JPS62167951A - Vibration isolator - Google Patents

Vibration isolator

Info

Publication number
JPS62167951A
JPS62167951A JP61286090A JP28609086A JPS62167951A JP S62167951 A JPS62167951 A JP S62167951A JP 61286090 A JP61286090 A JP 61286090A JP 28609086 A JP28609086 A JP 28609086A JP S62167951 A JPS62167951 A JP S62167951A
Authority
JP
Japan
Prior art keywords
vibration insulator
vibration
insulator according
thermoplastic
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61286090A
Other languages
Japanese (ja)
Inventor
チャールズ・エム・サラーノ
ハロルド・ブイ・ハミルトン
デイル・ダブリュ・シュバート
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hutchinson Aerospace and Industry Inc
Original Assignee
Barry Wright Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Barry Wright Corp filed Critical Barry Wright Corp
Publication of JPS62167951A publication Critical patent/JPS62167951A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/50Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members
    • F16D3/76Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members shaped as an elastic ring centered on the axis, surrounding a portion of one coupling part and surrounded by a sleeve of the other coupling part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0053Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor combined with a final operation, e.g. shaping
    • B29C45/006Joining parts moulded in separate cavities
    • B29C45/0062Joined by injection moulding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/42Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by the mode of stressing
    • F16F1/422Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by the mode of stressing the stressing resulting in flexion of the spring
    • F16F1/424Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by the mode of stressing the stressing resulting in flexion of the spring of membrane-type springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F3/00Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic
    • F16F3/08Spring units consisting of several springs, e.g. for obtaining a desired spring characteristic with springs made of a material having high internal friction, e.g. rubber
    • F16F3/087Units comprising several springs made of plastics or the like material
    • F16F3/093Units comprising several springs made of plastics or the like material the springs being of different materials, e.g. having different types of rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1657Making multilayered or multicoloured articles using means for adhering or bonding the layers or parts to each other
    • B29C2045/1659Fusion bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1676Making multilayered or multicoloured articles using a soft material and a rigid material, e.g. making articles with a sealing part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/50Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members
    • F16D3/78Yielding couplings, i.e. with means permitting movement between the connected parts during the drive with the coupling parts connected by one or more intermediate members shaped as an elastic disc or flat ring, arranged perpendicular to the axis of the coupling parts, different sets of spots of the disc or ring being attached to each coupling part, e.g. Hardy couplings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2236/00Mode of stressing of basic spring or damper elements or devices incorporating such elements
    • F16F2236/02Mode of stressing of basic spring or damper elements or devices incorporating such elements the stressing resulting in flexion of the spring
    • F16F2236/022Mode of stressing of basic spring or damper elements or devices incorporating such elements the stressing resulting in flexion of the spring of membrane-type springs

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は振動絶縁体に関し、より詳細には、新しい形
式の振動絶縁体に関する0 多くの異なる種類の振動絶縁体が知られており、この発
明の対象とするのは主として板形および管形の振動絶縁
体である。板形の振動絶縁体とは、長さ対直径の比が小
さく、従って大体平形のものを、また管形の振動絶縁体
とは、長さ対直径の比が大きいものをそれぞれ表わして
いる。従来のこの種の絶縁体は、内側および外側の金属
部分と、これらの金属部分の間に延長して、これらに固
着されたエラストマー成形体部分とを備えている。この
周知の構成によっているいろの大きさおよび荷重範囲の
絶縁体を製造できるが、その製造に多くの工程が含まれ
、これらの工程は製品のコストを高くシ、また製品の信
頼性を高めるには、注意深く実行されねばならない。こ
れらの工程の内で最も重要なのは、金属部分を清浄にし
てこれに接着調整剤または接着剤を適用し、金属部分が
エラストマ一部分に接合し易いようにし、次に該成分を
型に入れてエラストマ一部分を製造する工程である〇ま
た、成形品は加熱してエラストマーを完全に硬化させね
ばならない0第6に、エラストマ一部分が金属部分から
分離するのを防止し、絶縁体が商業的な要件を満たして
長期間の使用に耐え得るようにするには、約400〜5
00 psi (約28〜35KVIL2)のせん断接
合強度が望まれる。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to vibration isolators and, more particularly, to a new type of vibration isolator. Many different types of vibration isolators are known and the subject of this invention is Mainly plate-shaped and tube-shaped vibration insulators. Plate-shaped vibration insulators are those with a small length-to-diameter ratio and are therefore generally flat, and tubular vibration insulators are those with a large length-to-diameter ratio. Conventional insulators of this type include inner and outer metal portions and an elastomeric molded portion extending between and affixed to the metal portions. Although this well-known configuration allows insulators to be produced in a wide range of sizes and load ranges, its manufacture involves many steps that increase the cost of the product and do not improve product reliability. must be carried out carefully. The most important of these steps is to clean the metal part, apply an adhesion modifier or adhesive to it to facilitate bonding of the metal part to the elastomer part, and then place the components in a mold to form the elastomer. Sixth, the part must be heated to fully cure the elastomer. Sixth, the elastomer part must be prevented from separating from the metal part, and the insulation must meet commercial requirements. Approximately 400 to 5
A shear bond strength of 0.00 psi (approximately 28-35 KVIL2) is desired.

このレベルの接合せん断強度は、成形温度および圧力の
適正な制御を含めた適正な設計と製造要件の厳密な充足
のみにより実現できるものである。
This level of joint shear strength can only be achieved through proper design and strict compliance with manufacturing requirements, including proper control of molding temperature and pressure.

この発明の主な目的は、新規な改良された板形および管
形の振動絶縁体ないし衝撃絶縁体を提供することにある
A primary object of this invention is to provide new and improved plate and tube vibration or shock insulators.

この目的は、共同成形法を用いて2つの異なる合成材料
から絶縁体を製造することにより達成される。一方の合
成材料は剛性の熱可塑性材料であり、他方の材料は熱可
塑性エラストマーである。後者は剛性の熱可塑性材料の
後に射出される0この射出成形の順序は、2種の材料の
適切な接合を得るためにこの発明に従って用いられる。
This objective is achieved by manufacturing the insulation from two different synthetic materials using a co-molding method. One synthetic material is a rigid thermoplastic material and the other material is a thermoplastic elastomer. The latter is injected after the rigid thermoplastic material. This injection molding sequence is used according to the invention to obtain a suitable bond of the two materials.

次に図面に示したこの発明の好ましい実施例について更
に詳述する。
Next, preferred embodiments of the invention shown in the drawings will be described in more detail.

第1図に、内側部分2、外側部分4および中間部分6か
ら成る板形の振動絶縁体を示す0内側部分2と外側部分
4とは実質的に剛性の熱可塑性材料から出来ており、中
間部分6は熱可塑性エラストマーから出来ている。本明
細書において「実質的に剛性の熱可塑性材料」とは、適
当な温度に加熱された時に融解(液状となるまで軟化)
シ、室温すなわち70F(2L1℃)に冷却された時に
実質的に剛性になる性質を備えた固体状で実質的に剛性
の材料を意味し、「熱可塑性エラストマー」という用語
は、適当な温度まで加熱された時に融解し、室温に冷却
された時に弾性でエラストマーとしてのふるまいを示す
固体になる性質をもつ固体材料を意味する。
FIG. 1 shows a plate-shaped vibration insulator consisting of an inner part 2, an outer part 4 and an intermediate part 6. The inner part 2 and the outer part 4 are made of substantially rigid thermoplastic material, and the intermediate part 2 and 4 are made of a substantially rigid thermoplastic material. Part 6 is made of thermoplastic elastomer. As used herein, a "substantially rigid thermoplastic material" refers to a material that melts (softens to a liquid state) when heated to an appropriate temperature.
The term "thermoplastic elastomer" means a solid, substantially rigid material having the property of becoming substantially rigid when cooled to room temperature, i.e., 70F (2L1C); the term "thermoplastic elastomer" A solid material that has the property of melting when heated and becoming a solid that exhibits elastic, elastomeric behavior when cooled to room temperature.

これらの熱可塑性材料は、単一の熱可塑性ポリマー物質
または複数のこのような物質の混合物とし、着色材、可
塑化材、耐酸化材、安定材その他熱可塑性物質の1つ以
上の物理的性質を適切に変更する他の機能的成分を含ん
でいてもいなくてもよい。
These thermoplastic materials may be a single thermoplastic polymeric material or a mixture of multiple such materials, and may include coloring agents, plasticizing agents, oxidation resistant agents, stabilizing agents, or one or more other physical properties of the thermoplastic material. It may or may not contain other functional ingredients that suitably modify the

この発明の別の要件は、部分2,4.6が射出成形によ
り製造されることである。従って、実質的に剛性の熱可
塑性材料および熱可塑性エラストマーは射出成形可能な
成形材料から出来ていなければならない0この成形材料
は1種以上のポリマーまたは1種以上のコポリマーから
成るか、または主に成るものとしてよい。更に、部分2
,4の製造に用いる材料と部分6の製造に用いる材料と
は、融解により、すなわち少くとも一方が流動状態(こ
ある時に両材料を接触させ、次にその流動状態の材料を
該材料が固化して他方の材料と接合を形成するまで冷却
することにより、互に接合されるという意味で、協調性
をもっていなければならない。部分2,4は同一または
ほぼ同一の温度において融解および固化する協調性を示
す異種の材料であってもよいが、同一材料であることが
望ましい。部分2,4はたわみモジュラスが400,0
00 psi(約28,000に9/aIL2)以上で
もよいが、部分6はショアAスケールデュロメーター値
が35〜85であるたわみモジュラスの低い柔軟な材料
とする。−例として部分2.4はたわみモジュラスが約
465,000 psi(約52550 ’7−z )
のポリスチレン製、部分6はショアAスケールデュロメ
ーター値が55のブタジェンスチレン配合物とする。
Another requirement of the invention is that the parts 2, 4.6 are manufactured by injection molding. Substantially rigid thermoplastic materials and thermoplastic elastomers must therefore be made of injection moldable molding materials, which consist of one or more polymers or one or more copolymers, or consist primarily of one or more polymers or copolymers. It is good to be something that consists of Furthermore, part 2
, 4 and the material used to manufacture part 6 are melted, i.e., at least one of them is in a fluid state (at which time the two materials are brought into contact, and then the material in the fluid state is solidified). The parts 2, 4 must be cooperating in the sense that they are joined together by cooling until they form a bond with the other material. Parts 2, 4 must be cooperating, melting and solidifying at the same or nearly the same temperature. Although they may be made of different materials exhibiting properties, it is preferable that they be made of the same material. Portions 2 and 4 have a deflection modulus of 400.0.
00 psi (approximately 28,000 to 9/aIL2) or higher, but portion 6 is a flexible material with a low deflection modulus having a Shore A scale durometer value of 35 to 85. - As an example, section 2.4 has a deflection modulus of approximately 465,000 psi (approximately 52550'7-z)
Part 6 is a butadiene styrene compound with a Shore A durometer of 55.

部分2,4.6は、両部分間の界面が後述するように熱
可塑性材料の相互混合または相互拡散と実質的に無関係
であることにより、はっきり定まった境界をもつように
図示されている。
The parts 2, 4.6 are shown to have well-defined boundaries, with the interface between the parts being substantially independent of intermixing or interdiffusion of thermoplastic materials, as will be explained below.

更lこ、第1図を参照して、内側部分2は、平らな環状
の上面8と底面10、軸孔17を限定する円筒形内面1
2、並びに円筒形先端区分16゜18と凸面および凹面
をもつ中間区分20とを含む回転面として表わされる外
側境界を有する。
Further, with reference to FIG.
2, and has an outer boundary represented as a surface of revolution comprising a cylindrical tip section 16.degree. 18 and an intermediate section 20 with convex and concave surfaces.

外側部分4は、絶縁体ユニットのフランジとして用いら
れ、円筒形の外面22、円筒面として表わされる内側境
界24および互いに平行な上面26と底面28を有し、
上面26と底面28とは内側部分2の対応の上面8およ
び底面10と平行であり、内側部分2の軸線と直角に延
長している。外側部分4は複数の取付は孔も有する。中
間部分6は内側区分30および外側区分32を有し、こ
れらの区分30.52は内側部分2の先端区分18と外
側部分4の内側境界24とにそれぞれ接合されている。
The outer part 4 is used as a flange of the insulator unit and has a cylindrical outer surface 22, an inner border 24 expressed as a cylindrical surface and a top surface 26 and a bottom surface 28 parallel to each other;
The top surface 26 and the bottom surface 28 are parallel to the corresponding top surface 8 and bottom surface 10 of the inner part 2 and extend perpendicularly to the axis of the inner part 2. The outer part 4 also has a plurality of mounting holes. The intermediate part 6 has an inner section 30 and an outer section 32, which sections 30.52 are joined to the tip section 18 of the inner part 2 and to the inner border 24 of the outer part 4, respectively.

中間部分6は内側部分2と外側部分4との間に延長する
コンボリユート型の中間区分34を有する。中間区分3
4は内側部分2に中間区分20において接合されている
。中間区分34は外側部分4に関し内側部分2を弾性的
に位置決めするばねとして作用する。
The intermediate section 6 has a convoluted intermediate section 34 extending between the inner section 2 and the outer section 4 . Intermediate section 3
4 is joined to the inner part 2 at the intermediate section 20. The intermediate section 34 acts as a spring elastically positioning the inner part 2 with respect to the outer part 4.

第1図の装置を後述する成形法により製造すると一方の
材料から他方の材料への拡散または混合はほとんど起こ
らない。更に境界域に沿う一方の材料の他方の材料によ
る歪みもほとんどか、全く起こらない。倍率20,00
0の走査電子顕微鏡で、この発明に従った第1図に示す
ような絶縁体を検査することによって、ブタジェンスチ
レン熱可塑性エラストマ一部分とポリスチレン部分との
間の境界がわずか1.0 x 10”インチ(約2,5
4 x 10”m )のオーダーの厚さの界面域(一方
の材料と他方の材料との相互混合域または一方の材料か
ら他方の材料への拡散域)をもつに過ぎないことが示さ
れた。それでもエラストマ一部分と非エラストマ一部分
との接合は、装置が絶縁体としての充分満足すべき作用
を示すに足りる程度に強じんである。
When the device of FIG. 1 is manufactured by the molding method described below, there is little diffusion or mixing of one material into the other. Furthermore, little or no distortion of one material by the other material along the boundary zone occurs. Magnification 20,00
By examining an insulator according to the present invention as shown in FIG. 1 with a scanning electron microscope at 0.000 m, it was determined that the boundary between the butadiene styrene thermoplastic elastomer portion and the polystyrene portion was only 1.0 x 10". inches (approx. 2.5
It has been shown that the interfacial zone (intermixing zone of one material with the other or zone of diffusion from one material to the other) of the order of 4 x 10" m) is thick. Nevertheless, the bond between the elastomeric and non-elastomeric portions is sufficiently strong for the device to function satisfactorily as an insulator.

この発明の好ましい実施態様によれば、第1図に示した
絶縁体は、第2A〜20図に示すように、3つの相対的
に可動な型部材36,38.40と型部材36に固着し
た中心部材すなわち中子42とから主に成る共同射出成
形型によって製造される。第2A図に示すように、型部
材36は、4つの個々の部分44,46,48,50を
含む起伏のある内側端面を有し、型部材38は平たんな
内側端面52および円筒形内面54を有する。型部材4
0は区分56.58を含む起伏のある内側端面と内面5
4に緊密に滑り嵌めされる円筒形外面60とを有する。
According to a preferred embodiment of the invention, the insulator shown in FIG. 1 is secured to three relatively movable mold members 36, 38, 40 and mold member 36, as shown in FIGS. 2A-20. It is manufactured by a joint injection mold mainly consisting of a central member, that is, a core 42. As shown in FIG. 2A, mold member 36 has a contoured inner end surface including four individual portions 44, 46, 48, 50, and mold member 38 has a flat inner end surface 52 and a cylindrical inner surface. It has 54. Mold member 4
0 is the contoured inner end surface and inner surface 5 including section 56.58
4 and a cylindrical outer surface 60 that is a tight sliding fit.

型部材56.38゜40と中子42とは、該部材が閉じ
た位置にある時に部分50と端面52とが互に符合し、
部分44と区分58と中子42とが第1の型キャビティ
62を形成し、部分48と端面52と外面60の上方部
分とが第2の型キャビティ64を形成するようになって
いる。型部材4oは中心孔66を有し、これに中子42
が密に嵌め合わされる。型部材36中に固定した複数の
ピン36は型部材38中の孔7o中に密に滑り嵌めされ
る。ピン68は取付は孔5を形成する中子として用いら
れる。型部材36.38.40は、射出成形技術では慣
用される図示しない手段により中子42の軸線に沿って
相対的に可動であるために、型部材58.40は型部材
36に関して前記軸線に沿って異なる位置に個別にまた
選択的に移動し得る。
The mold member 56.38° 40 and the core 42 have portions 50 and end faces 52 aligned with each other when the member is in the closed position;
Portion 44, section 58, and core 42 form a first mold cavity 62, and portion 48, end surface 52, and an upper portion of outer surface 60 form a second mold cavity 64. The mold member 4o has a center hole 66 into which the core 42 is inserted.
are tightly fitted together. A plurality of pins 36 fixed in the mold member 36 are snugly fitted into the holes 7o in the mold member 38. The pin 68 is used as a core for forming the hole 5 during attachment. The mold parts 36, 38, 40 are movable relative to the axis of the core 42 by means not shown, which are customary in injection molding technology, so that the mold parts 58, 40 are moved along said axis with respect to the mold part 36. may be individually and selectively moved to different positions along the line.

第1図に示す振動絶縁体は第2A〜20図に示す型組立
体を用いて次の様に製造される。第1に、型部材56.
58.40を、第2A図に示す全閉位置(第1射出位置
)におき、剛性またはほぼ剛性の固体となるように固化
し得る適当な液状の熱可塑性射出成形材料を射出ポート
74゜76を経て型キャビティ62.64中に射出し、
部分2,4を形成する。次に、区分56の外側縁が端面
52と面一になるまで型部材40を後退させ、第2B図
に示すように第6の型キャビティ78を形成する(第2
射出位置)。次いで、エラストマーの性質をもつ固体材
料となるように固化し得る適当な液状の熱可塑性射出成
形材料(例えばブタジェンスチレン)を、1つ以上の射
出ポート80を経て型キヤビテイ78中に射出し、部分
6を形成する。この射出工程は、キャビティ62.64
中に射出された材料が、射出ポート80を経て射出され
る材料により排除または拡開されない程度に固化するか
或は粘性になっているが、エラストマー材料に接着する
に足りるだけ柔軟lこなった後ζこ行われる。すなわち
、第2射出工程は、キャビティ62.64中の材料が未
だ熱い間で固体として硬化した後に行われる。材料を適
切に選定すると、キャビティ62.64が充てんされた
後の1〜3秒という短い時間内にキャビティ78を充て
んしてもなおエラストマ一部分と非エラストマ一部分と
の間に充分満足な接合が得られる。最後に、部分6がキ
ャビティ78中において固体として硬化した後、型部材
38,40を第2c図に示すように型部材66から引離
した後、完成した絶縁体を型組立体から取出して放冷す
る。その後に、型部材、56,38.40と中子42と
を、次の成形サイクルのために第2A図に示す位置に返
却する。
The vibration insulator shown in FIG. 1 is manufactured as follows using the mold assembly shown in FIGS. 2A-20. First, mold member 56.
58.40 in the fully closed position (first injection position) shown in FIG. Injected into the mold cavity 62, 64 through
Form parts 2 and 4. The mold member 40 is then retracted until the outer edge of the section 56 is flush with the end surface 52, forming a sixth mold cavity 78 as shown in FIG. 2B.
injection position). A suitable liquid thermoplastic injection molding material (e.g., butadiene styrene) capable of solidifying into a solid material having elastomeric properties is then injected into the mold cavity 78 through one or more injection ports 80; Form part 6. This injection process
The material injected therein has solidified or become viscous enough to not be displaced or spread by the material injected through injection port 80, but is flexible enough to adhere to the elastomeric material. This will be done later. That is, the second injection step is performed after the material in the cavities 62, 64 has hardened as a solid while still hot. Proper selection of materials will allow filling of cavity 78 within a short period of 1 to 3 seconds after cavities 62, 64 are filled and still provide a satisfactory bond between the elastomeric and non-elastomeric portions. It will be done. Finally, after portion 6 has hardened as a solid in cavity 78, mold members 38, 40 are pulled away from mold member 66, as shown in Figure 2c, and the finished insulator is removed from the mold assembly and released. Cool down. Thereafter, mold members 56, 38, 40 and core 42 are returned to the position shown in FIG. 2A for the next molding cycle.

この発明の上述した好ましい実施態様において、絶縁体
の部分2,4は、たわみモジュラスが約46sooop
;ff1(約52550スー)となるように固化される
ポリスチレンから成形され、部分6はショアAスケール
で測定したデュロメーター値が(絶縁体について望まれ
る弾性率に依存して)35〜85となるように固化され
るブタジ再ンスチレンコボリマーから作られる。望まし
いポリスチレンはシェル社から商品名シェルDP−20
3の下に市販される材料であり、ブタジェンスチレンは
シェル社から商品名クラトン3000シリーズ熱可塑性
ラバーの下に市販される材料である。適切な温度および
圧力は使用した材料の特性によって定められる。すなわ
ち、上述したポリスチレン成形材料は大体soo。
In the above-described preferred embodiment of the invention, the portions 2, 4 of the insulator have a deflection modulus of about 46soop
ff1 (approximately 52,550 sous), section 6 has a durometer value of 35 to 85 (depending on the desired modulus of the insulator) as measured on the Shore A scale. It is made from a butadiene restyrene copolymer that is solidified into. A preferred polystyrene is manufactured by Shell under the trade name Shell DP-20.
Butadiene styrene is a material sold under the trade name Kraton 3000 Series Thermoplastic Rubber by Shell Company. Appropriate temperatures and pressures are determined by the properties of the materials used. That is, the polystyrene molding materials mentioned above are generally sooty.

psi (約350竪−)の圧力と約390下(198
,9℃)の温度で射出され、上述したブタジエンスチレ
ン成形材料は約6000psi(約42 a K9/、
L2) (D 圧力と約390下(19s、9°C)の
温度でキャビティ78に射出される。後者の射出工程は
キャビティ62゜64中へのポリスチレン成形配合物の
射出が終了した後、約1〜3秒後に行うべきである。射
出材料は両方の射出工程の間、約390″F(198,
9℃)の温度に保たれるが、型は両方の射出工程の間約
100°〜i 50”F(57,8°〜65rC)ノ温
度に保たれる。第2の射出工程の終了後1約1分してか
ら型を開放し、完成した成形品を取出す。次に、成形品
を室温まで放冷した後、ラベルの貼付、試験および包装
が行われる0完成した成形品の部分6と部分2,4との
間のせん断接着強度は少くとも400〜5oopsi(
約28〜35にζ2)、通常は約600〜5oopei
(約42〜56竪−)であり、これに比較して従来の金
属−エラストマー絶縁体の金属部分とエラストマ一部分
との間の典型的な接着強度は約500 psi (約3
5に鵠2)である。
psi (approximately 350 psi) and approximately 390 psi (approximately 198 psi) pressure
The butadiene styrene molding compound described above is injected at a temperature of about 6000 psi (about 42 a K9/,
L2) (D) is injected into the cavity 78 at a pressure of about 390°C (19s, 9°C). This should be done after 1-3 seconds.The injection material should be kept at about 390"F during both injection steps.
The mold is maintained at a temperature of about 100° to 50"F (57,8° to 65rC) during both injection steps. After the completion of the second injection step 1 After about 1 minute, the mold is opened and the completed molded product is taken out.The molded product is then allowed to cool to room temperature, and then labeled, tested and packaged.0 Part 6 of the completed molded product The shear bond strength between and parts 2, 4 is at least 400 to 5 oopsi (
about 28-35 ζ2), usually about 600-5 oopei
(approximately 42 to 56 vertical), compared to a typical bond strength between a metal portion and an elastomer portion of conventional metal-elastomer insulators of approximately 500 psi (approximately 3
5 and Mouse 2).

ここで、剛性の材料が射出された後にエラストマー材料
を射出することが重要である。剛性の材料の射出と同時
にか、またはその前にエラストマー材料を射出した場合
には、キャビティ62.64中に剛性材料を射出する際
に必要な圧力の下では、キャビティ78内のエラストマ
ーが変更に耐えられないので、満足すべき絶縁体は得ら
れない。非エラストマー材料の射出前にエラストマーを
充分に硬化された場合にも同様になる。エラストマー材
料の射出に必要な圧力の下で変形に充分耐え得る程度に
剛性材料が硬化するまでエラストマー材料の射出を遅ら
せた場合にのみ、エラストマ一部分と非エラストマ一部
分との間の充分強固な接着が得られると共に、3つの型
キャビティ62,64.78の形状に絶縁の各部分を正
確に適合させることができる。
It is important here that the elastomeric material is injected after the rigid material has been injected. If the elastomer material is injected simultaneously with or before the injection of the rigid material, the elastomer in the cavity 78 will not change under the pressure required to inject the rigid material into the cavity 62,64. A satisfactory insulator cannot be obtained because it cannot withstand it. The same is true if the elastomer is fully cured before injection of the non-elastomeric material. A sufficiently strong bond between the elastomeric and non-elastomeric portions can only be achieved if the injection of the elastomeric material is delayed until the rigid material has sufficiently cured to withstand deformation under the pressures required for injection of the elastomeric material. It is possible to precisely adapt each part of the insulation to the shape of the three mold cavities 62, 64, 78.

この発明の別の利点は、中間部分乙の成形に用いた材料
の組成、従ってデュロメーターを変えることにより絶縁
体の弾性率を変更できることにある。−例として、35
デユロメーターAスケールについては、[クラトン52
26Jのようなシェル社製の成形材料、55デユロメー
ターAスケールについては「クラトン5202J、また
85デユロメーターAスケールについては「クラトン5
204Jのような成形材料が市販されている。これらの
成形材料の内、任意の2種または3種全部を適当fこ調
合したり、他の熱可塑性エラストマーを添加または代用
したりすることによって、他の適切なデュロメーター値
が実現される。
Another advantage of the invention is that the modulus of elasticity of the insulator can be varied by varying the composition, and thus the durometer, of the material used to form the intermediate section. - As an example, 35
For the durometer A scale, see [Craton 52
Shell molding materials such as 26J, 55 durometer A scale are known as Kraton 5202J, and 85 durometer A scale are known as Kraton 5
Molding materials such as 204J are commercially available. Other suitable durometer values can be achieved by appropriately blending any two or all three of these molding materials, or by adding or substituting other thermoplastic elastomers.

部分2,4の剛度は、いくらかのエラストマー成形材料
をポリスチレン成形材料と混合することによって変更さ
れ得る。これに関連して、部分2,4は絶対的に剛性と
する必要はなく、絶縁体の用途によって、部分2,4が
単に半硬質であるだけで充分な場合またはむしろその方
が望ましい場合もある。
The stiffness of the parts 2, 4 can be modified by mixing some elastomeric molding material with the polystyrene molding material. In this connection, parts 2, 4 need not be absolutely rigid; depending on the application of the insulator, it may be sufficient or even desirable for parts 2, 4 to be merely semi-rigid. be.

この発明による別の利点は、アイ・エム・スパイヤの米
国特許第5950483号明細書に記載されたような2
軸法によらずに、同軸法により成形材料の射出成形がな
されることにある。同軸射出成形はより簡単で成形品の
信頼度も高いことがわかっている。
Another advantage of the present invention is that the two
Injection molding of a molding material is performed by a coaxial method instead of an axial method. Coaxial injection molding has been found to be simpler and to produce more reliable molded parts.

この発明の更に別の利点は、種々の形状、大きさおよび
振動絶縁特性をもつ絶縁体が成形され得ることにある。
Yet another advantage of the present invention is that insulators can be molded with a variety of shapes, sizes, and vibration isolation properties.

−例として、中間部分6の形状または大きさ或はその両
方は、それぞれの型部分を変えることにより変更できる
。また型組立体を適当に成形することにより、円筒形内
側部分2A、平らな円形フランジ92をもつ円筒形外側
部分4Aおよび平らな端面をもつ円筒形中間部分6Aか
らなる扁平な絶縁体90(第3図参照)を成形し得る。
- By way of example, the shape and/or size of the intermediate part 6 can be changed by changing the respective mold part. In addition, by appropriately molding the mold assembly, a flat insulator 90 (second part) consisting of a cylindrical inner part 2A, a cylindrical outer part 4A with a flat circular flange 92, and a cylindrical middle part 6A with a flat end surface. (see Figure 3).

また別の例として、6つの部分2B、4B、6Bが全部
円筒形で部分6Bの長さがその内径および外径を実質的
に超過する軸方向に長い絶縁体96(第4図参照)も製
Another example is an axially elongated insulator 96 (see FIG. 4) in which all six sections 2B, 4B, 6B are cylindrical and the length of section 6B substantially exceeds its inner and outer diameters. Made.

造できる。これらの2つの絶縁体は、第1図の絶縁体と
同じ材料から作られていても、これとは異なった振動絶
縁特性を備えている。
Can be built. Although these two insulators are made from the same material as the insulator of FIG. 1, they have different vibration isolation properties.

この発明の更に別の利点は、種々の熱可塑性射出成形材
料を使用できることにある。すなわち、部分6を形成す
る熱可塑性エラストマー成形材料は、ブタジェンスチレ
ン以外の当該技術において既知の材料としてもよい。尚
、「熱可塑性エラストマー」という用語は、トボルスキ
ーほか、「ポリマー科学および材料」第277頁、ウィ
リー・インターサイエンス発行(N+71)により実証
されるように、当業者には既知の用語であり、ニー・ニ
ー・ウォーカー著[熱可塑性エラストマーハンドブック
J(1979)に開示されているように、きわめて多く
のこの種の材料が存在する。
Yet another advantage of the invention is that a variety of thermoplastic injection molding materials can be used. That is, the thermoplastic elastomer molding material forming portion 6 may be any material known in the art other than butadiene styrene. The term "thermoplastic elastomer" is a term well known to those skilled in the art, as demonstrated by Tobolsky et al., "Polymer Science and Materials," p. 277, published by Wiley Interscience (N+71). A large number of materials of this type exist, as disclosed in Thermoplastic Elastomers Handbook J (1979) by John Walker.

また、剛性の部分2,4は、例として米国特許第594
1859号、第3962154号および第400611
6号明細書に教示されているように、アクリロニトリル
ーブタジ壬ンスチレン(ABS)、ポリメチルメタクリ
レート(プレクシガラスχポリフロピレン重合体および
当該技術lこおいて知られる他の材料製としても良い。
The rigid portions 2, 4 may also be described in US Patent No. 594, for example.
No. 1859, No. 3962154 and No. 400611
As taught in No. 6, acrylonitrile-butadiene styrene (ABS), polymethyl methacrylate (plexiglas x polypropylene polymer) and other materials known in the art may be used.

使用する材料の選択は、エラストマー材料と非エラスト
マー材料との相互接着に対する協調性および望ましい特
性によって左右される。
The selection of materials used depends on the cooperativity and desired properties of the elastomeric and non-elastomeric materials for mutual adhesion.

当業者に自明なこの発明の他の多くの変形が可能であり
、これらの変形はすべてこの発明の範囲内)こ包含され
るものである。
Many other variations of this invention, which will be obvious to those skilled in the art, are possible and are all intended to be encompassed within the scope of this invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の好ましい実施例による板形の振動絶
縁体の側断面図、第2A図ないし第2C図は第1図の振
動絶縁体の製造に使用する射出成形型組立体をそれぞれ
異なる位置において示す断面図、第3図と第4図はこの
発明の2つの変形実施例による振動絶縁体を示す側断面
図である。図中、2:内側部分(第1部分)、4:外側
部分(第2部分)、6:中間部分(第3部分)、8:上
面、10:底面。 FIG、1 0G、3FIG、4
FIG. 1 is a side sectional view of a plate-shaped vibration insulator according to a preferred embodiment of the present invention, and FIGS. 2A to 2C show different injection mold assemblies used for manufacturing the vibration insulator of FIG. 1. 3 and 4 are side sectional views of vibration isolators according to two alternative embodiments of the invention. In the figure, 2: inner part (first part), 4: outer part (second part), 6: intermediate part (third part), 8: top surface, 10: bottom surface. FIG, 1 0G, 3FIG, 4

Claims (1)

【特許請求の範囲】 1、剛性の熱可塑性ポリマー材料製の同心状で実質的に
離隔された第1部分と第2部分、並びに該第1部分と第
2部分との間に延長してこれらに固着された第3部分を
有し、該第3部分は熱可塑性有機エラストマー材料製で
あり、該熱可塑性有機ポリマー材料の直接接合により前
記第1部分及び第2部分に固着されて成る振動絶縁体。 2、前記熱可塑性エラストマー材料と熱可塑性ポリマー
材料との直接融着の結果として前記第3部分を前記第1
部分及び第2部分に接着して成る特許請求の範囲第1項
記載の振動絶縁体。 3、約2.54×10^−^6cmの深さにおいて前記
第3部分を前記第1部分及び第2部分に接着した特許請
求の範囲第1項記載の振動絶縁体。 4、前記第1部分により形成される外側フランジ及び前
記第2部分により形成される内側スリーブ部分を有する
特許請求の範囲第1項記載の振動絶縁体。 5、前記第3部分の半径方向断面をコンボリュート形状
とした特許請求の範囲第4項記載の振動絶縁体。 6、中心軸線を有し、この中心軸線に平行に測った前記
第2部分の寸法を前記第1部分の対応の寸法より実質的
に大きくした特許請求の範囲第4項記載の振動絶縁体。 7、前記第3部分が前記第1部分に固着された外側部分
と、前記第2部分に固着された内側部分と、該外側部分
及び内側部分を連絡する中間部分とを有し、該外側部分
は前記第1部分に接合されてこれにより囲まれ、該内側
部分は前記第2部分の少くとも一部に接合されてこれに
より囲まれるようにした特許請求の範囲第6項記載の振
動絶縁体。 8、前記中間部分が前記中心軸線に対し鋭角で延長する
ようにした特許請求の範囲第7項記載の振動絶縁体。 9、前記第1部分及び第2部分を約28,000Kg/
cm^2以上のたわみモジュラスをもつポリスチレン製
とした特許請求の範囲第1項記載の振動絶縁体。 10、前記第3部分をショアAデュロメーターによるか
たさ値が35〜85であるたわみモジュラスの低い柔軟
な材料製とした特許請求の範囲第1項記載の振動絶縁体
。 11、前記第3部分をスチレン−ブタジエン共重合体製
とした特許請求の範囲第10項記載の振動絶縁体。 12、前記第1部分及び第2部分を管状部材とした特許
請求の範囲第1項記載の振動絶縁体。 13、前記第1部分が前記第3部分を囲みこれに接合さ
れた管状区分及びこの管状区分と一体に成形したフラン
ジ区分を有する特許請求の範囲第12項記載の振動絶縁
体。 14、前記第2部分が前記第1部分よりも長く、前記第
2部分の一部は前記第2部分の長さに沿い前記第2部分
と同延とした特許請求の範囲第12項記載の振動絶縁体
Claims: 1. Concentric, substantially spaced-apart first and second portions of rigid thermoplastic polymeric material and extending between the first and second portions; a third portion affixed to the first portion and the second portion, the third portion being made of a thermoplastic organic elastomer material and affixed to the first portion and the second portion by direct bonding of the thermoplastic organic polymer material; body. 2. The third portion is attached to the first portion as a result of direct fusion of the thermoplastic elastomer material and the thermoplastic polymer material.
The vibration insulator according to claim 1, wherein the vibration insulator is adhesively bonded to the first part and the second part. 3. The vibration isolator of claim 1, wherein said third portion is bonded to said first and second portions at a depth of approximately 2.54 x 10^-^6 cm. 4. The vibration insulator of claim 1, further comprising an outer flange formed by the first portion and an inner sleeve portion formed by the second portion. 5. The vibration insulator according to claim 4, wherein the third portion has a convoluted radial cross section. 6. The vibration isolator of claim 4, having a central axis, and wherein the dimensions of said second portion, measured parallel to said central axis, are substantially larger than the corresponding dimensions of said first portion. 7. The third part has an outer part fixed to the first part, an inner part fixed to the second part, and an intermediate part connecting the outer part and the inner part, and the outer part A vibration insulator according to claim 6, wherein the vibration insulator is joined to and surrounded by the first portion, and the inner portion is joined to and surrounded by at least a portion of the second portion. . 8. The vibration insulator according to claim 7, wherein the intermediate portion extends at an acute angle with respect to the central axis. 9. The first part and the second part are approximately 28,000 kg/
The vibration insulator according to claim 1, which is made of polystyrene having a deflection modulus of cm^2 or more. 10. The vibration insulator according to claim 1, wherein the third portion is made of a flexible material with a low deflection modulus having a hardness value of 35 to 85 on a Shore A durometer. 11. The vibration insulator according to claim 10, wherein the third portion is made of styrene-butadiene copolymer. 12. The vibration insulator according to claim 1, wherein the first portion and the second portion are tubular members. 13. The vibration isolator of claim 12, wherein said first portion includes a tubular section surrounding and joined to said third section and a flange section integrally formed with said tubular section. 14. The second portion is longer than the first portion, and a portion of the second portion is coextensive with the second portion along the length of the second portion. Vibration insulator.
JP61286090A 1979-10-22 1986-12-02 Vibration isolator Pending JPS62167951A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US8673379A 1979-10-22 1979-10-22
US086733 1979-10-22

Publications (1)

Publication Number Publication Date
JPS62167951A true JPS62167951A (en) 1987-07-24

Family

ID=22200531

Family Applications (2)

Application Number Title Priority Date Filing Date
JP14639380A Granted JPS5666537A (en) 1979-10-22 1980-10-21 Vibration insulating body and its manufacture
JP61286090A Pending JPS62167951A (en) 1979-10-22 1986-12-02 Vibration isolator

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP14639380A Granted JPS5666537A (en) 1979-10-22 1980-10-21 Vibration insulating body and its manufacture

Country Status (10)

Country Link
JP (2) JPS5666537A (en)
CA (1) CA1163279A (en)
CH (1) CH650843A5 (en)
DE (1) DE3039868A1 (en)
FR (1) FR2468034B1 (en)
GB (1) GB2060816B (en)
IL (1) IL61216A (en)
IT (1) IT1144010B (en)
MX (1) MX158739A (en)
NL (1) NL186716C (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05169491A (en) * 1991-12-19 1993-07-09 Koito Mfg Co Ltd Manufacturing method and apparatus of lamp body brim rubber
JP2006335189A (en) * 2005-06-01 2006-12-14 Denso Corp Air conditioning unit
JP2009519794A (en) * 2005-12-20 2009-05-21 オットー・ボック・ヘルスケア・アイピー・ゲーエムベーハー・ウント・コンパニー・カーゲー Prosthetic finger and hand
JP2013227990A (en) * 2012-04-24 2013-11-07 Tokai Rubber Ind Ltd Vibration isolation device and method of manufacturing the same

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4573363A (en) * 1983-10-17 1986-03-04 Mannesmann Tally Corporation Vibration isolating coupling
GB8619240D0 (en) * 1986-08-06 1986-09-17 Dunlop Ltd Elastomeric mounting
JPS63108598U (en) * 1987-01-07 1988-07-13
JPS63146199U (en) * 1987-03-13 1988-09-27
IT1218976B (en) * 1988-01-25 1990-04-24 Stars Spa PROCEDURE FOR SOUNDPROOFING COMPONENTS OF THE INTERIOR OF THE BODYWORK OF THE VEHICLE
JPH064261B2 (en) * 1988-10-17 1994-01-19 大成プラス株式会社 Automotive lamp packing assembly method
DE4025100A1 (en) * 1990-08-08 1992-02-13 Vorwerk & Sohn Producing rubber-metal vehicle bearing - by placing metal tube in mould, injecting polyphenylene-ether, partly cooling, injecting rubber round it, adding plastic covers and pressing
JPH0562752U (en) * 1991-12-06 1993-08-20 富士ポリマテック株式会社 Oil damper
DE4218135A1 (en) * 1992-06-02 1993-12-09 Phoenix Ag Plastic-rubber cpd. bodies prodn. - involves injection moulding using special tool to form plastic parts with rubber contour applied to hot plastic
DE4303364C2 (en) * 1993-02-05 2002-04-18 Siemens Ag rolling diaphragm
DE19526934A1 (en) * 1995-07-24 1997-01-30 Mann & Hummel Filter Fastener
DE19532085A1 (en) * 1995-08-31 1997-03-06 Kunststofftechnik Ros Gmbh & C Dimensionally stable seal prodn., for antifriction bearings
DE19540333C2 (en) * 1995-10-28 2000-06-08 Franz Weigelt & Soehne Gmbh & Method for producing a plastic part from a part of a hard and a part of a soft flexible component
DE19541518A1 (en) * 1995-11-08 1997-05-15 Erich Rapp Sandwich injection moulding of hard ring with soft edges e.g. for filter cover
DE59701253D1 (en) * 1996-11-06 2000-04-20 Saia Burgess Electronics Ag Mu Electric drive
DE19706734C2 (en) * 1997-02-20 2000-11-02 Opel Adam Ag Venting device and method for its production
JPH10231893A (en) * 1997-02-20 1998-09-02 Polymertech Kk Frame damper
DE69817558T2 (en) * 1997-05-15 2004-07-01 Chisso Corp. NON-STRETCHED POLYPROPYLENE DIMENSIONS
IT1293646B1 (en) * 1997-07-25 1999-03-08 Itw Fastex Italia Spa ANTI-VIBRATION FOOT, IN PARTICULAR FOR THE SUPPORT OF COMPRESSORS, AND ITS METHOD OF REALIZATION
DE19913828A1 (en) * 1999-03-26 2000-09-28 Alphacan Omniplast Gmbh Funnels, in particular made of plastic, for street gullies, and process for their production
DE10105526B4 (en) * 2001-02-07 2004-12-23 Robert Bosch Gmbh Method of making a valve assembly
DE10211663B4 (en) * 2002-03-15 2011-02-10 Johnson Controls Interiors Gmbh & Co. Kg Method for producing a molded part consisting of two segments integrally connected to one another, in particular for a vehicle interior, and also a molded part produced by this method
DE102004051566B4 (en) * 2004-10-22 2008-06-12 SGF SüDDEUTSCHE GELENKSCHEIBENFABRIK GMBH & CO. KG Resilient socket arrangement
JP5603109B2 (en) * 2010-03-15 2014-10-08 株式会社ブリヂストン Appearance inspection apparatus and appearance inspection method
US9307853B2 (en) * 2014-05-01 2016-04-12 Tervis Tumbler Company Insulated double walled drinking vessel and method of making the same
FR3138782A1 (en) * 2022-08-09 2024-02-16 Contitech Vibration Control Process for manufacturing an elastic joint by bi-material injection

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB323178A (en) * 1928-08-02 1930-01-02 Hugh Compton Lord Improvements in or relating to rubber vibration dampeners, connections and diaphragms
US1978940A (en) * 1932-04-15 1934-10-30 Guy And Murton Inc Resilient block
FR770913A (en) * 1933-05-11 1934-09-24 Pirelli Shock and vibration damper for objects and mechanisms of all kinds
DE803204C (en) * 1949-01-30 1951-03-01 Continental Gummi Werke Akt Ge Resilient component
BE554842A (en) * 1953-01-30
DE1170620B (en) * 1962-01-13 1964-05-21 Rheinmetall Gmbh Process for the production of an articulated eye for shock absorbers, joints or similar components
US3448949A (en) * 1967-08-04 1969-06-10 Tedan Inc Vibration and shock absorption mounting
GB1221157A (en) * 1969-01-28 1971-02-03 Gomma Antivibranti Applic Resilient coupling for seating in a component having an eye
US3962154A (en) * 1971-06-01 1976-06-08 Standard Oil Company Method for producing an improved molded thermoplastic article
US3975007A (en) * 1974-05-20 1976-08-17 Ace Controls, Inc. Resilient mounting structure
US3941859A (en) * 1974-08-02 1976-03-02 The B. F. Goodrich Company Thermoplastic polymer blends of EPDM polymer, polyethylene and ethylene-vinyl acetate copolymer
JPS5227966U (en) * 1975-08-18 1977-02-26
US4006116A (en) * 1975-11-26 1977-02-01 Shell Oil Company Block copolymer compositions and articles
FR2397280A1 (en) * 1977-07-12 1979-02-09 Plastic Omnium Cie Tools for two=stage injection moulding of composite structures - using parting line shifts to isolate partial interfaces for the initial moulding
FR2442991A1 (en) * 1978-11-30 1980-06-27 Vibrachoc Sa VIBRATION ISOLATOR

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05169491A (en) * 1991-12-19 1993-07-09 Koito Mfg Co Ltd Manufacturing method and apparatus of lamp body brim rubber
JP2006335189A (en) * 2005-06-01 2006-12-14 Denso Corp Air conditioning unit
JP4529799B2 (en) * 2005-06-01 2010-08-25 株式会社デンソー Air conditioning unit
JP2009519794A (en) * 2005-12-20 2009-05-21 オットー・ボック・ヘルスケア・アイピー・ゲーエムベーハー・ウント・コンパニー・カーゲー Prosthetic finger and hand
JP2013227990A (en) * 2012-04-24 2013-11-07 Tokai Rubber Ind Ltd Vibration isolation device and method of manufacturing the same

Also Published As

Publication number Publication date
NL186716C (en) 1991-02-01
JPS5666537A (en) 1981-06-05
FR2468034B1 (en) 1986-09-19
NL186716B (en) 1990-09-03
DE3039868C2 (en) 1990-06-28
FR2468034A1 (en) 1981-04-30
GB2060816A (en) 1981-05-07
IL61216A (en) 1985-06-30
CH650843A5 (en) 1985-08-15
DE3039868A1 (en) 1981-04-30
IL61216A0 (en) 1980-12-31
GB2060816B (en) 1983-08-24
CA1163279A (en) 1984-03-06
IT8049828A0 (en) 1980-10-07
MX158739A (en) 1989-03-09
JPS6313049B2 (en) 1988-03-23
NL8005796A (en) 1981-04-24
IT1144010B (en) 1986-10-29

Similar Documents

Publication Publication Date Title
JPS62167951A (en) Vibration isolator
US4385025A (en) Method of coinjection molding of thermoplastic and thermoplastic elastomer
US6004300A (en) Composite hypodermic syringe piston
CA1086911A (en) Method of making a shaft seal
KR930017591A (en) Golf club grip molded from a plurality of materials and its manufacturing method
JPH03143616A (en) Manufacture of blow product
GB2078606A (en) Method and apparatus for movement of heated thermoplastic elements for shear fusion bonding of such thermoplastic elements
US5003660A (en) Cosmetic applicator and method of producing the same
JPS5995130A (en) Manufacture of hollow diaphragm
US2363086A (en) Method of making ball cores
IE46628B1 (en) Vaginal diaphragm and a method for the production thereof
US2342603A (en) Ball core
JPH0473370B2 (en)
JP4827278B2 (en) Manufacturing method of infusion plug
JPS6051409B2 (en) Manufacturing method of vibration isolating material
JPH1110660A (en) Mamufacture of vibrationproof damper
JP2001062925A (en) Molded product and manufacture of the same
JPS62194043A (en) Plastic molded body
JP2002085105A (en) Manufacture of shoe sole
JPS59127745A (en) Manufacture of vibration-proof member
JP2544595Y2 (en) Cross type leaf spring forming mold
JP2023104305A (en) Method for manufacturing resin molded product
JPS61134237A (en) Plastic molded shape
JPS61141546A (en) Plastic molded shape
JP3835626B2 (en) Mold