JPS6218011B2 - - Google Patents

Info

Publication number
JPS6218011B2
JPS6218011B2 JP55089152A JP8915280A JPS6218011B2 JP S6218011 B2 JPS6218011 B2 JP S6218011B2 JP 55089152 A JP55089152 A JP 55089152A JP 8915280 A JP8915280 A JP 8915280A JP S6218011 B2 JPS6218011 B2 JP S6218011B2
Authority
JP
Japan
Prior art keywords
sample
fluorescence
rotating mirror
mirror
excitation light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55089152A
Other languages
Japanese (ja)
Other versions
JPS5714744A (en
Inventor
Taro Nogami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8915280A priority Critical patent/JPS5714744A/en
Publication of JPS5714744A publication Critical patent/JPS5714744A/en
Publication of JPS6218011B2 publication Critical patent/JPS6218011B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Description

【発明の詳細な説明】 本発明は分光けい光光度計に係り、特に、差け
い光測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a spectrofluorophotometer, and more particularly to a differential fluorescence measuring device.

第1図は従来の差けい光測定装置の一例を示す
平面図である。励起側分光器1を出た励起光2は
回転ミラー機構5によつて2つの光路に分割され
る。その一方はトロイドミラー6によつて集光さ
れ、試料室13内のS側試料ホールダ11に設置
されている試料に入射する。ここでS側とは、被
測定試料を設置する側であることを示す。他方の
トロイドミラー7によつて集光された励起光2は
R側試料ホールダ12に設置されている参照試料
に入射する。ここでR側とは参照側であることを
示す。S側試料から生じたけい光は、トロイドミ
ラー8で集光されてけい光側分光器4に向うが、
格子ミラー10によつて50%の光量が遮断され
る。一方R側試料から生じたけい光は、トロイド
ミラー9で集光されて格子ミラー10に送られ、
その50%の光量を反射する。即ち、両光束の光量
は格子ミラー10によつてその半分ずつが同じ光
路を通るけい光3となつて交互にけい光側分光器
4に入射する。したがつて電気的にそのけい光量
の差を各波長において求めることができる。な
お、このような差けい光測定装置は特開昭48−
31989号公報に示されている。
FIG. 1 is a plan view showing an example of a conventional differential fluorescence measuring device. Excitation light 2 exiting the excitation side spectrometer 1 is split into two optical paths by a rotating mirror mechanism 5. One of the lights is focused by the toroid mirror 6 and is incident on the sample placed in the S-side sample holder 11 in the sample chamber 13 . Here, the S side indicates the side where the sample to be measured is installed. The excitation light 2 focused by the other toroid mirror 7 is incident on the reference sample installed in the R-side sample holder 12. Here, the R side indicates the reference side. The fluorescence generated from the S-side sample is focused by the toroid mirror 8 and directed toward the fluorescence-side spectrometer 4.
The grating mirror 10 blocks 50% of the light amount. On the other hand, the fluorescence generated from the R side sample is collected by the toroid mirror 9 and sent to the grating mirror 10.
It reflects 50% of that amount of light. That is, the amount of light of both light beams is turned into fluorescence 3 by the grating mirror 10 so that each half thereof passes through the same optical path, and alternately enters the fluorescence side spectrometer 4. Therefore, it is possible to electrically determine the difference in the amount of fluorescence at each wavelength. In addition, such a differential fluorescence measurement device was developed in Japanese Patent Application Laid-open No. 1973-
It is shown in Publication No. 31989.

この差けい光測定装置は交照測定法によつて試
料中の溶媒が発生するけい光を消去して精密測定
できるが、一光路法によるけい光測は行いにく
い。一般に上記のような二光路方式では片方の光
路を通つてけい光側分光器4に入射する光のエネ
ルギーは、理想的な場合では50%であり、交照時
のデツドタイムを見込むと30%程度となる。即
ち、光の損失が大きい。一光路方式は一方の光を
100%利用可能であるのでこれを使用したい場合
がある。この場合は一旦回転ミラー機構5を停止
させてからその電源スイツチを入れて少しずつ回
転させることを何回か繰り返し、試行錯誤的に半
円形反射面をもつ回転ミラーの欠除個所を励起光
2が通過するようにする必要がある。この様な操
作は時間を要すると共に回転ミラー5の位置が不
安定になり易いという欠点をもつていた。また、
S側試料ホールダ11内で生じたけい光はトロイ
ドミラー8で反射し、R側試料ホールダ12内で
生じたけい光はトロイドミラー9と格子ミラー1
0で反射しているので、両けい光の波長特性を完
全に一致させることが困難であるという欠点をも
つている。
Although this differential fluorescence measuring device can perform precise measurements by eliminating the fluorescence generated by the solvent in the sample using the cross-photometry method, it is difficult to perform fluorescence measurements using the one-light path method. Generally, in the above-mentioned two-light path system, the energy of the light that enters the fluorescence side spectrometer 4 through one optical path is 50% in the ideal case, and about 30% if dead time during cross-illumination is taken into account. becomes. That is, the loss of light is large. One light path method uses one light
You may want to use this since it is 100% available. In this case, first stop the rotating mirror mechanism 5, then turn on the power switch and rotate it little by little several times. By trial and error, the excitation light 2 must be allowed to pass. Such an operation takes time and has the disadvantage that the position of the rotating mirror 5 tends to become unstable. Also,
The fluorescence generated in the S-side sample holder 11 is reflected by the toroid mirror 8, and the fluorescence generated in the R-side sample holder 12 is reflected by the toroid mirror 9 and the grating mirror 1.
Since it is reflected at zero, it has the disadvantage that it is difficult to match the wavelength characteristics of both fluorescences completely.

第2図は従来の差けい光測定装置の他の側を示
す平面図であり、第1図と同じ部分には同一符号
を付してある。これは特開昭52−116283号公報に
示されたもので、S側試料ホールダ11とR側試
料ホールダ12との中間に大形の回転ミラー機構
を設置している。この回転ミラー機構は両面を反
射面とした60゜の中心角をもつ3枚の扇形ミラー
を等角度間隔で回転枠体に取り付けて、二光路に
分割する作用と二光路を一光路に統合する作用を
もたせている。即ち、励起側分光器1を出た励起
光2はレンズ16によつて集光されると共に回転
ミラー18の表面で反射してR側試料ホールダ1
2内を照射する。R側試料ホールダ12内の例え
ば溶媒の発するけい光3は、回転ミラー18の空
所を通りレンズ17で集光された後ミラー15で
反射されてけい光側分光器4内に入る。次に、回
転ミラー18が60゜回転すると、励起光2は空所
を通つてS側試料ホールダ11内を照射する。し
たがつてS側試料ホールダ11側の試料溶液から
生じたけい光3は回転ミラー18の裏側反射面で
反射されてけい光側分光器4に入射する。なお、
このような測定光の切換えは回転ミラー18が1
回転する間に3回行なわれる。
FIG. 2 is a plan view showing the other side of the conventional differential fluorescence measuring device, and the same parts as in FIG. 1 are given the same reference numerals. This is disclosed in Japanese Patent Application Laid-Open No. 52-116283, and a large rotating mirror mechanism is installed between the S-side sample holder 11 and the R-side sample holder 12. This rotating mirror mechanism has three fan-shaped mirrors with reflective surfaces on both sides and a center angle of 60 degrees attached to a rotating frame at equal angular intervals, and has the effect of dividing into two optical paths and integrating the two optical paths into one optical path. It has an effect. That is, the excitation light 2 exiting the excitation side spectrometer 1 is condensed by the lens 16 and is reflected by the surface of the rotating mirror 18 to reach the R side sample holder 1.
Irradiate the inside of 2. Fluorescent light 3 emitted by, for example, a solvent in the R-side sample holder 12 passes through a space in a rotating mirror 18, is focused by a lens 17, is reflected by a mirror 15, and enters a fluorescent-side spectrometer 4. Next, when the rotating mirror 18 rotates by 60 degrees, the excitation light 2 passes through the space and irradiates the inside of the S-side sample holder 11. Therefore, the fluorescence 3 generated from the sample solution on the S-side sample holder 11 side is reflected by the back reflection surface of the rotating mirror 18 and enters the fluorescence-side spectrometer 4 . In addition,
Such switching of the measurement light is performed when the rotating mirror 18
This is done three times during the rotation.

この方式は回転ミラー機構を含む試料室を比較
的小形に構成できるし格子ミラー10を必要とし
ないという利点があるが、次のような欠点をもつ
ている。
Although this method has the advantage that the sample chamber including the rotating mirror mechanism can be made relatively compact and does not require the grating mirror 10, it has the following drawbacks.

まず、一光路によるけい光測定を行う場合は、
回転ミラー18の位置を定めるときは第1図の装
置の場合と同様に時間を要する。また、試料室ア
センブリー全体を取りはずしてフローセルユニツ
ト、りん光測定用試料室、固体試料ホールダおよ
びゲルスキヤンナー用試料室等と交換することが
困難な構造となり易い。これを可能にするために
は試料室内に光束を折り曲げるミラーを設置しな
ければならない。更に、励起側においてもけい光
側においても反射面の数が一致していないので、
厳密には波長特性が一致していないことなどであ
る。
First, when performing fluorescence measurement using a single optical path,
As in the case of the apparatus shown in FIG. 1, it takes time to determine the position of the rotating mirror 18. Furthermore, the structure tends to make it difficult to remove the entire sample chamber assembly and replace it with a flow cell unit, a phosphorescence measurement sample chamber, a solid sample holder, a gel scanner sample chamber, etc. To make this possible, a mirror that bends the light beam must be installed in the sample chamber. Furthermore, since the number of reflecting surfaces is not the same on the excitation side and the fluorescence side,
Strictly speaking, this is because the wavelength characteristics do not match.

なお、画光路の反射画数を一致させる方法の例
がAnal.Chem.、46、1698(′74)に報告されてい
る。しかしこれは二光路方式専用の装置を常に用
いなればならないし、簡単に一光路方式に置き換
えることが不可能である。即ち、セクターミラー
を固定して一光路方式とする場合は、セクターミ
ラーで不必要な反射を行なわせなければならない
という欠点をもつている。
An example of a method for matching the number of reflection strokes in the image optical path is reported in Anal.Chem., 46, 1698 ('74). However, this always requires the use of a device dedicated to the two-light path method, and it is not possible to easily replace it with a one-light path method. That is, when the sector mirror is fixed and a single optical path system is used, there is a drawback that unnecessary reflection must be performed by the sector mirror.

本発明の目的は、上記した従来技術の欠点をな
くし、反射画数を等しくした小形高性能な差けい
光測定装置を提供することにある。
An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and to provide a compact, high-performance differential fluorescence measurement device that has the same number of reflection strokes.

このため本発明は、一対の平面ミラーを有する
回転ミラーと、この回転ミラーの後方に回転ミラ
ーと平行に設けられた一対の平面ミラーを有する
固定ミラーとからなる回転ミラー機構が設けられ
ている。この回転ミラー機構の回転ミラー側に試
料および参照試料が配置され、試料および参照試
料に励起光を二光路に分割して照射した後、試料
および参照試料のけい光は一光路に合致される。
励起側分光器からの励起光の光軸と回転ミラー機
構からのけい光の光軸とは交叉するように構成さ
れており、試料を一光路法で測定する時は励起光
とけい光の光軸とが交叉する部分に試料が配置さ
れる。
For this reason, the present invention is provided with a rotating mirror mechanism including a rotating mirror having a pair of plane mirrors and a fixed mirror having a pair of plane mirrors provided behind the rotating mirror and parallel to the rotating mirror. A sample and a reference sample are arranged on the rotating mirror side of this rotating mirror mechanism, and after the excitation light is divided into two optical paths and irradiated onto the sample and reference sample, the fluorescence of the sample and the reference sample are aligned into one optical path.
The optical axis of the excitation light from the excitation side spectrometer and the optical axis of the fluorescence from the rotating mirror mechanism are configured to intersect, and when measuring a sample using the single-path method, the optical axes of the excitation light and fluorescence The sample is placed at the intersection of the two.

以下、本発明の一実施例を図面に基づいて説明
する。
Hereinafter, one embodiment of the present invention will be described based on the drawings.

第3図は本発明の一実施例である差けい光測定
装置の平面図で、第1図と同じ部分には同一符号
を付してある。励起側分光器1を出た励起光2は
トロイドミラー20によつて集光され、回転ミラ
ー22aで反射してS側試料ホールダ11内の試
料を照射する。試料から生じたけい光3は回転ミ
ラー22bで反射した後トロイドミラー21で集
光されて交叉部27を通りけい光側分光路4に入
射する。なお、トロイドミラー21は交叉部27
の像をS側試料ホールダ11内に結ぶような反射
曲面に形成してある。
FIG. 3 is a plan view of a differential fluorescence measuring device which is an embodiment of the present invention, in which the same parts as in FIG. 1 are given the same reference numerals. The excitation light 2 exiting the excitation side spectrometer 1 is focused by the toroid mirror 20, reflected by the rotating mirror 22a, and irradiates the sample in the S side sample holder 11. The fluorescence 3 generated from the sample is reflected by the rotating mirror 22b, then condensed by the toroid mirror 21, passes through the intersection 27, and enters the fluorescence side spectral path 4. Note that the toroid mirror 21 is located at the intersection 27.
It is formed into a reflective curved surface that focuses an image of the image on the S side sample holder 11.

平面ミラー22a,22bはモーター25で駆
動される回転枠の対象位置に設置されている。例
えば平面ミラー22a,22bが90゜の中心角を
もつ扇形ミラーであるとすると、その間に90゜の
空間を設けたいわゆるセクターミラーを用いた回
転ミラー機構となつている。図において、平面ミ
ラー22a,22bが90゜回転した時はトロイド
ミラー20の反射光は固定の平面ミラー23で直
角に反射されてR側試料ホールダ12内を照射す
る。また、R側試料ホールダ12内の参照試料よ
り生じたけい光3は平面ミラー24で反射して上
記試料のけい光と同一光路を通つてけい光側分光
器4に入射する。なお、平面ミラー22a,22
bの反射面と、平面ミラー23,23の反射面と
は平行で、かつ、その間隔はS側試料ホールダ1
1とR側試料ホールダ12の中心間隔の1/2に設
定してある。したがつて、トロイドミラー20,
21は同一のものを使用することができるし、励
起光2とけい光3の反射は共に2回行なわれるの
で反射特性は原理的に等しいことになる。
The plane mirrors 22a and 22b are installed at symmetrical positions on a rotating frame driven by a motor 25. For example, if the plane mirrors 22a and 22b are fan-shaped mirrors with a central angle of 90 degrees, then a rotating mirror mechanism using so-called sector mirrors with a 90 degree space provided therebetween is formed. In the figure, when the plane mirrors 22a and 22b are rotated by 90 degrees, the reflected light from the toroid mirror 20 is reflected at a right angle by the fixed plane mirror 23 and illuminates the inside of the R-side sample holder 12. Further, the fluorescence 3 generated from the reference sample in the R-side sample holder 12 is reflected by the plane mirror 24 and enters the fluorescence-side spectrometer 4 through the same optical path as the fluorescence of the sample. Note that the plane mirrors 22a, 22
The reflective surface b and the reflective surfaces of the plane mirrors 23, 23 are parallel, and the distance between them is equal to that of the S-side sample holder 1.
1 and the R side sample holder 12 is set to 1/2 of the center distance. Therefore, toroid mirror 20,
21 can be the same, and since both the excitation light 2 and the fluorescence light 3 are reflected twice, the reflection characteristics are basically the same.

上記回転ミラー機構および固定の平面ミラー2
3,24およびトロイドミラー20,21等の光
学部品と試料ホールダ11,12は一枚の試料室
ベース19上にコンパクトに配置されているの
で、試料室13は小形に構成されている。なお、
この回転ミラー機構は前面パネル26によつて操
作される。
The above rotating mirror mechanism and fixed plane mirror 2
3, 24, toroid mirrors 20, 21, and the like, and the sample holders 11, 12 are compactly arranged on a single sample chamber base 19, so the sample chamber 13 is configured to be small. In addition,
This rotating mirror mechanism is operated by the front panel 26.

励起光2を最大限に利用するために一光路測定
を行う場合は、試料を収容した試料セル28を交
叉部27に設置する。この場合はS側試料ホール
ダ11およびR側試料ホールダ12には試料や参
照試料を入れたセルは装着されていないので、回
転ミラー機構は回転していても停止していても差
支えない。即ち、試料セル28より発生した励起
光3がけい光側分光器4に直接導入され、能率の
良いけい光測定が可能となる。
When performing single-light path measurement to make maximum use of the excitation light 2, a sample cell 28 containing a sample is installed at the intersection 27. In this case, since cells containing samples and reference samples are not attached to the S-side sample holder 11 and the R-side sample holder 12, it does not matter whether the rotating mirror mechanism is rotating or stopped. That is, the excitation light 3 generated from the sample cell 28 is directly introduced into the fluorescence side spectrometer 4, allowing efficient fluorescence measurement.

更に、試料室ベース19ごとに取りはずすこと
ができるようにこのけい光分光光度計は構成され
ているので、これはフローセルユニツト、りん光
測定用試料室、固体試料ホールダ、ゲルスキヤナ
ー等の交換することが容易であり、多機能な装置
とするのに好適な構成となつている。
Furthermore, since this fluorescence spectrophotometer is constructed so that each sample chamber base 19 can be removed, it is possible to replace the flow cell unit, sample chamber for phosphorescence measurement, solid sample holder, gel scanner, etc. It is easy to use and has a configuration suitable for making it into a multifunctional device.

本実施例の差けい光測定装置は次のような効果
が得られる。
The differential fluorescence measuring device of this embodiment provides the following effects.

(1) 二光路測定用の反射面の数が試料、参照試料
共同数となるので、励起光とけい光の反射波長
特性を一致させて高触度の差けい光測定を可能
にしている。
(1) Since the number of reflecting surfaces for two-light path measurement is the same as that of the sample and reference sample, the reflection wavelength characteristics of the excitation light and fluorescence are matched, making highly sensitive differential fluorescence measurement possible.

(2) 回転ミラーやすべての光学部分は一枚の試料
室ベース上にコンパクトに設置されているの
で、この試料室ベースを除去すると他の測定装
置を容易に交換設置できる。
(2) Since the rotating mirror and all optical parts are compactly installed on a single sample chamber base, removing this sample chamber base allows for easy replacement and installation of other measuring devices.

(3) 一光路けい光測定時は交叉部に試料セルを設
置するだけで即座に設定可能となる。
(3) When measuring one-light path fluorescence, settings can be made immediately by simply installing a sample cell at the intersection.

本発明の差けい光測定装置は、小形高性能であ
り、二光路法と一光路法による測定を容易に切換
え実施できるという効果をもつている。
The differential fluorescence measuring device of the present invention is compact and high-performance, and has the advantage of being able to easily switch between measurement using the two-light path method and the one-light path method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の差けい光測定装置の一例を示す
平面図、第2図は従来の差けい光測定装置の他の
例を示す平面図、第3図は本発明の一実施例であ
る差けい光測定装置の平面図である。 1……励起側分光器、2……励起光、3……け
い光、4……けい光側分光器、11……S側試料
ホールダ、12……R側試料ホールダ、19……
試料室ベース、20,21……トロイドミラー、
22,23,24……平面ミラー、25……モー
タ、27……交叉部、28……試料セル。
FIG. 1 is a plan view showing an example of a conventional differential fluorescence measuring device, FIG. 2 is a plan view showing another example of a conventional differential fluorescence measuring device, and FIG. 3 is an embodiment of the present invention. FIG. 2 is a plan view of the differential fluorescence measurement device. 1... Excitation side spectrometer, 2... Excitation light, 3... Fluorescence, 4... Fluorescence side spectrometer, 11... S side sample holder, 12... R side sample holder, 19...
Sample chamber base, 20, 21...Troid mirror,
22, 23, 24...Flat mirror, 25...Motor, 27...Cross section, 28...Sample cell.

Claims (1)

【特許請求の範囲】[Claims] 1 励起側分光器より出射した励起光を試料およ
び参照試料に交互に照射し、上記試料および参照
試料のけい光をけい光測分光器に導入して比較測
定するように構成したけい光分光光度計の差けい
光測定装置において、一対の平面ミラーを有する
回転ミラーと、上記回転ミラーの後方に回転ミラ
ーと平行に設けられた一対の平面ミラーを有する
固定ミラーとからなり、上記回転ミラーに対し同
一方向に配置された上記試料および参照試料に上
記励起光を二光路に分割して照射した後、上記試
料および参照試料のけい光を一光路に合致させる
回転ミラー機構を設け、上記励起側分光器からの
励起光の光軸と上記回転ミラー機構からのけい光
の光軸とが交叉するように構成し、上記試料を一
光路法で測定する時は上記励起光とけい光の光軸
が交叉する部分に上記試料を配置するようにした
ことを特徴とする差けい光測定装置。
1 A fluorescence spectrophotometer configured to alternately irradiate a sample and a reference sample with excitation light emitted from an excitation side spectrometer, and introduce the fluorescence of the sample and reference sample into a fluorescence spectrometer for comparative measurement. A differential fluorescence measuring device is composed of a rotating mirror having a pair of plane mirrors, and a fixed mirror having a pair of plane mirrors installed behind the rotating mirror in parallel with the rotating mirror, and After dividing the excitation light into two optical paths and irradiating the sample and reference sample arranged in the same direction, a rotating mirror mechanism is provided to match the fluorescence of the sample and reference sample into one optical path, and the excitation side spectrometry is performed. The optical axis of the excitation light from the instrument is configured to intersect with the optical axis of the fluorescence from the rotating mirror mechanism, and when the sample is measured by the one-light path method, the optical axes of the excitation light and fluorescence intersect. A differential fluorescence measurement device characterized in that the sample is placed in a portion where the sample is placed.
JP8915280A 1980-07-02 1980-07-02 Apparatus for measuring differential fluorescence Granted JPS5714744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8915280A JPS5714744A (en) 1980-07-02 1980-07-02 Apparatus for measuring differential fluorescence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8915280A JPS5714744A (en) 1980-07-02 1980-07-02 Apparatus for measuring differential fluorescence

Publications (2)

Publication Number Publication Date
JPS5714744A JPS5714744A (en) 1982-01-26
JPS6218011B2 true JPS6218011B2 (en) 1987-04-21

Family

ID=13962873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8915280A Granted JPS5714744A (en) 1980-07-02 1980-07-02 Apparatus for measuring differential fluorescence

Country Status (1)

Country Link
JP (1) JPS5714744A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339454A (en) * 1989-07-06 1991-02-20 Sumitomo Light Metal Ind Ltd Production of cast aluminum alloy bar for vtr cylinder
JPH0339453A (en) * 1989-07-06 1991-02-20 Sumitomo Light Metal Ind Ltd Production of cast aluminum alloy bar for vtr cylinder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50126490A (en) * 1974-03-20 1975-10-04

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50126490A (en) * 1974-03-20 1975-10-04

Also Published As

Publication number Publication date
JPS5714744A (en) 1982-01-26

Similar Documents

Publication Publication Date Title
JP2703680B2 (en) Spectrophotometer with simultaneous light source modulation, switching and wavelength selection means
US4022529A (en) Feature extraction system for extracting a predetermined feature from a signal
US4540281A (en) Double-beam spectrophotometer
JPS591971B2 (en) Bunko Koudokei
US2823577A (en) Multiple slit spectrograph for direct reading spectrographic analysis
JP3487242B2 (en) Microchip electrophoresis device
USRE32598E (en) Feature extraction system for extracting a predetermined feature from a signal
US6903869B2 (en) Illumination system for microscopy and observation or measuring method using the same
JPS6218011B2 (en)
EP0059836A1 (en) Optical beam splitter
GB2154019A (en) Double-beam interferometer arrangement particularly for fourier-transform spectrometers
JPH1019779A (en) Weak fluorescence measuring apparatus
JP2000088648A (en) Spectroscopic analyzer
JPH07140004A (en) Spectroscopic analysis apparatus
JP3126718B2 (en) Multi-channel fluorescence spectrometer
JPS5924378B2 (en) Rotating cuvette type rapid analysis device
CN113063752B (en) Double-beam-splitting near infrared spectrometer based on supercontinuum laser
SU914943A1 (en) Apparatus for measuring spectral reflectances
JPH04138341A (en) Microspectroscope apparatus
JP2002372456A (en) Ir spectrophotometer
JPH0486534A (en) Photometer for multi-wavelength simultaneous photometry
JPH03210435A (en) Multiple monochromatic spectrograph
US3645630A (en) Monochromator
JPS6153527A (en) Spectrophotometer
SU1368661A1 (en) Method of producing differential reflection spectra