JPS6216122B2 - - Google Patents

Info

Publication number
JPS6216122B2
JPS6216122B2 JP10694081A JP10694081A JPS6216122B2 JP S6216122 B2 JPS6216122 B2 JP S6216122B2 JP 10694081 A JP10694081 A JP 10694081A JP 10694081 A JP10694081 A JP 10694081A JP S6216122 B2 JPS6216122 B2 JP S6216122B2
Authority
JP
Japan
Prior art keywords
membrane
semipermeable
membranes
reverse osmosis
furfuryl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10694081A
Other languages
Japanese (ja)
Other versions
JPS5811005A (en
Inventor
Yukio Nakagawa
Hiroyuki Yamamura
Masaru Kurihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP10694081A priority Critical patent/JPS5811005A/en
Publication of JPS5811005A publication Critical patent/JPS5811005A/en
Publication of JPS6216122B2 publication Critical patent/JPS6216122B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、フルフリルアルコヌルを必須成分ず
する架橋重合䜓からなる半透膜の遞択分離胜を向
䞊させる凊理法に関する。 埓来、逆浞透法による遞択的分離膜ずしお、各
皮の半透膜が提案され、この半透膜を甚いお、海
氎やカン氎の淡氎化あるいは有䟡物の回収などの
分野に広く利甚されようずしおいる。 これらの半透膜ずしおは、酢酞セルロヌス膜に
代衚される非察称性膜、すなわち、いわゆるロブ
Loeb型膜の他に、各皮の倚孔質支持䜓衚面䞊
に半透性を有する障壁局ずしお該支持䜓を構成す
る重合䜓ずは異皮のポリアミド、フルフリルアル
コヌルの架橋重合䜓などからなる超薄膜を蚭けた
耇合膜など倚皮倚様のものがあるが、埌者は酢酞
セルロヌス膜のように、垞時、氎䞭たたは湿最状
態に保存する必芁がなく、しかも、酞、アルカリ
たたは城生物などによる加氎分解を受け難く、支
持䜓ず障壁局ずをそれぞれ独立しお遞ぶこずによ
り、甚途、目的に応じた最適な半透膜を補造する
こずのできるメリツトがある。たずえば、ポリス
ルホン、塩玠化ポリ塩化ビニル、酢酞セルロヌス
などからなる倚孔質支持䜓䞊に障壁局ずしおフル
フリルアルコヌルの架橋重合䜓からなる薄膜を蚭
けた耇合膜米囜特蚱第3926798号、ポリ゚チレ
ンむミン架橋重合䜓からなる障壁局を蚭けた耇合
膜特開昭52―127481号などがある。本発明者
らはこのような半透性耇合膜ずしお、フルフリル
アルコヌルずむノシトヌル、゜ルビトヌルなどの
倚䟡アルコヌルおよびトリスヒドロキシ゚チルむ
゜シアヌレヌトなどを硫酞など酞の存圚䞋重瞮合
しお埗られる架橋重合䜓を障壁局ずする半透性耇
合膜が前蚘耇合膜の特長を保持するず共に、海氎
やカン氎に察しおのみならず倚くの氎溶性有機化
合物、無機化合物あるいはむオンもしくは錯むオ
ン圢成性化合物に察しおも卓越した遞択分離胜を
有するこずを芋出し既に提案しおいる。 これらの半透膜は、実質䞊その逆浞透性胜を決
める薄い緻密局あるいは障壁局をそれぞれ倚孔局
あるいは支持局ず呌ばれる局で支持した構造を有
しおいる。この緻密局あるいは障壁局はその厚さ
が0.1ミクロン皋床であるず蚀われ、この厚さが
薄い皋、透氎性胜が高くなるために奜たしいずさ
れおいるが、その堎合品質は䞍安定になりがちで
ある。たずえば、実際に逆浞透法を工業的に甚い
るためにはモゞナヌル化が必芁であり、さらに、
実甚䞊、数十Kgcm2の高圧条件䞋で運転されるた
め、半透膜衚面の欠点やわずかな機械的欠陥およ
び半透膜の䌞び瞮み等の物理的芁因、および、た
ずえば、酢酞セルロヌス膜にみられるような加氎
分解等の化孊的芁因による劣化により、半透膜の
遞択分離性胜の䜎䞋するのが䞀般的である。 そのような半透膜を凊理しお脱塩性胜を維持あ
るいは改善するずいう詊みも別になされおきた。
䞻に酢酞セルロヌス膜を察象ずするものに぀いお
は、特に報告䟋が豊富でたずえば、特開昭48―
28650号では界面掻性剀を原氎に添加する方法、
特公昭52―32869号にはポリビニルアルコヌルに
より劣化した膜の遞択分離性胜を改善する方法、
さらに特公昭53―13431号には酢酞ビニルず䞍飜
和カルボン酞共重合䜓による遞択分離性胜の改善
法が提案されおいる。本発明者らも、先に、カル
ボン酞倉性ケン化酢酞゚ステル基を有するビニル
系重合䜓を䞻成分ずする膜凊理剀を提案しおい
る。 しかるに、前述したような酢酞セルロヌスを察
象ずした膜凊理剀では、フルフリルアルコヌル系
重合䜓からなる半透膜の䜎䞋した遞択分離胜を回
埩するのに十分でない。 しかも、䞀般に海氎あるいは工業甚氎などを被
凊理原液ずする液䜓分離法においおは、埮生物や
藻類たたは貝類などが、逆浞透装眮の配管内に付
着、蓄積するのを防止するために塩玠を混入する
のが普通である。 しかるに、䞀般に、半透膜特に、酢酞セルロヌ
ス膜以倖の合成半透膜においおは、膜の圧密化や
切傷等の物理的芁因に加えお、塩玠等の化孊的芁
因によ぀お該半透膜の遞択分離胜が䜎䞋し、寿呜
が短かくなるのが通垞である。 䞊蚘のフルフリルアルコヌル系重合䜓からなる
半透膜においおも同様の傟向を瀺すが、特に、き
わめお高い遞択分離性胜が芁求される海氎段淡
氎化のような甚途においおはそのこずが、臎呜傷
になるのである。 本発明者らはこのようなフルフリルアルコヌル
を必須成分ずする架橋重合䜓からなる半透膜で長
時間䜿甚により性胜䜎䞋したものの遞択分離胜の
回埩法に぀いお鋭意怜蚎を進めお本発明を芋出す
に至぀たものである。 すなわち、本発明は次の構成を有する。 フルフリルアルコヌルを必須成分ずする架橋重
合䜓からなる半透膜を氎溶性アミノ化合物を含有
する氎溶液に接觊させるこずを特城ずする半透膜
の凊理法。 本発明の特城は、遞択分離胜の䜎䞋したフルフ
リルアルコヌル系重合䜓からなる半透膜を、アミ
ノ基を有する化合物を埮量含む氎溶液に短時間接
觊させるずいうきわめお簡単な方法で著しい遞択
分離胜の向䞊効果が埗られる点にある。 本発明においお、フルフリルアルコヌル系重合
䜓からなる半透膜ずは、フルフリルアルコヌル又
はそれずトリスヒドロキシ゚チルむ゜シアヌレヌ
ト、むノシトヌル、゜ルビトヌルやメチロヌル化
ポリビニルプノヌルなどからなる反応成分系お
よび酞觊媒ずしお硫酞、リン酞、トル゚ンスルホ
ン酞、奜たしくは硫酞を含有する氎溶液を塗垃し
お加熱重合せしめた薄膜からなる半透膜であり、
さらに具䜓的には、米囜特蚱第392679号および本
発明者らが先に提案した特開昭54―107882号、特
願昭54―67438号および特願昭54―91498号などに
開瀺されおいる反応成分系が奜たしい。かかる半
透膜は、通垞、ポリスルホン、ポリ塩化ビニル、
ポリ塩化ビニリデン、硝酞セルロヌスたたはそれ
らの共重合䜓、特にポリスルホンからなる倚孔性
支持䜓ず䞀䜓にな぀た耇合膜ずしお甚いられる。 本発明においお、アミノ基を有する氎溶性化合
物ずしおは、通垞のアルキルアミノ化合物、芳銙
族アミノ化合物、脂環匏アミノ化合物およびその
他のアミノ化合物のいずれでも氎溶性のものであ
れば甚いるこずができる。たた、モノアミノ化合
物でもポリアミノ化合物でも、たた䜎分子化合物
でも高分子化合物でも良い。 アルキルアミノ化合物の䟋ずしおは、゚チレン
ゞアミン、モノ゚タノヌルアミン、ゞ゚タノヌル
アミン、トリ゚チレンテトラミンなどが挙げられ
る。芳銙族アミノ化合物の䟋ずしおは、プニレ
ンゞアミン、ゞアミノゞプニルメタン、スルフ
アニル酞、ゞアミノ安息銙酞などが挙げられる。
脂環匏アミノ化合物の䟋ずしおは、ゞアミノシク
ロヘキサンが挙げられる。その他の䟋ずしおは、
スルフアミン酞、ピペラゞン、アミノメチルピペ
リゞンなどが挙げられる。たた、高分子化合物ず
しおは、ポリ゚チレンむミン、プニレンゞアミ
ン倉性ポリ゚ピクロルヒドリン、ポリ゚チレンむ
ミン倉性ポリペヌドヒドリンなどが挙げられる
が、これらのアミノ化合物の䞭で初期効果および
効果の持続性の点からポリ゚チレンむミンおよび
ポリ゚チレンむミン倉性ポリ゚ピハロヒドリンが
最も奜たしい。 これらの氎溶性アミノ化合物のフルフリルアル
コヌル系重合䜓からなる半透膜の遞択分離胜向䞊
効果は、必ずしも長時間の運転を経お遞択分離胜
が䜎䞋したいわゆる劣化膜に限らず、補膜盎埌の
未䜿甚膜に察しおもその効果をみるこずができ
る。 たた、䞊蚘の氎溶性アミノ化合物は前凊理をし
なくおも十分に遞択分離胜を回埩する効果がみら
れるが、掗浄のような前凊理をするこずによ぀お
特に長時間運転したこずによ぀お劣化したような
膜に察しおは、遞択分離胜の回埩率が良くなるず
ずもに持続性が増す効果が埗られる。 こうした前凊理膜掗浄は䞀般に知られおい
る方法で良い。たずえば、埮生物や有機物のよう
な汚れが考えられる堎合には界面掻性剀や酵玠掗
剀などによる方法が甚いられる。たた、難溶性金
属塩や無機性コロむドのような汚れが考えられる
堎合には、ク゚ン酞アンモニりムや、゚チレンゞ
アミン酢酞ナトリりム塩などが有効である。 本発明による遞択分離胜回埩効果は必ずしも䞀
床しか効力を発揮しないずは限らず、その効力が
衰えあるいは無くな぀た時点で再床その効果を発
揮するこずが可胜である。 さらに、本発明の効果は、単膜だけでなく工業
甚途䞊実際の䜿甚圢態であるモゞナヌルに察しお
も単膜ず同様の効力を発揮するこずは蚀うたでも
ない。たた、そのモゞナヌルの圢状は管状型であ
぀おもスパむラル型であ぀おもあるいは䞭空糞型
であ぀おも良く、特にその圢状は問わない。 本発明の方法においおアミノ化合物の氎溶液䞭
の濃床は、1ppmから皋床の範囲で良いが、
奜たしくは10ppmから1000ppm皋床が甚いられ
る。たた、該アミノ化合物の溶媒は脱塩氎が奜た
しいが、被凊理原液に盎接添加しお甚いおも良
い。たた、操䜜圧力はKgcm2〜100Kgcm2の範
囲で䜿甚できるが通垞は〜70Kgcm2の範囲が奜
The present invention relates to a treatment method for improving the selective separation ability of a semipermeable membrane made of a crosslinked polymer containing furfuryl alcohol as an essential component. In the past, various semipermeable membranes have been proposed as selective separation membranes using reverse osmosis, and attempts have been made to use these semipermeable membranes widely in fields such as desalination of seawater and can water and recovery of valuables. There is. These semipermeable membranes include asymmetric membranes typified by cellulose acetate membranes, that is, so-called Loeb membranes, as well as semipermeable barrier layers on the surface of various porous supports. There are a wide variety of composite membranes with ultra-thin membranes made of polyamides different from the polymer constituting the support, crosslinked polymers of furfuryl alcohol, etc., but the latter, like cellulose acetate membranes, are constantly There is no need to store it in water or in a wet state, and it is not susceptible to hydrolysis by acids, alkalis, or biological organisms. By selecting the support and barrier layer independently, it is possible to create the optimal solution according to the application and purpose. It has the advantage of being able to manufacture semipermeable membranes. For example, composite membranes in which a thin film made of a crosslinked polymer of furfuryl alcohol is provided as a barrier layer on a porous support made of polysulfone, chlorinated polyvinyl chloride, cellulose acetate, etc. (US Pat. No. 3926798), polyethyleneimine crosslinked There are composite membranes with a barrier layer made of a polymer (Japanese Patent Application Laid-open No. 127481/1983). The present inventors developed a cross-linked polymer obtained by polycondensing furfuryl alcohol, a polyhydric alcohol such as inositol or sorbitol, and trishydroxyethyl isocyanurate in the presence of an acid such as sulfuric acid as such a semipermeable composite membrane. The semi-permeable composite membrane which has a barrier layer of We have already proposed a method that has been found to have excellent selective separation ability. These semipermeable membranes have a structure in which a thin dense layer or barrier layer, which substantially determines the reverse osmosis performance, is supported by a layer called a porous layer or a support layer, respectively. This dense layer or barrier layer is said to have a thickness of about 0.1 micron, and it is said that the thinner the thickness, the better the water permeability, but in that case the quality tends to be unstable. It is. For example, in order to actually use the reverse osmosis method industrially, it is necessary to modularize it, and furthermore,
In practice, it is operated under high pressure conditions of several tens of kg/ cm2 , so physical factors such as defects on the surface of the semipermeable membrane, slight mechanical defects, expansion and contraction of the semipermeable membrane, and cellulose acetate, etc. The selective separation performance of semipermeable membranes generally decreases due to deterioration caused by chemical factors such as hydrolysis. Other attempts have been made to treat such semipermeable membranes to maintain or improve their desalination performance.
There are a lot of reports on those mainly targeting cellulose acetate membranes.
No. 28650 describes a method of adding surfactants to raw water;
Japanese Patent Publication No. 52-32869 describes a method for improving the selective separation performance of membranes degraded by polyvinyl alcohol;
Furthermore, Japanese Patent Publication No. 13431/1983 proposes a method for improving selective separation performance using a copolymer of vinyl acetate and unsaturated carboxylic acid. The present inventors have also previously proposed a membrane treatment agent containing a vinyl polymer having a carboxylic acid-modified saponified acetate group as a main component. However, the membrane treating agents for cellulose acetate as described above are not sufficient to restore the reduced selective separation ability of the semipermeable membrane made of furfuryl alcohol polymer. Moreover, in liquid separation methods that use seawater or industrial water as the raw liquid to be treated, chlorine is generally mixed in to prevent microorganisms, algae, or shellfish from adhering to and accumulating in the piping of reverse osmosis equipment. is normal. However, in general, semipermeable membranes, especially synthetic semipermeable membranes other than cellulose acetate membranes, are subject to chemical factors such as chlorine in addition to physical factors such as membrane compaction and cuts. Usually, the selective resolution is reduced and the lifetime is shortened. The above-mentioned semipermeable membrane made of furfuryl alcohol-based polymer shows a similar tendency, but this can be fatal, especially in applications such as one-stage desalination of seawater, which requires extremely high selective separation performance. It will become. The present inventors have conducted intensive studies on a method for restoring the selective separation ability of a semipermeable membrane made of a crosslinked polymer containing furfuryl alcohol as an essential component, whose performance has deteriorated due to long-term use, and discovered the present invention. It has been reached. That is, the present invention has the following configuration. A method for treating a semipermeable membrane, which comprises bringing a semipermeable membrane made of a crosslinked polymer containing furfuryl alcohol as an essential component into contact with an aqueous solution containing a water-soluble amino compound. A feature of the present invention is that a semipermeable membrane made of a furfuryl alcohol polymer with a reduced selective separation ability is brought into contact with an aqueous solution containing a trace amount of a compound having an amino group for a short period of time. The point is that improvement effects can be obtained. In the present invention, a semipermeable membrane made of a furfuryl alcohol-based polymer refers to a reaction component system made of furfuryl alcohol or it, trishydroxyethyl isocyanurate, inositol, sorbitol, methylolated polyvinylphenol, etc., and sulfuric acid or phosphorus as an acid catalyst. A semipermeable membrane consisting of a thin film coated with an aqueous solution containing an acid, toluenesulfonic acid, preferably sulfuric acid, and polymerized by heating.
More specifically, it is disclosed in U.S. Pat. Reactive component systems are preferred. Such semipermeable membranes are typically made of polysulfone, polyvinyl chloride,
It is used as a composite membrane integrated with a porous support made of polyvinylidene chloride, cellulose nitrate, or a copolymer thereof, especially polysulfone. In the present invention, as the water-soluble compound having an amino group, any of ordinary alkylamino compounds, aromatic amino compounds, alicyclic amino compounds, and other amino compounds can be used as long as they are water-soluble. Further, it may be a monoamino compound or a polyamino compound, or a low molecular compound or a high molecular compound. Examples of alkylamino compounds include ethylenediamine, monoethanolamine, diethanolamine, triethylenetetramine, and the like. Examples of aromatic amino compounds include phenylene diamine, diaminodiphenylmethane, sulfanilic acid, diaminobenzoic acid, and the like.
An example of an alicyclic amino compound is diaminocyclohexane. Other examples include:
Examples include sulfamic acid, piperazine, aminomethylpiperidine, and the like. In addition, examples of polymer compounds include polyethyleneimine, phenylenediamine-modified polyepichlorohydrin, and polyethyleneimine-modified polyiodohydrin. Among these amino compounds, polyethyleneimine is preferred in terms of initial effect and durability of effect. and polyethyleneimine-modified polyepihalohydrin are most preferred. The selective separation ability improvement effect of these semipermeable membranes made of furfuryl alcohol-based polymers of water-soluble amino compounds is not necessarily limited to so-called deteriorated membranes whose selective separation ability has decreased after long-term operation, but also to membranes immediately after membrane formation. The effect can also be seen on unused membranes. In addition, although the above-mentioned water-soluble amino compounds are effective in restoring the selective separation ability even without pretreatment, pretreatment such as washing can be effective in recovering the selective separation ability, especially after long-term operation. For membranes that have deteriorated over time, the recovery rate of selective separation ability is improved and the durability is increased. Such pretreatment (membrane cleaning) may be performed by a generally known method. For example, when contamination such as microorganisms or organic matter is considered, methods using surfactants, enzyme detergents, etc. are used. In addition, when stains such as poorly soluble metal salts or inorganic colloids are considered, ammonium citrate, ethylenediaminetetraacetic acid disodium salt, etc. are effective. The selective separation ability recovery effect according to the present invention does not necessarily take effect only once, but can take effect again at the point when its effect has weakened or disappeared. Furthermore, it goes without saying that the effects of the present invention are exerted not only on single films but also on modules which are actually used in industrial applications. Further, the shape of the module may be a tubular type, a spiral type, or a hollow fiber type, and the shape is not particularly limited. In the method of the present invention, the concentration of the amino compound in the aqueous solution may range from 1 ppm to about 1%;
Preferably, about 10 ppm to 1000 ppm is used. Further, the solvent for the amino compound is preferably demineralized water, but it may be used by directly adding it to the stock solution to be treated. In addition, the operating pressure can be used in the range of 1Kg/cm 2 to 100Kg/cm 2 , but the range of 3 to 70Kg/cm 2 is usually preferred.

【衚】 実斜䟋  20cm×30cmの倧きさの長方圢のポリ゚ステル繊
維からなるタフタタテ糞、ペコ糞ずも150デニ
ヌルのマルチフむラメント、織密床タテ90本む
ンチ、ペコ67本むンチ、厚さ160Όをガラス
板䞊に固定し、その䞊にポリスルホンナニオ
ン・カヌバむド瀟補のUdel ―3500の15重量
ゞメチルホルムアミドDMF溶液を200Όの
厚みで宀枩15〜〜30℃でキダストし、盎ちに
宀枩のドデシルベンれンスルホン酞ナトリりム
0.5重量を含む氎溶液䞭に浞挬しお分間攟眮
埌玔氎で時間掗浄するこずによ぀お繊維補匷ポ
リスルホン支持䜓以䞋FR―PS支持䜓ず略す
を䜜成する。このFR―PS支持䜓厚さ200Ό
の玔氎透過係数は圧力Kgcm2、枩床25℃で枬定
しお0.01〜0.020gcm2・sec・atmである。トリス
ヒドロキシ゚チルむ゜シアヌレヌト以䞋
THEICず略す重量、フルフリルアルコヌ
ル以䞋FAず略す重量THEICFAモ
ル比1684、硫酞重量、ドデシル硫酞゜
ヌダ重量、およびむ゜プロピルアルコヌル20
重量を含有する氎溶液を調敎し、この氎溶液に
氎で濡れたFR―PS支持䜓を15℃で分間浞挬す
る。次いでFR―PS支持䜓を取出しお長蟺の䞡端
をcm幅の鉄板150g枚にはさんで20℃で
分間぀るしお垂盎に保持した埌そのたたの状態
で熱颚也燥噚に入れ、130℃で分間也燥し、さ
らに匕続き、150℃で分間熱凊理を行なう。次
いでこの膜をガラス板䞊に固定し、その膜衚面䞊
にケン化床100モル、重合床1500のポリビニヌ
ルアルコヌル日本合成化孊瀟補のNM―14の
重量氎溶液を宀枩䞋20℃でドクタヌナむ
フを甚いお50Όの厚みでコヌテむングし、熱颚也
燥噚に入れ、分間熱凊理を行なう。埗られた耇
合膜の衚面にはポリビニルアルコヌル薄膜による
干枉じたが認められた。たた、耇合膜の各局の厚
さを電子顕埮鏡芳察により枬定したずころ、障壁
局が30mΌ、保護膜局が0.4〜0.5Όであ぀た。 この膜の逆浞透性胜を食塩氎条件で枬定したず
ころ食塩の排陀率は99.8、透過氎量は0.35m3
m2・日であ぀た。 この膜を甚いお、3.5重量の海氎を甚い、前
凊理工皋で添加した塩玠を陀去するために
10ppmの重亜硫酞ナトリりムを添加する以倖は
実斜䟋ず同䞀の条件以䞋海氎条件ず呌ぶで
海氎淡氎化詊隓を実斜したずころ、初期倀は塩排
陀率99.8、透過氎量は0.34m3m2・日であ぀た
が5000時間の運転埌には、塩排陀率98.9たで䜎
䞋し、透過氎量も0.38m3m2・日たで倉化した。
その時の食塩氎条件䞋での逆浞透性胜は食塩排陀
率が98.8、透過氎量が0.39m3m2・日であ぀
た。 この膜を甚いお、各皮のアミノ化合物の各々
100ppmの氎溶液を甚いお、Kgcm2、25℃、䟛
絊原液膜面流速50cmsecの条件で時間運転し
た埌、食塩氎条件で食塩の逆浞透性胜を枬定した
結果を衚に瀺す。
[Table] Example 2 Taffeta made of rectangular polyester fibers with a size of 20 cm x 30 cm (multifilament of 150 denier in both warp and weft, weaving density: 90 pieces/inch vertically, 67 pieces/inch horizontally, thickness 160ÎŒ) ) was fixed on a glass plate, and a 15% by weight solution of polysulfone (Udel p-3500, manufactured by Union Carbide) in dimethylformamide (DMF) was cast onto it to a thickness of 200ÎŒ at room temperature (15~~30℃). and immediately add sodium dodecylbenzenesulfonate to room temperature.
A fiber-reinforced polysulfone support (hereinafter abbreviated as FR-PS support) was obtained by immersing it in an aqueous solution containing 0.5% by weight, leaving it for 5 minutes, and then washing it with pure water for 1 hour.
Create. This FR-PS support (thickness 200Ό)
The pure water permeability coefficient of is 0.01 to 0.020 g/cm 2 ·sec·atm when measured at a pressure of 1 Kg/cm 2 and a temperature of 25°C. Trishydroxyethyl isocyanurate (hereinafter
THEIC) 1% by weight, furfuryl alcohol (hereinafter abbreviated as FA) 2% by weight (THEIC/FA molar ratio = 16/84), sulfuric acid 2% by weight, sodium dodecyl sulfate 1% by weight, and isopropyl alcohol 20% by weight.
% by weight is prepared, and the FR-PS support wetted with water is immersed in this aqueous solution at 15° C. for 5 minutes. Next, the FR-PS support was taken out, both long sides were sandwiched between 2 cm wide iron plates (150 g/sheet), hung for 1 minute at 20°C, held vertically, and then placed in a hot air dryer for 130°C. It is dried at 150°C for 3 minutes and then heat treated at 150°C for 5 minutes. Next, this membrane was fixed on a glass plate, and a 1% by weight aqueous solution of polyvinyl alcohol (NM-14, manufactured by Nippon Gosei Kagaku Co., Ltd.) with a degree of saponification of 100 mol% and a degree of polymerization of 1500 was poured onto the surface of the membrane at room temperature ( Coat with a thickness of 50Ό using a doctor knife at 20°C), place in a hot air dryer, and heat treat for 2 minutes. Interference fringes due to the polyvinyl alcohol thin film were observed on the surface of the resulting composite film. Further, when the thickness of each layer of the composite film was measured by electron microscopy, the thickness of the barrier layer was 30 Όm, and the thickness of the protective film layer was 0.4 to 0.5 Όm. When the reverse osmosis performance of this membrane was measured under saline conditions, the salt rejection rate was 99.8%, and the amount of permeated water was 0.35 m 3 /
It was warm for m 2 days. This membrane was used to remove chlorine added in the pretreatment process using 3.5% by weight seawater.
A seawater desalination test was conducted under the same conditions as in Example 1 (hereinafter referred to as seawater conditions) except for adding 10 ppm of sodium bisulfite, and the initial value was 99.8% salt rejection rate and 0.34 m 3 / m 2 ·day, but after 5000 hours of operation, the salt rejection rate decreased to 98.9% and the amount of permeated water changed to 0.38m 3 /m 2 ·day.
The reverse osmosis performance under saline conditions at that time was a salt rejection rate of 98.8% and a permeate amount of 0.39 m 3 /m 2 ·day. Using this membrane, each of various amino compounds
Table 2 shows the results of measuring the reverse osmosis performance of salt under saline conditions after operating for 1 hour using a 100 ppm aqueous solution at 4 Kg/cm 2 , 25°C, and a membrane surface flow rate of 50 cm/sec for the raw solution supplied. .

【衚】 実斜䟋  実斜䟋の遞択分離胜の䜎䞋した膜を甚いお䟛
絊食塩氎原液䞭に4′―ゞアミノゞプニルメ
タン以䞋DDMず略すの各々10100ppm
を添加した系で時間運転埌、食塩氎条件で逆浞
透性胜を枬定した結果を衚に瀺す。ただし、
DDMの100ppm添加系ではDDMの䞀郚は溶解し
きれず固䜓のたた浮遊しおいた。
[Table] Example 3 1, 10, and 100 ppm each of 4,4'-diaminodiphenylmethane (hereinafter abbreviated as DDM) was added to the supplied brine stock solution using the membrane of Example 2 with reduced selective separation ability.
Table 3 shows the results of measuring the reverse osmosis performance under saline conditions after 2 hours of operation in the system to which . however,
In the system where 100 ppm of DDM was added, a part of the DDM was not completely dissolved and remained suspended as a solid.

【衚】 なお、DDMを10ppm添加した系でも10時間埌
には食塩排陀率が99.5たで䞊昇した。 実斜䟋  むノシトヌル重量、フルフリルアルコヌル
重量、硫酞重量、ドデシル硫酞゜ヌダ
重量およびむ゜プロピルアルコヌル20重量を
含有する氎溶液を調補し、宀枩で15分間熟成埌、
実斜䟋のFR―PS支持䜓を䜿甚しお実斜䟋ず
同様に補膜した。この膜の食塩条件䞋での逆浞透
性胜は食塩の排陀率99.6、透過氎量0.30m3
m2・日であ぀た。この膜を甚いお重量のε―
カプロラクタム氎溶液で8000時間運転埌再び食塩
氎条件䞋で逆浞透性胜を枬定するず、食塩の排陀
率は98.5にたで䜎䞋し、たた透過氎量は0.33
m3m2・日にな぀おいた。 この膜を甚いお、䟛絊食塩氎原液䞭にポリ゚チ
レンむミン日本觊媒化孊工業(æ ª)瀟補「―
1000」の100ppmを添加しお時間凊理した
埌、再び、食塩氎条件䞋で逆浞透性胜を枬定した
ずころ食塩排陀率は99.3に向䞊した。䞀方、透
過氎量は0.29m3m2・日にな぀た。 実斜䟋  実斜䟋の遞択分離胜の䜎䞋した膜を、たず、
0.1重量のスルフアニル酞氎溶液で逆浞透性胜
枬定条件ず同䞀条件で時間凊理した埌、食塩氎
条件で逆浞透性胜を枬定したずころ、食塩排陀率
は99.0たで向䞊した。䞀方、透過氎量は0.33
m3m2・日のたたであ぀た。次に、さらに、この
膜を50ppmのポリ゚チレンむミン氎溶液を䟛絊
原液ずする以倖は、逆浞透性胜枬定条件ず同䞀条
件で時間凊理した埌、再び、食塩氎条件で逆浞
透性胜を枬定したずころ、食塩排陀率はさらに
99.3にたで向䞊した。䞀方、透過氎量は0.29
m3m2・日ず若干䜎䞋した。 実斜䟋  実斜䟋の方法で䜜぀た半透性耇合膜を䜿぀お
むンチのスパむラル型モゞナヌル膜面積
7.0m2を䜜぀た。このモゞナヌルの3.5重量食
塩氎、56Kgcm2、25℃、PH6.5、䟛絊原液量10
分、氎の回収率15の運転条件䞋での逆浞透
性胜は食塩排陀率が99.7、透過氎量が0.28m3
m2・日であ぀た。 このモゞナヌルを甚いお3.5の海氎に前凊理
工皋で添加した塩玠を陀去するために20ppmの
重亜硫酞ナトリりムを添加した液を䟛絊原液ずす
る以倖は䞊蚘ず同䞀の運転条件で海氎淡氎化詊隓
を実斜したずころ、初期倀は塩の排陀率が99.8
、透過氎量が0.25m3m2・日であ぀たが、5000
時間の運転埌には塩の排陀率が98.7に䜎䞋し、
さらに透過氎量も0.20m3m2・日に䜎䞋した。そ
の時の同䞀条件での3.5重量食塩氎での逆浞透
性胜は食塩排陀率が98.6、透過氎量が0.26m3
m2・日であ぀た。 このモゞナヌルを0.1重量のスルフアニル酞
氎溶液でKgcm2の圧力で操䜜する以倖は逆浞透
性胜枬定条件ず同䞀条件で時間運転し、次に、
100ppmのポリ゚チレンむミン氎溶液を甚いお䞊
蚘ず同䞀条件で時間運転した埌、再び、3.5重
量の食塩氎で逆浞透性胜を枬定したずころ、食
塩の排陀率は99.6にたで向䞊した。䞀方、透過
氎量は0.27m3m2・日であ぀た。 実斜䟋  実斜䟋の遞択分離胜の䜎䞋したモゞナヌルを
0.1重量のドデシル硫酞ナトリりム氎溶液を甚
い、Kgcm2の圧力で操䜜する以倖は実斜䟋の
運転条件ず同䞀条件で日間凊理した埌、さらに
100ppmのポリ゚チレンむミン氎溶液を甚いる以
倖は䞊蚘ず同様の操䜜条件で時間運転した埌、
3.5の海氎に戻しお逆浞透性胜を枬定したずこ
ろ、塩の排陀率は99.7たで向䞊した。䞀方、透
過氎量は0.22m3m2・日であ぀た。このモゞナヌ
ルを膜凊理剀を甚いる前ず同䞀の運転条件で運転
を継続したずころ、1000時間埌には、塩排陀率が
99.2にたで䜎䞋した。䞀方、透過氎量は0.24
m3m2・日であ぀た。そこで、今床は、このモゞ
ナヌルを0.5重量のシナり酞氎溶液を甚い、
Kgcm2の圧力で操䜜する以倖は逆浞透運転条件ず
同䞀の条件で時間凊理した埌、0.1のスルフ
アニル酞氎溶液を甚いKgcm2の圧力で時間運
転した埌、100ppmのポリ゚チレンむミン氎溶液
を甚い、56℃cm2の圧力で時間凊理した。しか
る埌、再び、3.5重量の海氎を甚いお逆浞透性
胜を評䟡したずころ、塩排陀率は99.8たで向䞊
し、透過氎量は0.24m3m2・日ずな぀た。このモ
ゞナヌルをそのたた運転を継続したずころ、700
時間埌も塩排陀率は99.6であ぀た。なお透過氎
量もほずんど倉化しなか぀た。 実斜䟋  実斜䟋の補造盎埌の膜を甚いお30ppmのポ
リ゚チレンむミン氎溶液でKgcm2の操䜜圧力を
䜿甚する以倖は食塩氎条件ず同䞀の操䜜条件で
時間運転した埌、食塩氎条件で逆浞透性胜を枬定
したずころ、食塩の排陀率が99.8に向䞊した。
なお、透過氎量は0.27m3m2・日にな぀た。
[Table] Even in the system in which 10 ppm of DDM was added, the salt rejection rate increased to 99.5% after 10 hours. Example 4 1% by weight of inositol, 2% by weight of furfuryl alcohol, 1% by weight of sulfuric acid, 1% by weight of sodium dodecyl sulfate
After preparing an aqueous solution containing 20% by weight and 20% by weight of isopropyl alcohol and aging at room temperature for 15 minutes,
A film was formed in the same manner as in Example 2 using the FR-PS support of Example 2. The reverse osmosis performance of this membrane under salt conditions has a salt rejection rate of 99.6% and a permeated water volume of 0.30 m 3 /
It was warm for m 2 days. Using this membrane, 5% by weight of ε-
When reverse osmosis performance was measured again under saline conditions after 8000 hours of operation with caprolactam aqueous solution, the salt rejection rate decreased to 98.5%, and the amount of permeated water was 0.33%.
m 3 /m 2 · day. Using this membrane, polyethyleneimine (“P-” manufactured by Nippon Shokubai Chemical Co., Ltd.,
After 2 hours of treatment with 100 ppm of ``1000''), the reverse osmosis performance was measured again under saline conditions, and the salt rejection rate improved to 99.3%. On the other hand, the amount of permeated water was 0.29m 3 /m 2 ·day. Example 5 The membrane of Example 4 with reduced selective separation ability was first
After treating with a 0.1% by weight aqueous sulfanilic acid solution for 1 hour under the same conditions as those used to measure reverse osmosis performance, reverse osmosis performance was measured under saline conditions, and the salt rejection rate improved to 99.0%. On the other hand, the amount of permeated water is 0.33
It remained at m 3 /m 2 ·day. Next, this membrane was further treated for 2 hours under the same conditions as the reverse osmosis performance measurement except that a 50 ppm polyethyleneimine aqueous solution was used as the stock solution, and then the reverse osmosis performance was measured again under saline conditions. Salt elimination rate is even higher
This has improved to 99.3%. On the other hand, the amount of permeated water is 0.29
It decreased slightly to m 3 /m 2 ·day. Example 6 A 4-inch spiral-wound module (membrane area:
7.0m 2 ). 3.5% by weight saline solution of this module, 56Kg/cm 2 , 25℃, PH6.5, supply stock solution amount 10
/min, under operating conditions with a water recovery rate of 15%, the reverse osmosis performance has a salt rejection rate of 99.7% and a permeated water volume of 0.28m3 /min.
It was warm for m 2 days. Using this module, a seawater desalination test was conducted under the same operating conditions as above, except that the supplied stock solution was a solution containing 20ppm of sodium bisulfite to remove chlorine added in the pretreatment process to 3.5% seawater. When carried out, the initial value was that the salt rejection rate was 99.8.
%, the amount of permeated water was 0.25m 3 /m 2 ·day, but 5000
After hours of operation, the salt rejection rate drops to 98.7%,
Furthermore, the amount of permeated water decreased by 0.20 m 3 /m 2 ·day. Under the same conditions at that time, the reverse osmosis performance with 3.5 wt% saline was as follows: salt rejection rate was 98.6%, permeated water amount was 0.26 m 3 /
It was warm for m 2 days. This module was operated for 1 hour under the same conditions as the reverse osmosis performance measurement except that it was operated with a 0.1% by weight aqueous sulfanilic acid solution at a pressure of 4 kg/cm 2 , and then:
After operating for 2 hours under the same conditions as above using a 100 ppm polyethyleneimine aqueous solution, reverse osmosis performance was measured again using 3.5% by weight saline, and the salt rejection rate improved to 99.6%. On the other hand, the amount of permeated water was 0.27 m 3 /m 2 ·day. Example 7 The module with reduced selective resolution of Example 6 was
After treatment for one day under the same operating conditions as in Example 6, except for using a 0.1% by weight sodium dodecyl sulfate aqueous solution and operating at a pressure of 3 kg/cm 2 ,
After operating for 2 hours under the same operating conditions as above except for using a 100 ppm polyethyleneimine aqueous solution,
When the reverse osmosis performance was measured by returning it to 3.5% seawater, the salt rejection rate improved to 99.7%. On the other hand, the amount of permeated water was 0.22 m 3 /m 2 ·day. When this module was continued to operate under the same operating conditions as before using the membrane treatment agent, the salt rejection rate decreased after 1000 hours.
It dropped to 99.2%. On the other hand, the amount of permeated water is 0.24
The temperature was m 3 /m 2 ·day. Therefore, this time, we used a 0.5% by weight oxalic acid aqueous solution to
After 1 hour of treatment under the same reverse osmosis operating conditions except for operation at a pressure of Kg/cm 2 , a 100 ppm polyethylene The mixture was treated with an imine aqueous solution at a pressure of 56° C./cm 2 for 1 hour. Thereafter, when the reverse osmosis performance was evaluated again using 3.5% by weight seawater, the salt rejection rate improved to 99.8% and the amount of permeated water was 0.24m 3 /m 2 ·day. When this module was continued to be operated as it was, 700
Even after hours, the salt rejection rate remained 99.6%. Note that the amount of permeated water also hardly changed. Example 8 Using the as-prepared membrane of Example 4, a 30 ppm aqueous solution of polyethyleneimine was used under the same operating conditions as the saline solution except that an operating pressure of 3 Kg/cm 2 was used.
After operating for several hours, reverse osmosis performance was measured under saline conditions, and the salt rejection rate improved to 99.8%.
The amount of permeated water was 0.27m 3 /m 2 ·day.

Claims (1)

【特蚱請求の範囲】  フルフリルアルコヌルを必須成分ずする架橋
重合䜓からなる半透膜を氎溶性アミノ化合物を含
有する氎溶液に接觊させるこずを特城ずする半透
膜の凊理法。  架橋重合䜓からなる半透膜がフルフリルアル
コヌル単独重合䜓、たたはフルフリルアルコヌル
ずポリヒドロキシ化合物ずからなる共重合䜓から
なる薄膜であるこずを特城ずする特蚱請求の範囲
第項蚘茉の半透膜の凊理法。  該半透膜が、倚孔性支持䜓ず䞀䜓ずな぀お半
透性耇合膜を圢成しおいるこずを特城ずする特蚱
請求の範囲第項蚘茉の半透膜の凊理法。
[Scope of Claims] 1. A method for treating a semipermeable membrane, which comprises bringing a semipermeable membrane made of a crosslinked polymer containing furfuryl alcohol as an essential component into contact with an aqueous solution containing a water-soluble amino compound. 2. The semipermeable membrane made of a crosslinked polymer is a thin film made of a furfuryl alcohol homopolymer or a copolymer of furfuryl alcohol and a polyhydroxy compound. Treatment method for semipermeable membranes. 3. The method for treating a semipermeable membrane according to claim 1, wherein the semipermeable membrane is integrated with a porous support to form a semipermeable composite membrane.
JP10694081A 1981-07-10 1981-07-10 Treatment of semipermeamble membrane Granted JPS5811005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10694081A JPS5811005A (en) 1981-07-10 1981-07-10 Treatment of semipermeamble membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10694081A JPS5811005A (en) 1981-07-10 1981-07-10 Treatment of semipermeamble membrane

Publications (2)

Publication Number Publication Date
JPS5811005A JPS5811005A (en) 1983-01-21
JPS6216122B2 true JPS6216122B2 (en) 1987-04-10

Family

ID=14446376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10694081A Granted JPS5811005A (en) 1981-07-10 1981-07-10 Treatment of semipermeamble membrane

Country Status (1)

Country Link
JP (1) JPS5811005A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59115704A (en) * 1982-12-24 1984-07-04 Toray Ind Inc Treatment of semipermeable membrane
US5755964A (en) * 1996-02-02 1998-05-26 The Dow Chemical Company Method of treating polyamide membranes to increase flux
DE112010003846T5 (en) * 2009-09-29 2012-12-06 Kurita Water Industries Ltd. Method for improving the repulsion of a permeable membrane and permeable membrane
JP5914973B2 (en) * 2011-03-09 2016-05-11 栗田工業株匏䌚瀟 Method for improving rejection rate of permeable membrane and treatment agent for improving rejection rate

Also Published As

Publication number Publication date
JPS5811005A (en) 1983-01-21

Similar Documents

Publication Publication Date Title
US4606943A (en) Method for preparation of semipermeable composite membrane
US5178766A (en) Composite semipermeable membrane, process of producing the same and method of producing highly pure water using the same
US3686116A (en) Semi-permeable membranes and their use
JPS59115704A (en) Treatment of semipermeable membrane
KR20140005885A (en) Composite semipermeable membrane
JP4539341B2 (en) Composite reverse osmosis membrane and method for producing the same
KR102293090B1 (en) Composite semipermeable membrane
JP6642860B2 (en) Water treatment separation membrane and method for producing the same
US4045337A (en) Asymmetric, semipermeable membranes of cyclic polyureas
KR101240736B1 (en) Polymer compositions, water-treatment membranes and water-treatment modules comprising the same
KR100692394B1 (en) Method of producing reverse osmosis membrane with boron removal effect
DK163570B (en) COMPOSITION MATERIAL, PROCEDURE FOR ITS MANUFACTURING AND ITS USE FOR OSMOTIC CLEANING OF LIQUIDS
JPS6216122B2 (en)
JP3646362B2 (en) Semipermeable membrane and method for producing the same
EP0030451A2 (en) Method for recovering efficiency of semipermeable membrane
JP3975933B2 (en) Composite semipermeable membrane and sewage treatment method
JP4400123B2 (en) Liquid separation membrane and liquid processing method
JPS6410242B2 (en)
Konagaya et al. New chlorine‐resistant polyamide reverse osmosis membrane with hollow fiber configuration
JP3829501B2 (en) Composite semipermeable membrane and method for producing the same
JP4470472B2 (en) Composite semipermeable membrane and method for producing water using the same
JP2006272148A (en) Manufacturing method of drying composite semi-permeable membrane
CN115475540B (en) Polyamide composite membrane and preparation method and application thereof
JP2003200027A (en) Method for manufacturing composite semipermeable membrane
JP2003117360A (en) Method for manufacturing semipermeable membrane