formula (2), j (X, V) = lnIo-Ilnl (X, V))/
μ(V)...(2) Calculate the difference between this t (x, y) and the above t1, and calculate the thickness difference in s degrees and z direction T (
x) is calculated using the following equation (3).

T (X)= [(t (X、 Y) −tl )/1
1]−(3)なお[]はガウス記号である。
T (X) = [(t (X, Y) - tl )/1
1]-(3) Note that [] is a Gauss symbol.

そして、I (x、y)≦11のときはT(x>=Oと
し、X−1よりnxにつbsrT(x)を求め、第6図
に示ずようにX方向の一次元配列をつくる。すなわち第
6図において、T(1]=4は先に説明したX方向1ラ
イン中におけるX=1の部分のマスにおいてフィルター
の厚さが4h必要であることを示し、また同様にT(2
)=3は、そのマスすなわちX=2部分のマス部分にお
いてフィルターの厚さが3h必要であることを表わして
いる。
Then, when I (x, y)≦11, set T(x>=O, find bsrT(x) for nx from X-1, and create a one-dimensional array in the X direction as shown in Figure 6. In other words, in Fig. 6, T(1] = 4 indicates that the thickness of the filter is required to be 4h in the mass of the portion of X = 1 in one line in the X direction, and similarly, T (2
)=3 indicates that the filter needs to have a thickness of 3h in that mass, that is, in the mass portion of the X=2 portion.

なお、第6図はnx=ioとした場合について示しであ
る。プロセッサ6は、更に中央O−0でこのX方向の一
次元配列を左右2つに分割し、該X方向−次元配列で表
わされた厚みのフィルタ形状を形成すべく第7図に示す
ように7方向の一次元配列を左右2個作成する。すなわ
ち第7図において、左の配列中Z(1)=4は下から一
段目のアルミ棒をX方向に4目盛だけ、Z(2)=3は
下から二段目のアルミ棒をX方向に3目盛だけ押し出し
て所望のフィルタ形状を形成することを表わしている(
第8図参照)。第8図から明らかなようにX=1部分は
4hの厚みがあり、X=2の部分は3hの厚みとなって
いる。
Note that FIG. 6 shows the case where nx=io. The processor 6 further divides this one-dimensional array in the X direction into two parts, left and right, at the center O-0, as shown in FIG. Create two one-dimensional arrays in seven directions on the left and right. In other words, in Fig. 7, Z(1) = 4 in the left array means the first aluminum bar from the bottom is moved by four scales in the X direction, and Z(2) = 3 means the second aluminum bar from the bottom is moved in the X direction. This indicates that the desired filter shape is formed by extruding by 3 scales (
(See Figure 8). As is clear from FIG. 8, the X=1 portion has a thickness of 4h, and the X=2 portion has a thickness of 3h.

そして前記プロセッサ6は一次元配列z、y。The processor 6 then generates a one-dimensional array z, y.

及び上記突出ff1Z(n>を情報として駆動部9に送
り、駆動部9はこの(y、z)に相等する位置のアルミ
棒のみをZ(n)に基づきこれに応じた電流を流してモ
ーターを駆動させ、指示されたX位置即ち突出12(n
)まで押し出す。このような手段により被写体2に応じ
た階段状ウェッジフィルタが構成され、全ライン(y=
1よりny)について以上の操作を繰り返すことにより
、第9図に示すような変形自在かつ再現性のあるウェッ
ジフィルタが実現され、これによって眼像管のダイナミ
ックレンジを有効に使えることができて画質が向上する
The above projection ff1Z(n> is sent as information to the drive section 9, and the drive section 9 drives the motor by passing a current corresponding to Z(n) only through the aluminum rod at the position equivalent to this (y, z). to the designated X position, that is, the protrusion 12 (n
). By such means, a stepped wedge filter corresponding to the subject 2 is constructed, and all lines (y=
By repeating the above operations for 1 to ny), a wedge filter that is deformable and reproducible as shown in Fig. 9 is realized, which makes it possible to effectively use the dynamic range of the eye tube and improve image quality. will improve.

以上本発明の一実施例について説明したが本発明は上記
実施例に限定されるものではなく、本発明の要旨の範囲
内で適宜に変形実施可能であるこちはいうまでもない。
Although one embodiment of the present invention has been described above, it goes without saying that the present invention is not limited to the above-mentioned embodiment, and can be modified as appropriate within the scope of the gist of the present invention.

例えば第9図において、フィルターを構成するアルミ棒
の材質を非常に吸収の大きい物質ml 。
For example, in Figure 9, the material of the aluminum rod constituting the filter is a very absorbent substance.

中程度m2 、小ざい物質m3と数種類用意し、しかも
厚ざhをhl、h2.h3・・・とすることにより上記
実施例と比較して、より被写体に応じた適切なウェッジ
フィルタを実現することもできる。
Several types of medium m2, small material m3 are prepared, and the thickness h is hl, h2. By setting h3..., it is possible to realize a wedge filter that is more suitable for the subject than in the above embodiment.

[発明の効果] 以上詳述したように本発明によれば、被写体透視時の画
像情報を積極的に利用することにより、変形自在で再現
性があり、被写体に応じたフィルターを形成することが
できるので、ビデオ信号の均一化を図り、限られた躍像
管のダイナミックレンジを最大限有効に活用して画質の
向上を図ることができる。
[Effects of the Invention] As described in detail above, according to the present invention, by actively utilizing image information when viewing a subject, it is possible to form a filter that is deformable, reproducible, and suitable for the subject. Therefore, it is possible to equalize the video signal and make the most effective use of the limited dynamic range of the cathode ray tube to improve image quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明X線診断装首のブロック図、第2図はウ
ェッジフィルタの基本単位であるアルミ棒の斜視図、第
3図はウェッジフィルタの仝休園、第4図〜第9図はそ
れぞれ作用説明図である。 1・・・X線管球、2・・・被写体、 3・・・イメージインテンシファイア、4・・・光学系
、5・・・Vmfll管、6・・・演算手段、7・・・
モニタ、8・・・X線コントローラ、9・・・駆動手段
、10・・・ウェッジフィルタ。 代理人 弁理士  則  近  憲  佑同     
  大   胡   典   失策1図 第2図 第3図 第4図 第5図 第7図
Figure 1 is a block diagram of the X-ray diagnostic neck of the present invention, Figure 2 is a perspective view of an aluminum rod that is the basic unit of the wedge filter, Figure 3 is the closure of the wedge filter, and Figures 4 to 9 are FIG. 6 is an explanatory diagram of each action. DESCRIPTION OF SYMBOLS 1... X-ray tube, 2... Subject, 3... Image intensifier, 4... Optical system, 5... Vmfl tube, 6... Calculating means, 7...
Monitor, 8... X-ray controller, 9... Drive means, 10... Wedge filter. Agent Patent Attorney Yudo Noriyuki Chika
Nori Ogo Mistake 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 7

Claims (1)

【特許請求の範囲】[Claims] X線コントローラにより制御されるX線管と、該X線管
より曝射され被検体を透過したX線を光学像に変換する
イメージインテンシフアイアと、該イメージインテンシ
フアイアで得られた光学像の光量を可変する光学絞りを
有する光学系と、該光学系を介して得られる光学像をビ
デオ信号に変換する撮像管とを有するX線診断装置にお
いて、前記被検体に入射されるX線量を規制するフイル
タであつて、X線曝射領域内の2次元平面を所定巾で分
割した各ライン毎に棒状フイルタを前記X線曝射領域内
に入出自在としたウエツジフイルタと、前記撮像管から
の前記ビデオ信号に基づき、このビデオ信号を均一化す
べく前記各ラインについて複数段の各棒状フイルタの入
出位置を決定する演算手段と、この演算手段からの出力
に基づぎ各棒状フイルタの入出位置を変位駆動して階段
状フイルタを実現する駆動手段とを有することを特徴と
するX線診断装置。
An X-ray tube controlled by an X-ray controller, an image intensifier that converts the X-rays emitted from the X-ray tube and transmitted through the subject into an optical image, and an optical image obtained by the image intensifier. In an X-ray diagnostic apparatus, the X-ray diagnostic apparatus includes an optical system having an optical aperture that varies the amount of light, and an image pickup tube that converts an optical image obtained through the optical system into a video signal. A wedge filter, which is a regulating filter, and in which a rod-shaped filter can be freely moved in and out of the X-ray exposure area for each line obtained by dividing a two-dimensional plane in the X-ray exposure area by a predetermined width; calculation means for determining the input and output positions of each rod-shaped filter in multiple stages for each line in order to equalize the video signal based on the video signal; and the input and output positions of each rod-shaped filter based on the output from the calculation means. An X-ray diagnostic apparatus comprising: a drive means for displacing and driving the filter to realize a stepped filter.
JP61026770A 1986-02-12 1986-02-12 X-ray diagnostic device Pending JPS62185488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61026770A JPS62185488A (en) 1986-02-12 1986-02-12 X-ray diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61026770A JPS62185488A (en) 1986-02-12 1986-02-12 X-ray diagnostic device

Publications (1)

Publication Number Publication Date
JPS62185488A true JPS62185488A (en) 1987-08-13

Family

ID=12202526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61026770A Pending JPS62185488A (en) 1986-02-12 1986-02-12 X-ray diagnostic device

Country Status (1)

Country Link
JP (1) JPS62185488A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241142A (en) * 1988-07-30 1990-02-09 Shimadzu Corp X-ray fluoroscopic apparatus
WO2007059691A1 (en) * 2005-11-23 2007-05-31 Beijing Oriental E.T Medical Equipment Co., Ltd Method for virtually controlling digial beam limiter
WO2007059689A1 (en) * 2005-11-23 2007-05-31 Beijing Oriental E.T Medical Equipment Co., Ltd Digtal beam limiter
US10410437B2 (en) 2015-10-26 2019-09-10 Continental Automotive France Method for automatically adapting the conditions for establishing a diagnostic by an on-board diagnostic system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241142A (en) * 1988-07-30 1990-02-09 Shimadzu Corp X-ray fluoroscopic apparatus
WO2007059691A1 (en) * 2005-11-23 2007-05-31 Beijing Oriental E.T Medical Equipment Co., Ltd Method for virtually controlling digial beam limiter
WO2007059689A1 (en) * 2005-11-23 2007-05-31 Beijing Oriental E.T Medical Equipment Co., Ltd Digtal beam limiter
US10410437B2 (en) 2015-10-26 2019-09-10 Continental Automotive France Method for automatically adapting the conditions for establishing a diagnostic by an on-board diagnostic system

Similar Documents

Publication Publication Date Title
US4352986A (en) Tomographic apparatus for the production of transverse layer images
AU690313B2 (en) X-ray phantom apparatus
Plewes et al. A scanning system for chest radiography with regional exposure control: Practical implementation
US4598369A (en) Tomography apparatus and method
EP0223432A2 (en) X-ray radiography system
US7329891B2 (en) Read-out device and method for reading out X-rays stored in phosphor layers
JP2000102526A (en) Device for correcting scattered radiation effect of x-ray image
JP3620942B2 (en) X-ray equipment
Gröndahl et al. Digital subtraction radiography for diagnosis of periodontal bone lesions with simulated high-speed systems
US4173720A (en) Method and apparatus for image construction
McDavid et al. Digital imaging in rotational panoramic radiography.
JP2006501008A (en) Method and apparatus for generating partial images
JPS62185488A (en) X-ray diagnostic device
JPH065281B2 (en) Gamma camera
Baily et al. Electrofluoroplanigraphy
EP1444952A1 (en) Scanning digital radiography system with reduced ionizing-radiation dose
DE4329691A1 (en) Scanner for an X=ray image stored on phosphorescent plate - having controllable system to ensure constant signal intensity from image regions of varying density
US4566112A (en) Tomosynthesis apparatus
JPS6170547A (en) Radiation picture information reading method
US5406610A (en) X-ray diagnostics apparatus with correction means
US20040213380A1 (en) Method and apparatus for slot scanning digital radiography
JPH0568679A (en) Method for reproducing continuous stereoscopic images of x-ray fluoroscopic mapping for row of theeth
Greatorex Image intensification using a flying-spot X-ray tube
EP0178675B1 (en) Radiation image read-out apparatus
RU2237911C2 (en) Multichannel x-ray radiation detector