JPS6214308A - Vertical magnetic head - Google Patents

Vertical magnetic head

Info

Publication number
JPS6214308A
JPS6214308A JP15273385A JP15273385A JPS6214308A JP S6214308 A JPS6214308 A JP S6214308A JP 15273385 A JP15273385 A JP 15273385A JP 15273385 A JP15273385 A JP 15273385A JP S6214308 A JPS6214308 A JP S6214308A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic pole
main
amorphous
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15273385A
Other languages
Japanese (ja)
Inventor
Isao Yasuda
安田 伊佐雄
Yoshihiko Kawai
川井 好彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP15273385A priority Critical patent/JPS6214308A/en
Publication of JPS6214308A publication Critical patent/JPS6214308A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/1278Structure or manufacture of heads, e.g. inductive specially adapted for magnetisations perpendicular to the surface of the record carrier

Abstract

PURPOSE:To improve the magnetic characteristics by providing a nonmagnetic amorphous thin film between a main magnetic pole and an auxiliary magnetic pole part where the main magnetic pole is formed. CONSTITUTION:A groove is formed at the corner part of a magnetic material block 10 made of an Mn-Zn ferrite, etc. Thus, a groove part 11 for junction of nonmagnetic member is obtained. Another groove is formed at the part 11 to obtain a groove part 12 for winding. Then, a nonmagnetic material block 13 of calcium titanate, barium titanate, etc. is welded to the part 11 and this junction face side is ground into a mirror surface. An amorphous silicon film 15 is formed at the junction face side of the 1st half-split block 14. Then an Ar gas Co-Zr-Nb amorphous film 16 is formed on the film 15 with Co-Zr-Nb defined as a target. The block 14 is etched into the desired track width. Thus, the 2nd half-split block 17 is obtained. Both blocks 14 and 17 are put together by means of an organic adhesive with the junction faces of both blocks butted with each other. Thus a main body block is obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ)産業上の利用分野 本発明は、垂直磁気ヘッドの高記録密度化への改良に関
するものである。 (ロ) 従来の技術 従来、磁気記録はリング型ヘッドを用いて記録媒体の長
手(面内〉方向に信号を記録する長手記録方式が採られ
ているが、斯る方式では記録波長が短くなるにしたがっ
て自己減磁界が大きくなるため、高記録密度化には適し
ていなかった。そこで、最近では記録媒体の面内方向に
対して垂直に信号を記録する垂直磁気記録方式が提案さ
れており、斯る方式は面内方向に対して垂直に磁化容易
軸を持つ垂直磁気記録媒体と垂直方向の磁界の発生及び
検出能力を有する垂直磁気へンドにより構成され、既存
の長手記録方式に比べて数倍以上の記録密度を有するた
め高密度磁気記録への有力な方式として近年多数の研究
がなされている0例えば、特開昭58−153216号
公報には主磁極励磁型の垂直磁気ヘッドの構造について
開示がなされている。 〈ハ)発明が解決しようとする問題点 そして、斯る垂直磁気記録方式に関してその記録密度を
高密度化して行くには、記録媒体の改良及び周辺システ
ムの改良等も勿論必要ではあるが、記録媒体に直接接触
し信号の記録及び再生を行なう垂直磁気ヘッドの、取り
分は主磁極の薄膜化が重要である。そして、断る主磁極
として前記した特開昭58−153216号公報にも開
示諮れている様にCo−Zr系アモルファス磁性薄膜が
磁気特性      “−2−゛ に優れているため現在最も有力視されているが、薄膜化
と謂う点において問題かあ−った。例λば、特開昭58
−153216号公報のものより記録媒体に対するスペ
ーシングロスを減少させた第8図に示すような垂直磁気
ヘッドについて説明すると、(1)はCo−Zr系アモ
ルファス磁性薄膜よりなる主磁極、〈i)(γ)は主磁
極(1)をその両(Il+から挾持する一対の補助部材
で、該各補助部材(1)(T)は主磁極(1)と磁気的
に接合され巻線が施される補助磁極部(3a)(3a’
)と主磁極(1)の磁束のリターンバストなるリターン
バス部(3b)(3b’)とを分離する溝部(3c)(
3c’)が形成されたフェライト等の磁性材部(3)(
3’)と、この磁性材部(3)(3’)のリターンパス
部(3b)(3b’)と主磁極(1)とを磁気的に分離
する補強用のスペーサ部として溝部(3C)(3c’L
L部に接合される非磁性材部(4)(4′)とで構成さ
れている。そして、断る主磁極(1)は非晶質の場合に
良好な磁気特性を有するが、特にスパッタ形成される側
の補助磁$A部(3a’)等の磁性材部(3′)と接触
している数百オンゲス10−ムの3一 部分はそのスパッタ形成時にフェライトの結晶格子の影
響を受(Jて結晶質になり、その部分で・磁気特性の低
下を来していた。従−)で、垂力磁気へメトの高記録密
度化に必要な1;磁極の薄膜化については一定の限界(
例λば、3000人程度1があり、それ以ドの薄膜化に
ついては記録再生効率の低ドを招き、本来の垂直磁気記
録55式の利点が発揮されていなかった。 (二〉 問題点を解決するt〕めの手段本発明は−F記
した問題点を解決するために、非晶質磁性薄膜を主磁極
とし、この主磁極と磁気的に接合される補助磁極部と、
この主磁極の磁束のリターンバスとなるリターンパス部
とを有する垂直磁気ヘッドにおいて、少なくN4)前記
1:磁極と該主磁極が形成される前記補助磁極部との間
に非磁性非晶質薄膜を介在させたものでとる。 (ホ)作用 −1−記した本発明垂直磁気へンドの非磁性非晶質薄膜
は、特に主磁極形成時に下地となる補助磁極部からの結
晶格子の影響を除去し、主磁極の薄膜状態での磁気特性
を良好に保つよう作用する。 (へ)実施例 以下、本発明の一実施例について図面と共に説明する。 尚、従来と同一部分については同一図番を附ずと共にそ
の説明を省略する。 即ち、本発明垂直磁気ヘッドでは前記主磁極(1)と該
主磁極(1)が形成きれる一方の前記補助部材(v)と
の間にアモルファスシリコン等の非磁性非晶質薄膜(5
)を介在諮せたものである。 従って、本発明垂直磁気ヘッドでは主磁極(1)のスパ
ッタ形成時に主E11極(1)に対する補助m極部(3
a’)等の磁性材部(3′〉からの結晶格子の影響を除
去して、主磁極(1)の全厚に渡って非晶質性を助長す
ることが出来ると共に、スパッタ形成時における磁性材
部(3′)からの磁気特性から受ける影響をも少なくし
て、主磁極(1)として必要な磁気異方性を保持させる
ので、抗磁力、透磁率等の池の磁気特性も良好なものと
なり、主磁極の記録再生効率と薄膜化が大幅に向−トさ
れる。例えば、」:記した構造の本発明ヘッド(Hりと
従来ヘラ(。 (H′)との再生出力並びに記録密度(D so )を
二層記録媒体(Co−Zr/N1−Fe)を用いて比較
すると第2図に示す様になり、本発明ヘッドの方が格段
に優れていることが判る。尚、(N2)は非磁性非晶質
薄膜としてアモルファス三酸化タングステンを用いた本
発明ヘッドの場合を示t。 次に、断る本発明垂直磁気ヘンドの製造方法について、
第3図乃至第7図を参照しながら説明する。 先ず、第3図に示す様にMn−Zn系フェライト等より
なる磁性材ブロック(10)の角部に溝加工を施して非
磁性材接合用の溝部(11)を形成した後、その溝部(
11)に更に溝加工を施して巻線用の溝部(12)を形
成する。そして、この様にして得られた磁性材ブロック
(10)の溝部(11)にチタン酸カルンウム、チタン
酸バリウム等の非磁性材ブロック(13)を溶着した後
、その接合面側を鏡面研磨して第4図に示す様な第1の
半割ブロック(ロ)を得る。 次に、断る第1の半割ブロック(14)の接合而側6一 にRFスパッタ法(例λは、ターゲットは多結晶シリ:
1ン、ガスはアルコン十水素、ガス圧は3×10”To
rr、膜形成速度は60入/分)で約1o分間のスバ7
9 ’)ンクヲ行ない600Aのアモルファスシリコン
膜(15)を形成すイ)(第5図参照)。そして、更に
その上に同しくRFスパッタ法を用いCo−Zr−Nb
をターゲットとして、Arガス圧5×10−’Torr
で2500人のco−Zr−Nhアモ’L 77 ス膜
(16)を形成した後所要のトラック幅に工/チング1
7て第6図に示′す様な第2の半割/
(A) Field of Industrial Application The present invention relates to an improvement to a perpendicular magnetic head for achieving higher recording density. (b) Conventional technology Traditionally, magnetic recording has used a longitudinal recording method in which a ring-shaped head is used to record signals in the longitudinal (in-plane) direction of the recording medium, but in such a method, the recording wavelength becomes shorter. Since the self-demagnetizing field increases as a result, it was not suitable for high recording density.Recently, perpendicular magnetic recording methods have been proposed, which record signals perpendicular to the in-plane direction of the recording medium. This method consists of a perpendicular magnetic recording medium with an axis of easy magnetization perpendicular to the in-plane direction and a perpendicular magnetic head that has the ability to generate and detect a magnetic field in the perpendicular direction. In recent years, many studies have been conducted as an effective method for high-density magnetic recording because the recording density is more than twice as high. (c) Problems to be solved by the invention In order to increase the recording density of the perpendicular magnetic recording method, it is of course necessary to improve the recording medium and the peripheral system. Although necessary, it is important to reduce the thickness of the main magnetic pole of a perpendicular magnetic head that directly contacts a recording medium to record and reproduce signals. As disclosed in the above-mentioned Japanese Unexamined Patent Publication No. 153216/1983, Co-Zr based amorphous magnetic thin film is currently considered to be the most promising main magnetic pole because it has an excellent magnetic property of "-2-". However, there was a problem in the so-called thinning of the film.For example, JP-A-58
To explain the perpendicular magnetic head shown in FIG. 8, which has reduced spacing loss with respect to the recording medium compared to the one in Publication No. 153216, (1) is a main magnetic pole made of a Co-Zr amorphous magnetic thin film, <i) (γ) is a pair of auxiliary members that sandwich the main magnetic pole (1) from its both sides (Il+), and each of the auxiliary members (1) and (T) are magnetically connected to the main magnetic pole (1) and are wound. Auxiliary magnetic pole part (3a) (3a'
) and the return bus part (3b) (3b') which is the return bust of the magnetic flux of the main magnetic pole (1) (3c) (
3c') is formed on the magnetic material part (3) (
3'), and a groove part (3C) as a reinforcing spacer part to magnetically separate the return path part (3b) (3b') of the magnetic material part (3) (3') from the main pole (1). (3c'L
It is composed of non-magnetic material parts (4) and (4') joined to the L part. The main magnetic pole (1) to be rejected has good magnetic properties when it is amorphous, but it especially comes into contact with a magnetic material part (3') such as the auxiliary magnetic $A part (3a') on the side where sputtering is formed. During sputter formation, a portion of the several hundred 10-μm layer was affected by the ferrite crystal lattice (became crystalline, resulting in a decrease in magnetic properties in that portion.) Therefore, there is a certain limit to the thinning of the magnetic pole (1) which is necessary for increasing the recording density of the perpendicular magnetic hemet.
For example, there are about 3,000 people 1, and thinning the film beyond that would result in lower recording and reproducing efficiency, and the original advantages of perpendicular magnetic recording type 55 would not be exhibited. (2) Means for Solving the Problems In order to solve the problems described in -F, the present invention uses an amorphous magnetic thin film as a main magnetic pole, and an auxiliary magnetic pole that is magnetically connected to the main magnetic pole. Department and
In a perpendicular magnetic head having a return path section that serves as a return bus for the magnetic flux of the main magnetic pole, at least N4) 1: A non-magnetic amorphous thin film is provided between the magnetic pole and the auxiliary magnetic pole section where the main magnetic pole is formed. It is taken with the intervention of (e) Effect-1- The non-magnetic amorphous thin film of the perpendicular magnetic head of the present invention described above eliminates the influence of the crystal lattice from the auxiliary magnetic pole part that is the base when forming the main magnetic pole, so that the thin film state of the main magnetic pole is It acts to maintain good magnetic properties. (F) Example Hereinafter, an example of the present invention will be described with reference to the drawings. It should be noted that the same parts as in the prior art will not be given the same drawing numbers and their explanation will be omitted. That is, in the perpendicular magnetic head of the present invention, a nonmagnetic amorphous thin film (5
). Therefore, in the perpendicular magnetic head of the present invention, when forming the main pole (1) by sputtering, the auxiliary m pole part (3
By removing the influence of the crystal lattice from the magnetic material part (3') such as a'), it is possible to promote amorphousness over the entire thickness of the main pole (1), and also to improve the amorphous property during sputter formation. The influence of the magnetic properties from the magnetic material part (3') is reduced, and the magnetic anisotropy required for the main magnetic pole (1) is maintained, so the magnetic properties of the pond, such as coercive force and magnetic permeability, are also good. As a result, the recording/reproducing efficiency and thinning of the main magnetic pole are greatly improved. Comparing the recording density (Dso) using a two-layer recording medium (Co-Zr/N1-Fe), the results are shown in Figure 2, and it can be seen that the head of the present invention is significantly superior. , (N2) shows the case of the head of the present invention using amorphous tungsten trioxide as the non-magnetic amorphous thin film.Next, regarding the manufacturing method of the perpendicular magnetic hand of the present invention,
This will be explained with reference to FIGS. 3 to 7. First, as shown in FIG. 3, grooves are formed in the corners of a magnetic material block (10) made of Mn-Zn ferrite, etc. to form grooves (11) for joining non-magnetic materials, and then the grooves (
11) is further grooved to form a groove portion (12) for winding. After welding a non-magnetic material block (13) made of carunium titanate, barium titanate, etc. to the groove (11) of the magnetic material block (10) thus obtained, the joint surface side thereof is mirror-polished. Then, a first half block (b) as shown in FIG. 4 is obtained. Next, the joint side 6 of the first half block (14) is coated with RF sputtering (for example, λ, the target is polycrystalline silicon:
1 ton, gas is Alkon dehydrogen, gas pressure is 3 x 10”To
Suba 7 for about 10 min at rr, film formation rate 60 in/min)
9') Process to form an amorphous silicon film (15) of 600A (see Figure 5). Then, Co-Zr-Nb is further applied on top of that using the same RF sputtering method.
with Ar gas pressure 5×10-'Torr as a target.
After forming 2,500 co-Zr-Nh amo'L 77 films (16), the required track width was
7. Second half as shown in Figure 6/

【J・M7(V)
を得る。 そし−(、この様にして得られた第2の半割ブ【Jツク
(17)に、第4図に示す如き第10半割ブ[1ツク(
ハ)を夫々接合面同志突き合わけて例λば有機接着剤に
て接合し、第7図に示す如き本体ブロック(18)を得
る。その後、断る本体ブロック(1多)を所要のヘツl
゛幅、例えは300.um厚みになるようにスライス加
Tした後、へ/ド先端加工(R付)を施して巻線を施せ
ば第1図に示す様な本発明の垂直磁気ヘッドが得られる
。 尚、上記した製造工程では非磁性非晶質薄膜としてアモ
ルファスンリ′:J/膜を形成した場合について説明し
たが、アモルファス−二酸化タンゲス7ンを形成す−る
場合には、そのガスとしてアル:1ン+酸素を用いまた
そのガス圧を2 X 10−’ Torrとして同しく
RFスパッタ法にて形成ずれは良い。また、本実施例で
は第1図に示4−如く主磁極(1)が形成′cへれる一
H補助部材(2L)との間にのみ非磁性非晶質薄膜を介
在させているが、製造後における他方の磁性材部(3)
等からσン影響も考慮して他方】の補助部材(1)との
間にも非磁性非晶質薄膜苓介在さけるようにしても良い
。 (ト)発明の効果 上述した如く本発明の垂直磁気へノドは、非晶質磁性薄
膜よりなる主磁極とこの主磁極と磁気的に接合される補
助磁極部との間に非磁性非晶質薄膜を介在させているの
で、補助磁極部からの結晶格子の影響を除去して主磁極
の薄膜状態での磁気特性を良好なものにすることが出来
、記録再生効率の向上と高記録密度化を計ることが出来
る。
[J・M7(V)
get. Then, to the second half-cut (17) obtained in this way, the tenth half-cut [1 (17)] as shown in FIG.
The joint surfaces of (c) are butted against each other and joined together using an organic adhesive, for example, to obtain a main body block (18) as shown in FIG. After that, insert the body block (1 or more) to the required height.
゛Width, for example 300. The perpendicular magnetic head of the present invention as shown in FIG. 1 can be obtained by slicing it to a thickness of 0.0 mm, processing the tip of the head (with radius), and winding it. In the above manufacturing process, the case where an amorphous tungsten dioxide film is formed as a non-magnetic amorphous thin film has been explained, but when forming an amorphous tungsten dioxide film, Al: The RF sputtering method was performed using 1 ton + oxygen and the gas pressure was 2 x 10-' Torr, and the formation deviation was good. Furthermore, in this embodiment, as shown in FIG. 1, a non-magnetic amorphous thin film is interposed only between the main pole (1) and the auxiliary member (2L) on which it is formed. The other magnetic material part (3) after manufacturing
Considering the influence of σ from the above, it is also possible to avoid interposing a non-magnetic amorphous thin film between the auxiliary member (1) and the other auxiliary member (1). (g) Effects of the Invention As described above, the perpendicular magnetic helix of the present invention has a non-magnetic amorphous material between the main magnetic pole made of an amorphous magnetic thin film and the auxiliary magnetic pole part that is magnetically joined to the main magnetic pole. Since the thin film is interposed, the influence of the crystal lattice from the auxiliary magnetic pole part can be removed and the magnetic properties of the main magnetic pole in the thin film state can be improved, improving recording and reproducing efficiency and increasing recording density. can be measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明垂直磁気ヘッドを丞4”図、第2図は本
発明ヘッドと従来ヘッドの再牛田力特Mを示す図、第3
図乃至第7図は夫々その製造玉程苓示し、第3図は溝部
を形成する工程を示す斜視図、第4図は第1の半割ブロ
ックを示す斜視図、第5図はアモルファスシリコン膜を
形成する−「程を示す図、第6図は第2の半割ブロック
を示す一図、第7図は本体ブロックを示す図、第8図は
従来ヘッドを示す図である。 (1)・・・非晶質磁性薄膜よれなる主磁極、(3a)
<3a’)−・−補助磁極部、(3b)(3b’)  
 リターンバス部、(5)・非磁性非晶質薄膜。
Figure 1 is a 4" view of the perpendicular magnetic head of the present invention, Figure 2 is a diagram showing the head of the present invention and the conventional head, and Figure 3 is a diagram showing the head of the present invention and a conventional head.
Figures 7 to 7 respectively show the manufacturing process, Figure 3 is a perspective view showing the process of forming the groove, Figure 4 is a perspective view showing the first half block, and Figure 5 is the amorphous silicon film. FIG. 6 is a diagram showing the second half block, FIG. 7 is a diagram showing the main body block, and FIG. 8 is a diagram showing the conventional head. (1) ...Main magnetic pole made of twisted amorphous magnetic thin film, (3a)
<3a') --- Auxiliary magnetic pole part, (3b) (3b')
Return bus part, (5) Non-magnetic amorphous thin film.

Claims (1)

【特許請求の範囲】[Claims] (1)非晶質磁性薄膜を主磁極とし、この主磁極と磁気
的に接合される補助磁極部と、この主磁極の磁束のリタ
ーンパスとなるリターンパス部とを有する垂直磁気ヘッ
ドにおいて、少なくとも前記主磁極と該主磁極が形成さ
れる前記補助磁極部との間に非磁性非晶質薄膜を介在さ
せた事を特徴とする垂直磁気ヘッド。
(1) In a perpendicular magnetic head that has an amorphous magnetic thin film as a main pole, an auxiliary pole part that is magnetically joined to the main pole, and a return path part that serves as a return path for the magnetic flux of the main pole, at least A perpendicular magnetic head characterized in that a nonmagnetic amorphous thin film is interposed between the main magnetic pole and the auxiliary magnetic pole portion where the main magnetic pole is formed.
JP15273385A 1985-07-11 1985-07-11 Vertical magnetic head Pending JPS6214308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15273385A JPS6214308A (en) 1985-07-11 1985-07-11 Vertical magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15273385A JPS6214308A (en) 1985-07-11 1985-07-11 Vertical magnetic head

Publications (1)

Publication Number Publication Date
JPS6214308A true JPS6214308A (en) 1987-01-22

Family

ID=15546971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15273385A Pending JPS6214308A (en) 1985-07-11 1985-07-11 Vertical magnetic head

Country Status (1)

Country Link
JP (1) JPS6214308A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4962584A (en) * 1987-02-09 1990-10-16 Kabushiki Kaisha Toshiba Manufacturing method for a magnetic disk recording reproducing head device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4962584A (en) * 1987-02-09 1990-10-16 Kabushiki Kaisha Toshiba Manufacturing method for a magnetic disk recording reproducing head device

Similar Documents

Publication Publication Date Title
JPS60229210A (en) Magnetic head
JPS6214308A (en) Vertical magnetic head
JP3772458B2 (en) Magnetic head and manufacturing method thereof
JPH0298803A (en) Magnetic head
JPS60237609A (en) Magnetic head
JP3036020B2 (en) Manufacturing method of magnetic head
JP2618860B2 (en) Magnetic head and method of manufacturing the same
JPS60185214A (en) Magnetic head
JPS62262209A (en) Magnetic head
JPS63213106A (en) Magnetic head
JPS6216206A (en) Vertical magnetic head
JPS62246112A (en) Production of magnetic head
JPH113506A (en) Magnetic head
JPH025206A (en) Production of magnetic head
JPH0156445B2 (en)
JPH0240113A (en) Manufacture of magnetic head
JPH04341910A (en) Recording/reproduction separate type thin film head
JPH0636221A (en) Magnetic head and its manufacture
JPH01106304A (en) Electromagnetic converter for recording and/or reproducing
JPS63142501A (en) Magnetic head
JPH07282414A (en) Magnetic head and its production
JPH0765316A (en) Magnetic head
JPS58222429A (en) Manufacture of vertical type magnetic head
JPS6334709A (en) Production of magnetic head
JPH04121009U (en) magnetic head