JPS62168703A - Off-road running tire - Google Patents

Off-road running tire

Info

Publication number
JPS62168703A
JPS62168703A JP61008836A JP883686A JPS62168703A JP S62168703 A JPS62168703 A JP S62168703A JP 61008836 A JP61008836 A JP 61008836A JP 883686 A JP883686 A JP 883686A JP S62168703 A JPS62168703 A JP S62168703A
Authority
JP
Japan
Prior art keywords
axis direction
depth
main groove
rotational axis
tire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61008836A
Other languages
Japanese (ja)
Inventor
Hideaki Hashimoto
秀明 橋本
Masaru Abe
安倍 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP61008836A priority Critical patent/JPS62168703A/en
Publication of JPS62168703A publication Critical patent/JPS62168703A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tires In General (AREA)

Abstract

PURPOSE:To relieve distortion in the bottoms of grooves in each shoulder section of a tier without the traction ability of the tire being deteriorated and to enhance the anti-shock ability of the tire, by setting the relationship between the depth of main grooves in the rotating axis direction, which define rows of outer blocks and the depth of circumferential main grooves to a specific relation. CONSTITUTION:Each shoulder section a tire has a radius R of curvature which is greater than 150mm in the cross-section in the rotating axis direction of the tire, and is formed in a block pattern having at least one row of outer blocks which are defined by a circumferential main grooves 1 outside of the area A of the tread surface in the rotating axis direction, and by main grooves 2 in the rotating axis direction. In the above-mentioned tire, main grooves 2b have a maximum depth D2c on the inside of the outer block row in the rotating axis direction, and this depth D2c is set to be 25 to 50% of the depth D1a of the main groove 1. Further, the depth of the main grooves 2b is made to be shallower and shallower outward in the rotating axis direction while the depth of the main grooves 1 located on the outside in the rotating axis direction is continuously changed in the circumferential direction so that the depth is equal to that of the main grooves 2b crossing the former grooves 1.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、固い路面から砂地、泥ねい地まで走行する不
整地走行用タイヤのショルダー部の耐久性向上に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to improving the durability of the shoulder portion of a tire for running on rough terrain, ranging from hard roads to sandy and muddy terrain.

(従来の技術) 不整地走行用タイヤには、トラクション性、フローテー
ション性(タイヤが路面に沈まないための性能)及び均
一な路面圧等の性能が要求されている。このような性能
を満足させるために、従来の不整地走行用タイヤのトレ
ッドパターンは、第10図に示すように周方向主溝lと
回転軸線方向主溝2によって区画される多数のブロック
3を一様に配列し、回転軸線方向断面のタイヤ形状は第
11図に示すようにショルダー部の曲率半径Rを大きく
し、回転軸線方向主溝lの深さは接地面の範囲A内にお
ける内側ブロック列では周方向主溝1の深さ0111と
同じ深さD2aで接地面より回転軸線方向外側に位置す
る外側ブロック側Bでは接地面の終る点Cからサイド部
りにかけての溝深さ02bで示すように深さ02Mから
連続的に徐々に浅くしてD3で終わっている。
(Prior Art) Tires for running on rough terrain are required to have performances such as traction properties, flotation properties (performance to prevent the tire from sinking into the road surface), and uniform road surface pressure. In order to satisfy such performance, the tread pattern of conventional tires for running on rough terrain has a large number of blocks 3 defined by a circumferential main groove 1 and a rotational axis main groove 2, as shown in FIG. The shape of the tire in cross section in the rotational axis direction is such that the radius of curvature R of the shoulder part is large, and the depth of the main groove l in the rotational axis direction is determined by the inner block within the range A of the ground contact surface. In the row, the groove depth D2a is the same as the depth 0111 of the circumferential main groove 1, and on the outer block side B located outside the ground contact surface in the rotational axis direction, the groove depth from point C where the contact surface ends to the side part is 02b. The depth gradually decreases from the depth of 02M and ends at D3.

(発明が解決しようとする問題点) しかし、従来の上述したようなブロックパターンとタイ
ヤ形状を有するタイヤは、内圧充填時および負荷時の変
形により接地面の外側のショルダー部4の主溝1.2が
引張り歪を受けて第10図に示すようなりラック5が発
生し、それが内部ケースにまでおよび、タイヤの耐久性
を低減する欠点があった。
(Problems to be Solved by the Invention) However, in the conventional tire having the above-described block pattern and tire shape, the main groove 1 of the shoulder portion 4 on the outside of the ground contact surface deforms when the internal pressure is filled and when loaded. When the tire 2 is subjected to tensile strain, a rack 5 is generated as shown in FIG. 10, which extends to the inner case, which has the drawback of reducing the durability of the tire.

そこで、本発明は、トラクション性、フローテーション
性(タイヤが路面に沈まないための性能)及び均一な踏
面圧等の性能を悪化させることなしにショルダー部溝底
の歪を緩和し、耐クラツク性を向上することを目的とす
る。
Therefore, the present invention alleviates distortion of the shoulder groove bottom without deteriorating performance such as traction performance, flotation property (performance that prevents the tire from sinking on the road surface), and uniform tread pressure, and improves crack resistance. The purpose is to improve

(問題点を解決するための手段) これがため、本発明によれば、タイヤ回転軸線方向断面
のショルダーn4に15011II!1以上の曲率半径
Rを持ち、接地面の範囲へより回転軸線方向外側に周方
向主溝1と回転軸線方向主溝2によって区画された少な
くとも各1列の外側ブロック列を有するブロックパター
ンを持つ不整地走行用タイヤにおいて、第1図に示すよ
うに外側ブロック列を区画する回転軸線方向主溝2bは
外側ブロック列の回転軸線方向内側で最大の溝深さD2
Cを有し、その深さ02cは接地面におけるブロック列
を区画する周方向主溝1の深さり、aの25〜50%で
あり、外側ブロック列における回転軸線方向主溝2bは
回転軸線方向外側に向かって連続的に徐々に浅くなり、
外側ブロック列の回転軸線方向外側にある周方向主溝1
の深さは、周方向において連続的に変化してそれと交わ
る回転軸線方向主溝2bの深さと同じであることを特徴
とする。
(Means for solving the problem) Therefore, according to the present invention, 15011II! The block pattern has a radius of curvature R of 1 or more, and has at least one outer block row each partitioned by the circumferential main groove 1 and the rotational axis main groove 2 on the outer side in the rotational axis direction toward the range of the ground contact surface. In a tire for running on rough terrain, as shown in FIG. 1, the main groove 2b in the rotational axis direction that partitions the outer block row has a maximum groove depth D2 on the inner side in the rotational axis direction of the outer block row.
C, and its depth 02c is 25 to 50% of the depth a of the circumferential main groove 1 that partitions the block rows on the ground plane, and the rotational axis direction main groove 2b in the outer block row is Continuously becoming shallower towards the outside,
Circumferential main groove 1 on the outside in the rotational axis direction of the outer block row
The depth of the main groove 2b is characterized in that it continuously changes in the circumferential direction and is the same as the depth of the main groove 2b in the rotational axis direction that intersects with the main groove 2b.

また、本発明によれば、第3図に示すように外側ブロッ
ク列を形成するブロック3内に、回転軸線方向にのびる
応力分断溝5が1本以上設けられ、この応力分断溝5の
幅W5は、外側ブロック列を区画する回転軸線方向主溝
2bの幅W2の20〜50%で、深さD5は主溝2bの
深さ02Cの50〜100%であり、回転軸線方向の長
さβ、は、ブロック幅W、の1/2以上であることを特
徴とする。
Further, according to the present invention, as shown in FIG. 3, one or more stress dividing grooves 5 extending in the rotational axis direction are provided in the blocks 3 forming the outer block row, and the stress dividing grooves 5 have a width W5. is 20 to 50% of the width W2 of the main groove 2b in the rotational axis direction that partitions the outer block row, the depth D5 is 50 to 100% of the depth 02C of the main groove 2b, and the length β in the rotational axis direction is , is characterized in that it is 1/2 or more of the block width W,.

(作 用) タイヤトレッドの外側ブロック列におけるブロック3を
区画している回転軸線方向主溝2bの溝底の表面はタイ
ヤ内圧充填時および負荷時の変形により引張り歪を受け
る。本発明によれば、外側ブロック列の回転軸線方向主
溝2bの最大深さD2eを接地面におけるブロック列を
区画する周方向主溝1の深さDlMの25〜50%とす
ることにって、溝底からタイヤカーカスまでの距離が従
来より大となり、これにより主溝底部の周方向剛性が高
まり、溝底表面の上述の引張り歪を減少させることがで
き、これにより溝底の周方向のクラックの発生をおくら
せることができ、また、クラックが発生したとしてもそ
の成長速度を低下させることができる。
(Function) The surface of the groove bottom of the main groove 2b in the rotational axis direction that partitions the blocks 3 in the outer block row of the tire tread is subjected to tensile strain due to deformation during tire internal pressure filling and loading. According to the present invention, the maximum depth D2e of the main groove 2b in the rotational axis direction of the outer block row is set to 25 to 50% of the depth DlM of the circumferential main groove 1 that partitions the block row on the ground plane. , the distance from the groove bottom to the tire carcass is longer than before, which increases the circumferential rigidity of the main groove bottom and reduces the above-mentioned tensile strain on the groove bottom surface. The generation of cracks can be delayed, and even if cracks occur, their growth rate can be reduced.

第5図は、外側ブロック列を画成する主溝の深さを種々
に変えたタイヤサイズ23.1−26のタイヤに1.1
kgの内圧を加え、2.8トンの荷重をかけた状態で、
回転中にショルダー部の溝底に生じた歪を測定した結果
を示す。第5図のグラフの横軸は接地面における周方向
主溝1の深さり、aに対比の外側ブロック列の回転軸線
方向主溝2bの深さD2bの溝深さを示し、縦軸は外側
ブロック列の回転軸線方向主溝の深さが接地面における
周方向主溝の深さと同じである従来のタイヤのショルダ
ー部の溝底歪ε1を100%とした溝底歪ε2を%で示
す。
Figure 5 shows tires of tire sizes 23.1-26 with varying depths of the main grooves defining the outer block rows.
With an internal pressure of kg and a load of 2.8 tons,
The results of measuring the strain generated in the groove bottom of the shoulder part during rotation are shown. The horizontal axis of the graph in FIG. 5 represents the depth of the circumferential main groove 1 on the contact surface, a represents the groove depth D2b of the rotational axis direction main groove 2b of the contrasting outer block row, and the vertical axis represents the outer side. The groove bottom strain ε2 is expressed in %, with the groove bottom strain ε1 of the shoulder portion of a conventional tire in which the depth of the main groove in the rotational axis direction of the block row is the same as the depth of the circumferential main groove in the contact surface as 100%.

第5図から明らかなように、溝深さを25〜50%とす
ることにより溝底歪を従来のものの40〜60%に減少
させるこができる。すなわち、溝深さが50%より大き
い範囲では歪があまり低減されず、50%以下とするこ
とにより溝深さを浅くすることによる歪低減効果が顕著
に生じる。しかし、25%より浅くすると浅くなり過ぎ
てトラクション性が低下し、泥ねい地での走破性が劣る
欠点が生じる。
As is clear from FIG. 5, by setting the groove depth to 25 to 50%, the groove bottom strain can be reduced to 40 to 60% of the conventional one. That is, when the groove depth is greater than 50%, the strain is not significantly reduced, and when the groove depth is less than 50%, the effect of reducing strain due to the shallower groove depth is noticeable. However, if the depth is made shallower than 25%, it becomes too shallow and traction performance decreases, resulting in poor running performance on muddy ground.

本発明によれば、外側ブロック列のブロック3を区画す
る回転軸線方向主溝2bの幅1l12の20〜50%の
幅W、を有する応力分断溝5をブロック3の幅W3の1
72以上の長さβ5で外側ブロック列のブロック3内に
回転軸線方向に延長して設けることにより応力分断溝5
によって分断された個々のブロックがそれぞれ独自に動
(ことにより回転方向主溝2bに集中する周方向応力が
減少し、この結果、歪を減少させることができる。
According to the present invention, the stress dividing groove 5 having a width W of 20 to 50% of the width 1l12 of the main groove 2b in the rotational axis direction that partitions the blocks 3 of the outer block row is 1 of the width W3 of the block 3.
The stress isolating groove 5 is formed by extending in the rotational axis direction in the block 3 of the outer block row with a length β5 of 72 or more.
The individual blocks divided by the rotational direction move independently (thereby, the circumferential stress concentrated in the main groove 2b in the rotational direction is reduced, and as a result, distortion can be reduced).

第6図は横軸に主溝2bの幅W、に対比の応力分断溝5
の幅W、をとり、縦軸に歪をとり、応力分断溝5の幅1
li5と主溝2bの深さD2cに対比の深さり、と、歪
との関係を示す。
In Figure 6, the width W of the main groove 2b is plotted on the horizontal axis, and the stress dividing groove 5 is plotted on the horizontal axis.
Taking the width W, and taking the strain on the vertical axis, the width 1 of the stress dividing groove 5 is taken as
The relationship between the depth D2c of the main groove 2b and the depth D2c of the main groove 2b is shown.

(実施例) 本発明による第1実施例として、第1および2図に示す
ように周方向主溝1と回転軸線方向主溝2とによって区
画された周方向長さが125 mmで、回転軸線方向長
さ1II3が140 mmのブロック3を有する接地幅
部の曲率半径が500 mmで、ショルダー部の曲率半
径が200 mmのサイズ23.1−26の不整地走行
用タイヤにおいて、ショルダー部4における周方向溝深
さり、、=23n+n+とじ、これに対し、0点におけ
る回転軸線方向主溝2bの最大深さD2c=10mとし
た。ショルダー部4における回転軸線方向主溝2bを0
点からD点にかけて02c/D1− =0.48の比率
でなめらかに溝深さを減少させた。
(Example) As a first example according to the present invention, as shown in FIGS. 1 and 2, the circumferential length divided by the circumferential main groove 1 and the rotation axis direction main groove 2 is 125 mm, and the rotation axis In an uneven terrain tire of size 23.1-26, which has a block 3 with a direction length 1II3 of 140 mm, a radius of curvature of the ground contact width part of 500 mm, and a radius of curvature of the shoulder part of 200 mm, The circumferential groove depth was 23n+n+, and the maximum depth D2c of the main groove 2b in the rotational axis direction at the 0 point was 10 m. The main groove 2b in the rotational axis direction in the shoulder portion 4 is set to 0.
The groove depth was smoothly decreased from point to point D at a ratio of 02c/D1- = 0.48.

本発明の第2実施例では、上述の第1実施例による不整
地走行用タイヤにおいて、ブロック3に幅W、=lQm
m、深さD5=9mmの応力分断溝5を第3図に(イ)
、(ロ)、(ハ)で示すような種々の配置で設けている
In the second embodiment of the present invention, in the uneven terrain tire according to the first embodiment described above, the block 3 has a width W, =lQm.
Figure 3 shows stress dividing groove 5 with depth D5 = 9mm.
, (b), and (c).

(効 果) 本発明の効果を示すためタイヤサイズ23.1−26で
、第1表のような実施例と比較例に関して、下記のテス
トを行った。
(Effects) In order to demonstrate the effects of the present invention, the following tests were conducted on tire sizes 23.1-26 with respect to Examples and Comparative Examples as shown in Table 1.

(1)内圧1.1 kg / cm”でドラム試験機に
かけ約13km/hの速度で回転させ荷重を0〜3.O
tまで変化させ、タイヤショルダー部4の回転軸線方向
主溝2bにおける複数の測定点での引きのばし歪および
圧縮歪をそれぞれ連続的に測定した。
(1) Apply the drum tester at an internal pressure of 1.1 kg/cm" and rotate at a speed of approximately 13 km/h to apply a load of 0 to 3.0
t, and the tensile strain and compressive strain were each continuously measured at a plurality of measurement points in the main groove 2b in the rotational axis direction of the tire shoulder portion 4.

第7図は、このテスト(1)の結果を示し、各曲線はそ
れぞれ複数の測定点での平均値を示しており、標準荷重
2.8目こおける引張り歪と圧縮歪との合計を第1表に
「(1)の歪%」として表している。
Figure 7 shows the results of this test (1), each curve showing the average value at multiple measurement points, and the sum of the tensile strain and compressive strain at 2.8 standard loads. In Table 1, it is expressed as "% strain of (1)".

(2)静止状態で内圧を加えてゆき、タイヤショルダー
部4の周方向主溝1および回転軸線方向主溝2bのそれ
ぞれにおける複数の測定点での引きのばし歪を連続的に
測定した。
(2) Internal pressure was applied in a stationary state, and the elongation strain was continuously measured at a plurality of measurement points in each of the circumferential main groove 1 and the rotation axis main groove 2b of the tire shoulder portion 4.

第8図は、このテスト(2)の結果を示し、曲線A、、
 B、およびA2.82は周方向主溝1および回転軸線
方向主溝2bのそれぞれにおける複数の測定点での平均
値を示してふり、内圧1.1 kg/ cm2での回転
軸線方向主溝における平均歪値を第1表に、「(2)の
歪%」として表している。
Figure 8 shows the results of this test (2), with curves A,...
B and A2.82 indicate the average values at multiple measurement points in each of the circumferential main groove 1 and the rotational axis main groove 2b, and the values in the rotational axis main groove at an internal pressure of 1.1 kg/cm2. The average strain value is shown in Table 1 as "% strain of (2)".

上述のテストの結果から明らかなように、本発明によれ
ばタイヤショルダー部の主溝底における歪を低減し、ク
ラックの発生を減少させることができる。
As is clear from the above test results, according to the present invention, it is possible to reduce distortion at the bottom of the main groove of the tire shoulder portion, and to reduce the occurrence of cracks.

なお、タイヤ形状は、実施例は第1および2図に、比較
例は第10および11図に示す。
The tire shapes are shown in FIGS. 1 and 2 for Examples, and in FIGS. 10 and 11 for Comparative Examples.

又、応力分断溝の効果について、応力分断溝を設けてい
ない第1図に示す実施例と、第3図に(イ)(ロ)(ハ
)で示す応力分断溝を設けた実施例について、回転軸線
方向主溝に長さ10胴、深さ2m111の傷を入れ、そ
の成長をドラム試験機にかけて調べ、その結果を、第9
図に示す。曲線へは応力分断溝を設けていない実施例、
曲線Bは第3図に示す実施例の(イ)の場合rXJ、 
 (ロ)の場合「・」および(ハ)の場合「△」の近似
曲線を示し、曲線Cは第1表に示す比較例を示す。第9
図から明らかなように、応力分断溝を設けることによっ
て、タイヤショルダー部の回転軸線方向主溝におけるク
ラック生長阻止効果を向上させることができる。
Regarding the effect of stress dividing grooves, the example shown in FIG. 1 without stress dividing grooves and the example shown in FIG. 3 with stress dividing grooves (a), (b), and (c), A scratch with a length of 10 mm and a depth of 2 m111 was made in the main groove in the direction of the rotational axis, and its growth was examined using a drum testing machine.
As shown in the figure. An example in which no stress dividing groove is provided on the curve,
Curve B is rXJ in the case (a) of the embodiment shown in FIG.
In the case of (b), the approximate curve is "." and in the case of (c), the approximate curve is "△". Curve C shows the comparative example shown in Table 1. 9th
As is clear from the figure, by providing the stress dividing grooves, the effect of inhibiting crack growth in the main groove in the rotational axis direction of the tire shoulder portion can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるタイヤのトレッド部の部分平面図
、 第2図は第1図の■−■線上の断面図、第3図は本発明
によるタイヤのブロックに設けられる応力分断溝の種々
の例を示す第1図と同様の部分平面図、 第4図は第3図のIV−IV線上の断面図、第5図はト
レッド部における溝深さと溝底に生じる歪との関係を示
すグラフ、 第6図はトレッド部における溝幅と溝底に生じる歪との
関係を示すグラフ、 第7図および第8図は本発明によるタイヤと従来のタイ
ヤとにおいて生じる歪の比較テストの結果を示すグラフ
、 第9図はブロックに設けられる応力分断溝の効果に対す
るテスト結果を示すグラフ、 第10図は従来のタイヤのトレッド部の部分平面図、 第11図は第10図のXI−XI線上の断面図である。 特許出願人 株式会社ブリデストン 第1図 第2図 第3図 第4図 第5図 二創業さくD2Vota xtoo) 第6図 50    100  た 溝幅(VJ5/w、xtoo) 第7図 % 第8図 タイヤ内圧K>kwt2
FIG. 1 is a partial plan view of the tread portion of the tire according to the present invention, FIG. 2 is a cross-sectional view taken along the line ■-■ in FIG. FIG. 4 is a sectional view taken along the line IV-IV in FIG. FIG. 6 is a graph showing the relationship between the groove width in the tread portion and the strain occurring at the groove bottom. FIG. 7 and FIG. Figure 9 is a graph showing the test results for the effect of stress dividing grooves provided in the block; Figure 10 is a partial plan view of the tread of a conventional tire; Figure 11 is on line XI-XI in Figure 10. FIG. Patent Applicant Brideston Co., Ltd. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 5 2-foundation D2Vota xtoo) Figure 6 50 100 Groove Width (VJ5/w, Internal pressure K>kwt2

Claims (1)

【特許請求の範囲】 1、タイヤ回転軸線方向断面のショルダー部に150m
m以上の曲率半径を持ち、接地面より回転軸線方向外側
に周方向主溝と回転軸方向主溝によって区画された少な
くとも各1列の外側ブロック列を有するブロックパター
ンを持つ不整地走行用タイヤにおいて、 前記外側ブロック列を区画する回転軸線方 向主溝は外側ブロック列の回転軸線方向内側で最大の溝
深さを有し、その深さは接地面におけるブロック列を区
画する周方向主溝の深さの25〜50%であり、 外側ブロック列における回転軸線方向主溝 は回転軸線方向外側に向かって連続的に徐々に浅くなり
、外側ブロック列の回転軸線方向外側にある周方向主溝
の深さは、周方向において連続的に変化してそれと交わ
る回転軸線方向主溝の深さと同じであることを特徴とす
る不整地走行用タイヤ。 2、前記外側ブロック列を形成するブロック内に、回転
軸線方向にのびる応力分断細溝が1本以上設けられ、こ
の応力分断溝の幅は外側ブロック列を区画する回転軸線
方向主溝の幅の20〜50%で、深さはその50〜10
0%であり、回転軸線方向の長さは、該ブロック幅の1
/2以上である事を特徴とする特許請求の範囲第1項に
記載の不整地走行用タイヤ。
[Claims] 1. 150 m in the shoulder section of the tire rotational axis direction
In a tire for running on rough terrain, which has a radius of curvature of m or more and has a block pattern including at least one row of outer blocks each partitioned by a circumferential main groove and a main groove in the rotational axis direction outward from the ground contact surface in the rotational axis direction. , the main groove in the rotational axis direction that partitions the outer block rows has a maximum groove depth on the inner side in the rotational axis direction of the outer block row, and the depth is equal to the depth of the circumferential main groove that partitions the block rows on the ground contact surface. The main groove in the rotational axis direction in the outer block row becomes gradually shallower toward the outer side in the rotational axis direction, and the depth of the circumferential main groove on the outer side in the rotational axis direction of the outer block row is 25 to 50%. A tire for running on rough terrain, characterized in that the depth of the main groove changes continuously in the circumferential direction and is the same as the depth of the main groove in the rotational axis direction that intersects with the main groove. 2. One or more stress dividing grooves extending in the rotational axis direction are provided in the blocks forming the outer block row, and the width of the stress dividing groove is equal to the width of the main groove in the rotational axis direction that partitions the outer block row. 20-50%, depth is 50-10%
0%, and the length in the rotation axis direction is 1 of the block width.
2. The tire for running on rough terrain according to claim 1, wherein the tire is 2 or more.
JP61008836A 1986-01-21 1986-01-21 Off-road running tire Pending JPS62168703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61008836A JPS62168703A (en) 1986-01-21 1986-01-21 Off-road running tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61008836A JPS62168703A (en) 1986-01-21 1986-01-21 Off-road running tire

Publications (1)

Publication Number Publication Date
JPS62168703A true JPS62168703A (en) 1987-07-25

Family

ID=11703866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61008836A Pending JPS62168703A (en) 1986-01-21 1986-01-21 Off-road running tire

Country Status (1)

Country Link
JP (1) JPS62168703A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203970A (en) * 2006-02-03 2007-08-16 Yokohama Rubber Co Ltd:The Pneumatic tire
WO2014054225A1 (en) * 2012-10-05 2014-04-10 株式会社ブリヂストン Pneumatic tire

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818249A (en) * 1981-07-27 1983-02-02 アルプス電気株式会社 Anisotropic conductive elastomer sheet and its manufacture
JPS5836707A (en) * 1981-08-31 1983-03-03 Yokohama Rubber Co Ltd:The Pneumatic tire
JPS5861008A (en) * 1981-10-01 1983-04-11 Sumitomo Rubber Ind Ltd Radial tire inflated by air for heavy vehicle
JPS60107402A (en) * 1983-11-16 1985-06-12 Honda Motor Co Ltd Superlow-pressure tire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5818249A (en) * 1981-07-27 1983-02-02 アルプス電気株式会社 Anisotropic conductive elastomer sheet and its manufacture
JPS5836707A (en) * 1981-08-31 1983-03-03 Yokohama Rubber Co Ltd:The Pneumatic tire
JPS5861008A (en) * 1981-10-01 1983-04-11 Sumitomo Rubber Ind Ltd Radial tire inflated by air for heavy vehicle
JPS60107402A (en) * 1983-11-16 1985-06-12 Honda Motor Co Ltd Superlow-pressure tire

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007203970A (en) * 2006-02-03 2007-08-16 Yokohama Rubber Co Ltd:The Pneumatic tire
WO2014054225A1 (en) * 2012-10-05 2014-04-10 株式会社ブリヂストン Pneumatic tire
JP2014073776A (en) * 2012-10-05 2014-04-24 Bridgestone Corp Pneumatic tire
CN104703817A (en) * 2012-10-05 2015-06-10 株式会社普利司通 Pneumatic tire
RU2614413C2 (en) * 2012-10-05 2017-03-28 Бриджстоун Корпорейшн Pneumatic tire
US9809059B2 (en) 2012-10-05 2017-11-07 Bridgestone Corporation Pneumatic tire

Similar Documents

Publication Publication Date Title
US8739847B2 (en) Heavy duty tire
AU595988B2 (en) Tread for radial tyre the elements in relief of which are provided with incisions having broken line or undulated line traces in the direction of their depth
KR101793632B1 (en) Pneumatic tire
CN100393537C (en) Off-the-road tire
US4284115A (en) Tire tread
JP4950491B2 (en) Heavy duty tire
US5131444A (en) Heavy duty pneumatic tires including stepped tread zones for preventing uneven wearing
CN101626907B (en) Pneumatic tire
CN101734111B (en) Heavy load pneumatic tire
NZ245109A (en) Radial pneumatic tyre: tread of blocks divided by symmetric branched incisions
CA1081102A (en) Tires
US11541692B2 (en) Tyre
EP3047981A1 (en) Motorcycle tire for traveling on rough terrain
JPH03132403A (en) Radial tire for heavy load
CA2456309C (en) Method of compensating for residual aligning torque (rat)
JPH0485106A (en) Pneumatic tire
US4305445A (en) Large-sized pneumatic radial tires
CN104972843B (en) Pneumatic tire
JPH04143105A (en) Pneumatic radial tire
JPS62168703A (en) Off-road running tire
JPH02133203A (en) Pneumatic radial tire for heavy load
CN103781638B (en) Tire
JPH05162511A (en) Tire for heavy load
CN105818615B (en) Pneumatic tire
EP3814151B1 (en) A tread for improved snow performance