JPS6216062Y2 - - Google Patents

Info

Publication number
JPS6216062Y2
JPS6216062Y2 JP18248381U JP18248381U JPS6216062Y2 JP S6216062 Y2 JPS6216062 Y2 JP S6216062Y2 JP 18248381 U JP18248381 U JP 18248381U JP 18248381 U JP18248381 U JP 18248381U JP S6216062 Y2 JPS6216062 Y2 JP S6216062Y2
Authority
JP
Japan
Prior art keywords
magnesium
diaphragm
magnesium alloy
glass
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18248381U
Other languages
Japanese (ja)
Other versions
JPS5885877U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18248381U priority Critical patent/JPS5885877U/en
Publication of JPS5885877U publication Critical patent/JPS5885877U/en
Application granted granted Critical
Publication of JPS6216062Y2 publication Critical patent/JPS6216062Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案はマグネシウム又はマグネシウム合金か
らなる音響機器用振動板の耐蝕性を向上させたも
のである。 一般にマグネシウム又はマグネシウム合金は空
気中の水分、亜硫酸ガス、炭酸ガス等により、腐
蝕されやすいので、化成処理、陽極電解処理、又
はこれらの併用等により防錆処理を施し、処理面
の上に有機合成樹脂を塗装して用いられていた。 しかしながら、有機合成樹脂は有機溶剤に樹脂
を希釈したものを用いるので、溶剤が揮散した跡
の微孔を通つて空気中の水分、その他腐蝕要因と
なるガスが進入して腐蝕が発生する欠点があり、
数回の塗り重ねによつて微孔を防いでいた。この
場合厚い塗装膜を施すので、振動板が重くなり、
マグネシウム又はマグネシウム合金の比重が小さ
い、軽い特長が失なわれる欠点があつた。 溶剤を用いない樹脂、例えばエポキシ樹脂等の
低粘度のマグネシウム又はマグネシウム合金を侵
すことが少ない硬化剤を選び、硬化させれば、水
分などが容易に通るような微孔は出来ないが、基
本的には有機合成樹脂中にも微小ではあるが、水
分その他腐蝕要因となるガスが進入するので、苛
酷な条件下で使用する場合は厚い塗装皮膜が必要
とし、有機合成樹脂皮膜を厚くすると、マグネシ
ウム又はマグネシウム合金のヤング率に比較して
ヤング率が低下し、振動板に必要な入力信号に速
やかに応答する為の音速E/ρが低下してしまう
欠点があつた。(E:ヤング率 ρは密度) 本考案は上記欠点を取除く為に考案されたもの
で、図面に示す実施例について説明すれば、第1
図に示すごとく、マグネシウム又はマグネシウム
合金からなる振動板1表面に陽極酸化皮膜2を形
成し、ガラス3で封孔処理した音響機器用振動板
である。 本考案の陽極酸化皮膜に形成するのは、先づ1
中に苛性カリ165g、弗化カリ35g、燐酸ナト
リウム35g、水酸化アルミニウム35g、過マンガ
ン酸カリ20gを含む浴槽を設け、陽極電流密度
1.9〜2.1アンペア1dm2で電解浴槽を20〜25℃に管
理し、(5.5%アルミニウム、1%亜鉛、0.2%マ
ンガン)を含むマグネシウム合金からなる振動板
を電極クリツプで挾んで浸漬し、8分間陽極定電
流電解を行い、冷却水にて完全に電解液を洗い落
し、60〜80℃の温水に数秒間浸漬して振動板を予
熱し、次に温風にて乾燥することにより約6ミク
ロンの硬い陽極酸化皮膜が形成される。 本考案のガラスで封孔処理するには、上記陽極
酸化皮膜処理したものをテトラエトキシシラン20
部、エチルアルコール24部、水25部の混合溶液中
に浸漬し、10-3mmHg真空容器中にて約5分間真
空含浸して、陽極酸化皮膜のくぼみ、穴部に混合
溶液を充填し、真空含浸後液切りを行い、室温に
て約65時間放置してゲル化したものを約90℃で6
時間予備加熱し、次に1時間に約15℃の速度で
450℃まで加熱し、約30分間保持し、次に1時間
に約30℃の速度で除冷して硅酸ガラスの皮膜を形
成する。 本考案は以上に述べたごとく、マグネシウム又
はマグネシウム合金のヤング率を低下させること
なく、実用上の防錆が得られるもので、第1表に
それぞれの工程完了後のヤング率を示す。
The present invention improves the corrosion resistance of a diaphragm for audio equipment made of magnesium or a magnesium alloy. In general, magnesium or magnesium alloys are easily corroded by moisture in the air, sulfur dioxide gas, carbon dioxide gas, etc., so anti-rust treatment is performed by chemical conversion treatment, anodic electrolysis treatment, or a combination of these, and organic synthesis is applied to the treated surface. It was used as a resin coating. However, since organic synthetic resins are made by diluting the resin with an organic solvent, they have the disadvantage that moisture in the air and other corrosion-causing gases can enter through the micropores left after the solvent has volatilized, causing corrosion. can be,
Micropores were prevented by applying several coats. In this case, since a thick coating film is applied, the diaphragm becomes heavier.
The drawback was that magnesium or magnesium alloys lost their low specific gravity and lightness. If you select a hardening agent that is less likely to attack low-viscosity magnesium or magnesium alloys such as resins that do not use solvents, such as epoxy resins, and harden them, there will be no micropores that allow moisture to pass through easily, but basic Although small amounts of water and other gases that cause corrosion can enter the organic synthetic resin, a thick coating film is required when used under harsh conditions. Another disadvantage is that the Young's modulus is lower than that of a magnesium alloy, and the sound velocity E/ρ, which is required for the diaphragm to quickly respond to an input signal, is lowered. (E: Young's modulus, ρ is density) The present invention was devised to eliminate the above drawbacks, and if we explain the embodiment shown in the drawings, the first
As shown in the figure, this is a diaphragm for audio equipment in which an anodized film 2 is formed on the surface of a diaphragm 1 made of magnesium or a magnesium alloy, and the holes are sealed with glass 3. The first thing to be formed on the anodic oxide film of this invention is
A bath containing 165 g of caustic potassium, 35 g of potassium fluoride, 35 g of sodium phosphate, 35 g of aluminum hydroxide, and 20 g of potassium permanganate was installed, and the anode current density was
An electrolytic bath with 1.9 to 2.1 amperes 1 dm2 was maintained at 20 to 25°C, and a diaphragm made of a magnesium alloy containing (5.5% aluminum, 1% zinc, 0.2% manganese) was held between electrode clips and immersed for 8 minutes. By performing anodic constant current electrolysis, completely washing off the electrolyte with cooling water, preheating the diaphragm by immersing it in hot water at 60 to 80℃ for a few seconds, and then drying it with warm air, it becomes approximately 6 microns. A hard anodic oxide film is formed. To seal the pores of the glass of this invention, use the above-mentioned anodic oxide film treatment with tetraethoxysilane 20
24 parts of ethyl alcohol, and 25 parts of water, and vacuum impregnated in a 10 -3 mmHg vacuum container for about 5 minutes to fill the hollows and holes of the anodized film with the mixed solution. After vacuum impregnation, drain the liquid and leave it at room temperature for about 65 hours to gel.
Preheat for an hour, then at a rate of about 15°C per hour.
It is heated to 450°C, held for about 30 minutes, and then slowly cooled at a rate of about 30°C per hour to form a silicate glass film. As described above, the present invention provides practical rust prevention without reducing the Young's modulus of magnesium or magnesium alloy, and Table 1 shows the Young's modulus after each process is completed.

【表】【table】

【表】 本考案は工業上有益な考案である。【table】 The present invention is an industrially useful invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の拡大断面図。 1は振動板、2は陽極酸化皮膜、3はガラス。 FIG. 1 is an enlarged sectional view of the present invention. 1 is a diaphragm, 2 is an anodized film, and 3 is glass.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] マグネシウム又はマグネシウム合金からなる振
動板1表面に陽極酸化皮膜2を形成し、ガラス3
で封孔処理した音響機器用振動板。
An anodic oxide film 2 is formed on the surface of a diaphragm 1 made of magnesium or a magnesium alloy, and a glass 3
A diaphragm for audio equipment with pore-sealing treatment.
JP18248381U 1981-12-07 1981-12-07 Diaphragm for audio equipment Granted JPS5885877U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18248381U JPS5885877U (en) 1981-12-07 1981-12-07 Diaphragm for audio equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18248381U JPS5885877U (en) 1981-12-07 1981-12-07 Diaphragm for audio equipment

Publications (2)

Publication Number Publication Date
JPS5885877U JPS5885877U (en) 1983-06-10
JPS6216062Y2 true JPS6216062Y2 (en) 1987-04-23

Family

ID=29980882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18248381U Granted JPS5885877U (en) 1981-12-07 1981-12-07 Diaphragm for audio equipment

Country Status (1)

Country Link
JP (1) JPS5885877U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6154438B2 (en) * 2015-07-22 2017-06-28 Tsk株式会社 Manufacturing method of speaker diaphragm

Also Published As

Publication number Publication date
JPS5885877U (en) 1983-06-10

Similar Documents

Publication Publication Date Title
US3234110A (en) Electrode and method of making same
RU2543580C1 (en) Method of obtaining protective coatings on magnesium alloys
RU2688471C1 (en) Method for increasing permeability of pores of graphite workpiece
JPS6216062Y2 (en)
RU2688781C1 (en) Method for increasing permeability of pores of a carbon-graphite workpiece
RU2688775C1 (en) Method for increasing permeability of pores of a carbon-graphite workpiece
US2161636A (en) Method of protectively coating aluminum or aluminum alloys
US4784732A (en) Electrolytic formation of an aluminum oxide layer
US4861440A (en) Electrolytic formation of an aluminum oxide surface
RU2688780C1 (en) Method for increasing permeability of pores of a carbon-graphite workpiece
RU2688368C1 (en) Method for increasing permeability of pores of a carbon-graphite workpiece
US1946153A (en) Protecting aluminum from corrosion
US3365377A (en) Method of sealing anodized aluminum
JP3229043B2 (en) Surface treatment method for aluminum alloy products
RU2688776C1 (en) Method for increasing permeability of pores of graphite workpiece
JP3816363B2 (en) Surface-treated aluminum material excellent in corrosion resistance and method for producing the same
JP3506826B2 (en) Aluminum material and manufacturing method thereof
JPH08283990A (en) Aluminum material
RU2688785C1 (en) Method for increasing permeability of pores of a carbon-graphite workpiece
JP2574987B2 (en) Sealing method of thermal spray coating
JPH08283991A (en) Aluminum alloy material
JPH06240493A (en) Method for coating anodically oxidized film of aluminum
RU2688525C1 (en) Method for increasing permeability of pores of graphite workpiece
KR100485469B1 (en) Coat method of the aluminium surface containing with boric acid
RU2688524C1 (en) Method for increasing permeability of pores of graphite workpiece