JPS62162369A - Ferroelectric thin film element - Google Patents

Ferroelectric thin film element

Info

Publication number
JPS62162369A
JPS62162369A JP61004529A JP452986A JPS62162369A JP S62162369 A JPS62162369 A JP S62162369A JP 61004529 A JP61004529 A JP 61004529A JP 452986 A JP452986 A JP 452986A JP S62162369 A JPS62162369 A JP S62162369A
Authority
JP
Japan
Prior art keywords
thin film
ferroelectric thin
ferroelectric
mgo
oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61004529A
Other languages
Japanese (ja)
Other versions
JPH0685450B2 (en
Inventor
Yoshihiro Tomita
富田 佳宏
Ryoichi Takayama
良一 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61004529A priority Critical patent/JPH0685450B2/en
Publication of JPS62162369A publication Critical patent/JPS62162369A/en
Publication of JPH0685450B2 publication Critical patent/JPH0685450B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a ferroelectric element of good characteristics by arranging a thin film of (100) orientation on a semiconductor substrate so as to enable the formation of a ferroelectric thin film oriented in a direction of polarization axis on said film. CONSTITUTION:On an Si substrate 4 of (100) or (111) face, an MgO thin film 5 of (100) orientation and a lower electrode 6 of Pt of (100) orientation are formed and a ferroelectric thin film 7 expressed by a chemical formular PbxLayTizZrwO3 is formed on them. The composition of that film 7 is selected as 0.7<=x<=1, 0.9<=x+y<=1, 0.95<=z<=1, w=0 or x=1, y=0, 0.45<=z<=1, z+w=1 or 0.83<=x<=1, x+y=1, 0.5<=z<=1, 0.96<=z+w<=1. The ferroelectric material of this composition is of tetragonal system and its polarization axis is in (001) direction so that if it is oriented to (001), a pyroelectric type infrared ray sensor of high voltage sensitivity high can be obtained. By providing an upper electrode 8 on the film 7, the element is completed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は強誘電体薄膜素子、特に焦電型の赤外線センサ
等に適した強誘電体薄膜素子に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a ferroelectric thin film element, particularly to a ferroelectric thin film element suitable for pyroelectric infrared sensors and the like.

従来の技術 強誘電体薄膜素子は、赤外線センサのようなデバイスに
用いるのに適しており、特に半導体基板上に形成するこ
とにより、信号処理−デバイス一体型の装置を構成する
上でメリットが大である。
Conventional technology Ferroelectric thin film elements are suitable for use in devices such as infrared sensors, and are especially advantageous when forming integrated signal processing and device devices by forming them on semiconductor substrates. It is.

従来の技術の一例を第2図に示す。半導体基板1上に強
誘電体薄膜″2を形成し、強誘電体薄膜2上に上部電極
3を形成したものである。例えば奥山らによって、Si
基板上にチタン酸鉛を形成したという報告がなされてい
る。(奥山ら、フェロエレクトリクス、 1985.V
ol、63.pp、243−252>発明が解決しよう
とする問題点 上記強誘電体薄膜素子において強誘電体薄膜は、半導体
基板、特にSi単結晶基板上へのエピタキシャル膜が未
だ実現されておらず、多結晶体であり分極軸が揃ってい
ないため、例えばMgO基板上に配向した強誘電体薄膜
に比べ材料特性が悪い。
An example of the conventional technique is shown in FIG. A ferroelectric thin film ``2'' is formed on a semiconductor substrate 1, and an upper electrode 3 is formed on the ferroelectric thin film 2. For example, Okuyama et al.
It has been reported that lead titanate was formed on the substrate. (Okuyama et al., Ferroelectrics, 1985.V
ol, 63. pp, 243-252>Problems to be Solved by the Invention In the ferroelectric thin film device described above, epitaxial films on semiconductor substrates, especially Si single crystal substrates, have not yet been realized, and polycrystalline thin films have not yet been realized. Because the polarization axes are not aligned, the material properties are worse than, for example, a ferroelectric thin film oriented on an MgO substrate.

本発明は上記問題点を解決するもので、半導体基板上に
強誘電体薄膜を配向させ材料特性の良い信号処理デバイ
ス一体型の強誘電体薄膜素子を実現することを目的とす
る。
The present invention solves the above problems, and aims to realize a ferroelectric thin film element integrated with a signal processing device with good material properties by aligning a ferroelectric thin film on a semiconductor substrate.

問題点を解決するための手段 半導体基板と、半導体基板上に形成したMgO薄膜と、
Mgo薄膜上に形成した強誘電体薄膜とを有する強誘電
体薄膜素子を構成し、前記M g O薄膜を(100)
配向させる。
Means for solving the problem A semiconductor substrate, an MgO thin film formed on the semiconductor substrate,
A ferroelectric thin film element having a ferroelectric thin film formed on an Mgo thin film is constructed, and the MgO thin film is (100)
Orient.

作用 半導体基板上に(100)配向したMgO薄膜を作成す
ることにより、その上部に、分極軸方向に配向した強誘
電体薄膜を作成することができ、材料特性の良い強誘電
体薄膜素子が得られる。
By creating a (100) oriented MgO thin film on a working semiconductor substrate, a ferroelectric thin film oriented in the direction of the polarization axis can be created on top of the MgO thin film, and a ferroelectric thin film element with good material properties can be obtained. It will be done.

実施例 第1図に本発明の一実施例を示す。半導体基板4上にM
gO薄膜5を形成し、MgO薄膜5上に下部電極6を形
成し、下部電極6上に強誘電体薄膜7を形成し、強誘電
体薄膜7上に上部電極8を形成したものである。
Embodiment FIG. 1 shows an embodiment of the present invention. M on the semiconductor substrate 4
A gO thin film 5 is formed, a lower electrode 6 is formed on the MgO thin film 5, a ferroelectric thin film 7 is formed on the lower electrode 6, and an upper electrode 8 is formed on the ferroelectric thin film 7.

半導体基板4としてシリコンウェハを用い、この上に(
100)配向したMgO薄膜5をRFマグネトロンスパ
ッタリング法を用いて作成した。
A silicon wafer is used as the semiconductor substrate 4, and (
100) An oriented MgO thin film 5 was created using an RF magnetron sputtering method.

(100)面および(111)面の二種類のシリコンウ
ェハについて試したが、どちらの基板上でも(100)
配向したMgO薄膜が得られた。
We tested two types of silicon wafers, one with the (100) plane and the other with the (111) plane, but the (100)
An oriented MgO thin film was obtained.

上記MgO薄膜5上の下部電極6として(100)配向
した白金を用いた。この白金電極もRFマグネトロンス
パッタリング法によって作成した。また、強誘電体薄膜
7の作成にもRFマグネトロンスパッタリン°グ法を用
いた。上記MgO薄膜5と上記下部電極6と強誘電体薄
膜7の作成条件を表1に示す。
(100) oriented platinum was used as the lower electrode 6 on the MgO thin film 5. This platinum electrode was also created by RF magnetron sputtering. Further, the RF magnetron sputtering method was also used to create the ferroelectric thin film 7. Table 1 shows the conditions for forming the MgO thin film 5, the lower electrode 6, and the ferroelectric thin film 7.

表   1 なお、前記下部電極6を設けた場合と、下部電極6を付
けずに上記MgO薄膜5上に直接強誘電体薄膜7を作成
した場合とを実験した。下部電極6上、M g O薄膜
5上どちらにおいても(001〉配向した強誘電体薄膜
7が得られた。
Table 1 Note that experiments were conducted in the case where the lower electrode 6 was provided and the case where the ferroelectric thin film 7 was formed directly on the MgO thin film 5 without the lower electrode 6. A ferroelectric thin film 7 with (001> orientation) was obtained both on the lower electrode 6 and on the M g O thin film 5 .

下記化学式で表されろ強誘電体薄膜7は強誘電体材料、
特に焦電型赤外線センサとして特性が優れており、分極
軸を揃えることによりさらに特性向上を計ることができ
る。
The ferroelectric thin film 7 is a ferroelectric material represented by the following chemical formula,
It has particularly excellent characteristics as a pyroelectric infrared sensor, and the characteristics can be further improved by aligning the polarization axes.

Pbx Lay ’ri2Zrw 03a) 0.7≦
x≦1.0.9≦x+y≦1.0.95≦z≦l、w=
0b)  x=1、y=0、0.45≦z < l 、
  z+w−1c)  0.83≦x≦l 、X+’/
=1、0,5≦ZSI、0.96≦Z+W≦1また、上
記組成における上記強誘電体材料は正方品となり分極軸
が(001)方向であるため、(001)配向させるこ
とにより電圧感度の高い焦電型赤外線センサを得ること
ができる。
Pbx Lay'ri2Zrw 03a) 0.7≦
x≦1.0.9≦x+y≦1.0.95≦z≦l, w=
0b) x=1, y=0, 0.45≦z<l,
z+w-1c) 0.83≦x≦l, X+'/
=1, 0,5≦ZSI, 0.96≦Z+W≦1 Also, since the above ferroelectric material with the above composition is a square product and the polarization axis is in the (001) direction, the voltage sensitivity can be improved by (001) orientation. It is possible to obtain a pyroelectric infrared sensor with high efficiency.

上記組成のうちx+y=l 、 z−1−x/4 、 
w−0である試料を作成し、そのX線回折を測定した。
Among the above compositions, x+y=l, z-1-x/4,
A w-0 sample was prepared and its X-ray diffraction was measured.

その結果(001)と(100)以外の信号は殆ど観測
されず、どちらかに配向した微結界の集合となっている
ことがわかる。
As a result, almost no signals other than (001) and (100) are observed, and it can be seen that the signal is a collection of fine barriers oriented in either direction.

また、次式に示すαを(001)配向率として、各Xに
ついてのαを求めた。この結果を表2に示す。
Further, α for each X was determined by setting α shown in the following formula to the (001) orientation rate. The results are shown in Table 2.

α= r (00+1 / (1(+001 +r (
ooI))1(100):(100)ピークのカウント
数1(001):(001)ピークのカウント数表  
 2 以上のように、シリコンウェハ上にMgO薄膜を作成す
ることにより、配向し、分極軸の揃った強誘電体薄膜を
作成することができ、材料特性の良い強誘電体薄膜素子
を作成できる。また、半導体上に作成しているため、信
号処理デバイス一体型として雑音低下、小型化を計るこ
とができる。
α= r (00+1 / (1(+001 +r (
ooI)) 1 (100): (100) Peak count number 1 (001): (001) Peak count number table
2. As described above, by forming an MgO thin film on a silicon wafer, a ferroelectric thin film that is oriented and has aligned polarization axes can be formed, and a ferroelectric thin film element with good material properties can be formed. Additionally, since it is fabricated on a semiconductor, it can be integrated with a signal processing device, reducing noise and reducing size.

発明の効果 本発明によれば、半導体基板上に(100)配向したM
gO薄膜を作成することにより、分極軸方向に配向した
強誘電体薄膜を半導体基板上に作成することができるよ
うになり、材料特性の良い強誘電体薄膜素子が得られる
Effects of the Invention According to the present invention, (100) oriented M
By creating a gO thin film, a ferroelectric thin film oriented in the direction of the polarization axis can be created on a semiconductor substrate, and a ferroelectric thin film element with good material properties can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における強誘電体薄膜素子の
断面図、第2図は従来例を示す断面図である。 4・・・・・・半導体基板、5・・・・・・M g O
薄膜、6・・・・・・下部電極、7・・・・・・強誘電
体薄膜、8・・・・・・上部電極。
FIG. 1 is a sectional view of a ferroelectric thin film element according to an embodiment of the present invention, and FIG. 2 is a sectional view of a conventional example. 4... Semiconductor substrate, 5... M g O
Thin film, 6... lower electrode, 7... ferroelectric thin film, 8... upper electrode.

Claims (5)

【特許請求の範囲】[Claims] (1)半導体基板と、半導体基板上に形成したMgO薄
膜と、MgO薄膜上に形成した強誘電体薄膜とを有し、
前記MgO薄膜が(100)配向している強誘電体薄膜
素子。
(1) It has a semiconductor substrate, an MgO thin film formed on the semiconductor substrate, and a ferroelectric thin film formed on the MgO thin film,
A ferroelectric thin film element in which the MgO thin film is (100) oriented.
(2)強誘電体薄膜がPb_xLa_yTi_zZr_
wO_3で表され、 a)0.7≦x≦1、0.9≦x+y≦1、0.95≦
z≦1、w=0b)x=1、y=0、0.45≦z<1
、z+w=1c)0.83≦x≦1、x+y=1、0.
5≦z<1、0.96≦z+w≦1のいずれかの組成を
有する特許請求の範囲第1項記載の強誘電体薄膜素子。
(2) Ferroelectric thin film is Pb_xLa_yTi_zZr_
Represented by wO_3, a) 0.7≦x≦1, 0.9≦x+y≦1, 0.95≦
z≦1, w=0b) x=1, y=0, 0.45≦z<1
, z+w=1c) 0.83≦x≦1, x+y=1, 0.
The ferroelectric thin film element according to claim 1, having a composition of either 5≦z<1, 0.96≦z+w≦1.
(3)強誘電体薄膜の配向面が(001)である特許請
求の範囲第1項記載の強誘電体薄膜素子。
(3) The ferroelectric thin film element according to claim 1, wherein the ferroelectric thin film has a (001) orientation plane.
(4)強誘電体薄膜上に上部電極を形成し、半導体基板
を下部電極とした特許請求の範囲第1項記載の強誘電体
薄膜素子。
(4) A ferroelectric thin film element according to claim 1, wherein an upper electrode is formed on the ferroelectric thin film, and a semiconductor substrate is used as the lower electrode.
(5)強誘電体薄膜上に形成した上部電極と、MgO薄
膜と強誘電体薄膜との間に形成した下部電極を有し、前
記下部電極が(100)配向している白金薄膜であるこ
とを特徴とする特許請求の範囲第1項記載の強誘電体薄
膜素子。
(5) It has an upper electrode formed on a ferroelectric thin film and a lower electrode formed between an MgO thin film and a ferroelectric thin film, and the lower electrode is a platinum thin film with (100) orientation. A ferroelectric thin film element according to claim 1, characterized in that:
JP61004529A 1986-01-13 1986-01-13 Ferroelectric thin film element Expired - Fee Related JPH0685450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61004529A JPH0685450B2 (en) 1986-01-13 1986-01-13 Ferroelectric thin film element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61004529A JPH0685450B2 (en) 1986-01-13 1986-01-13 Ferroelectric thin film element

Publications (2)

Publication Number Publication Date
JPS62162369A true JPS62162369A (en) 1987-07-18
JPH0685450B2 JPH0685450B2 (en) 1994-10-26

Family

ID=11586571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61004529A Expired - Fee Related JPH0685450B2 (en) 1986-01-13 1986-01-13 Ferroelectric thin film element

Country Status (1)

Country Link
JP (1) JPH0685450B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62211520A (en) * 1986-03-12 1987-09-17 Matsushita Electric Ind Co Ltd Pyroelectric infrared sensor
EP0596329A1 (en) * 1992-11-04 1994-05-11 Matsushita Electric Industrial Co., Ltd. Pyroelectric infrared detector and method of fabricating the same
US5507080A (en) * 1993-12-07 1996-04-16 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a capacitance sensor
US5612536A (en) * 1994-02-07 1997-03-18 Matsushita Electric Industrial Co., Ltd. Thin film sensor element and method of manufacturing the same
US5776621A (en) * 1992-12-25 1998-07-07 Fuji Xerox Co., Ltd. Oriented ferroelectric thin film element
JP2011013224A (en) * 2010-08-06 2011-01-20 Hochiki Corp Manufacturing method of infrared detection element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131704A (en) * 1983-12-20 1985-07-13 松下電器産業株式会社 Pyroelectric heat detecting element
JPS61185808A (en) * 1985-02-14 1986-08-19 日本電気株式会社 Making process of orientation thin film for ferrodielectric compound

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131704A (en) * 1983-12-20 1985-07-13 松下電器産業株式会社 Pyroelectric heat detecting element
JPS61185808A (en) * 1985-02-14 1986-08-19 日本電気株式会社 Making process of orientation thin film for ferrodielectric compound

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62211520A (en) * 1986-03-12 1987-09-17 Matsushita Electric Ind Co Ltd Pyroelectric infrared sensor
EP0596329A1 (en) * 1992-11-04 1994-05-11 Matsushita Electric Industrial Co., Ltd. Pyroelectric infrared detector and method of fabricating the same
US5413667A (en) * 1992-11-04 1995-05-09 Matsushita Electric Industrial Co., Ltd. Pyroelectric infrared detector fabricating method
US5483067A (en) * 1992-11-04 1996-01-09 Matsuhita Electric Industrial Co., Ltd. Pyroelectric infrared detector and method of fabricating the same
EP0764990A1 (en) * 1992-11-04 1997-03-26 Matsushita Electric Industrial Co., Ltd. Pyroelectric infrared detector and method of fabricating the same
US5776621A (en) * 1992-12-25 1998-07-07 Fuji Xerox Co., Ltd. Oriented ferroelectric thin film element
US5507080A (en) * 1993-12-07 1996-04-16 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a capacitance sensor
US5612536A (en) * 1994-02-07 1997-03-18 Matsushita Electric Industrial Co., Ltd. Thin film sensor element and method of manufacturing the same
US6105225A (en) * 1994-02-07 2000-08-22 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a thin film sensor element
JP2011013224A (en) * 2010-08-06 2011-01-20 Hochiki Corp Manufacturing method of infrared detection element

Also Published As

Publication number Publication date
JPH0685450B2 (en) 1994-10-26

Similar Documents

Publication Publication Date Title
Ramesh et al. Ferroelectric La‐Sr‐Co‐O/Pb‐Zr‐Ti‐O/La‐Sr‐Co‐O heterostructures on silicon via template growth
Taguchi et al. Raman scattering from PbTiO3 thin films prepared on silicon substrates by radio frequency sputtering and thermal treatment
Tuttle et al. Highly oriented, chemically prepared Pb (Zr, Ti) O3 thin films
Cox et al. Universal phase diagram for high-piezoelectric perovskite systems
Iijima et al. Preparation of c‐axis oriented PbTiO3 thin films and their crystallographic, dielectric, and pyroelectric properties
Ramesh et al. Oriented ferroelectric La‐Sr‐Co‐O/Pb‐La‐Zr‐Ti‐O/La‐Sr‐Co‐O heterostructures on [001] Pt/SiO2 Si substrates using a bismuth titanate template layer
Castellano et al. Ion‐beam deposition of thin films of ferroelectric lead zirconate titanate (PZT)
EP3937265A1 (en) Film structure, piezoelectric film and superconductor film
JPS62162369A (en) Ferroelectric thin film element
JPH08253324A (en) Ferroelectric thin film constitution body
Okuyama et al. PbTiO3 ferroelectric thin films and their pyroelectric application
Chen et al. Sol-gel derived ferroelectric PZT thin films on doped silicon substrates
JPH0812494A (en) Production of oxide crystal thin film and thin-film element
JPH08186182A (en) Ferroelectric thin-film element
Iijima et al. Sputtering of lead-based ferroelectrics
Huffman et al. Compositional and microstructural characterization of thin film lead zirconate titanate ferroelectrics
JPH0762235B2 (en) Method of manufacturing ferroelectric thin film
JP2004281742A (en) Semiconductor device, semiconductor sensor and semiconductor memory element
Akai et al. Fabrication of ultrasonic transducers using epitaxial Pb (Zr, Ti) O3 thin films on epitaxial γ-Al2O3/Si substrates for smart sensors
JP2583882B2 (en) Oriented perovskite-type compound laminated film
JPS62211520A (en) Pyroelectric infrared sensor
Jacobs et al. Ferroelectric properties of tri-glycine sulphate thin films
Deb et al. Investigation of pyroelectric characteristics of lead titanate thin films for microsensor applications
JP2568505B2 (en) Ferroelectric thin film element
KR0147124B1 (en) Thin film infrared image sensor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees