JPS62142246A - Temperature measuring method - Google Patents

Temperature measuring method

Info

Publication number
JPS62142246A
JPS62142246A JP28414685A JP28414685A JPS62142246A JP S62142246 A JPS62142246 A JP S62142246A JP 28414685 A JP28414685 A JP 28414685A JP 28414685 A JP28414685 A JP 28414685A JP S62142246 A JPS62142246 A JP S62142246A
Authority
JP
Japan
Prior art keywords
temperature
temperature measuring
wavelength
wavelengths
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28414685A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Fukuda
光弘 福田
Kouichirou Shibata
柴田 耕一朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP28414685A priority Critical patent/JPS62142246A/en
Publication of JPS62142246A publication Critical patent/JPS62142246A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To improve temperature measuring accuracy by selecting a suitable number of combinations of two optional wavelengths within a wavelength range in the spectrum distribution of radiation energy of a temperature measuring object. CONSTITUTION:A light beam 2 generated from a temperature measuring object 1 is led to a spectroscope 4 by a fiber 3, and the spectrum distribution of radiation energy of the object 1 is measured. This analog data is stored in a memory 8 of a computer 6 through an A/D converter 5. Subsequently, the operating a keyboard 10, a suitable number of combinations of two optional wavelengths are selected within a wavelength range of the spectrum distribution which is measured by the spectroscope 4. Also, at every combination of this wavelength, by using two wavelengths lambda1, lambda2 and radiation energies W1, W2 which are stored in the memory 8 corresponding to said wavelengths, a temperature value is calculated by a two-color temperature calculating method. Subsequently, in a CPU7, the frequency distribution of this calculated temperature value is derived, a temperature value frequency distribution diagram is generated on a monitor 11, and also, from the frequency distribution of each temperature value, a temperature of the temperature measuring body 1 is determined and displayed on the monitor 11.

Description

【発明の詳細な説明】 〈産業上の利用分野) この発明は、測温物体から放射されるエネルV−を利用
して非接触で淘j!2測定を行う温度i1+11定方法
に関4る。
[Detailed Description of the Invention] <Industrial Application Fields> This invention uses the energy V- emitted from a temperature measuring object to conduct temperature measurement without contact! 2. Concerning the method of determining the temperature i1+11 to perform the measurement.

(従来の技術とその問題点) 1勿体から放射されるエネルギーが1勿体の温度(こ依
存することは周知の事実である。そこで、物体から放射
される工;ンルギーを利用づ應ことにより物体の温度測
定が可能となり、このような原1pを利用した温度測定
方法として二色温度演淳法が従来から汎用されている。
(Prior art and its problems) It is a well-known fact that the energy radiated from a body depends on the temperature of the body. The two-color temperature derivation method has been widely used as a temperature measurement method using such a source 1p.

以下に二色温度演韓法の測温1京理を示づ一0物体から
hl射されるエネルギーW(λ、−1−)は、理論的に
はブランクの公式を基礎として次式′C氏・・・(1) ここで、 W(λ、1’ )  : watt/m27r)3位波
長λ   :波長(n m ) T   :物体の温度(°K) ε         : 1カ (木 の リ9.Q・
1  °卓之上記(1)式から分るように、物体の放I
)J率εがマ11明していれば、ある波長λの放射エネ
ルギーW・3測定1Lることにより、物体の温度−1を
魚出することかできる。しかしながら、実際には、物体
の放射率εは温度Tにより変化し、また同一温度で6物
質の化学的・物理的なわずかな状態の変化で非常に大ぎ
く変動するため、ごく少数の物質についてだけしか、正
確な伯が知られていない。
The temperature measurement principle of the dichromatic temperature algorithm is shown below. The energy W (λ, -1-) radiated from ten objects can be theoretically calculated using the following formula 'C' based on Blank's formula. Mr.... (1) Here, W (λ, 1'): watt/m27r) 3rd wavelength λ: Wavelength (nm) T: Temperature of the object (°K) ε: 1 Ka (Tree 9) .Q・
1 ° Takuyuki As can be seen from equation (1) above, the radiation I of the object
) If the J rate ε is clear, the temperature of the object -1 can be determined by measuring 1L of radiant energy W·3 of a certain wavelength λ. However, in reality, the emissivity ε of an object changes depending on the temperature T, and it also changes greatly due to slight changes in the chemical and physical states of six substances at the same temperature. Only the exact number is known.

そこで、二色温度演n法では、物体の放射率εが未知の
場合であっても、測温をr+J能どする方法を採用して
いる。Jなわら、この方法は、測温物体を故%j率εが
波長λに対しC一定な灰色体と仮定したトで、適当な2
つの波長λ1.λ2を指定してそれぞれの放射上ネルギ
ーW、W2を測定し、その比から物体の温度を篇出り゛
る。
Therefore, in the two-color temperature calculation method, even if the emissivity ε of the object is unknown, a method is adopted in which temperature measurement is performed using r+J function. However, this method assumes that the temperature measuring object is a gray body whose rate ε is constant C with respect to the wavelength λ, and an appropriate 2
wavelength λ1. Specify λ2, measure the respective radiant energies W and W2, and calculate the temperature of the object from the ratio.

これを理論式で説明づ−れば次のと43ゆである。If this is explained using a theoretical formula, it is as follows.

いま、波長λ 、λ の放射率がε 、ε である物体
から放(ト)される放射エネルギーW1.W2の比Rを
求めると、上記(1)式を用いて次式が19られる。
Now, radiant energy W1. emitted from an object with wavelengths λ and λ and emissivity of ε and ε. When the ratio R of W2 is determined, the following equation 19 can be obtained using the above equation (1).

ここで測温物体は、灰色体と仮定しているためが成立し
、式(2)は となる。
Here, since the temperature measuring object is assumed to be a gray body, the equation (2) becomes as follows.

上記(4)式には放射率εは含まれておらず、従って放
射率εの値が未知の場合であっても2つの波長λ1.λ
2の放射エネルギーw1.W2を測定することにより、
物体の温度Tを口出することができる。このような二色
温度′fAt;5法を利用した測温装置としで、従来よ
り二色温度h1が知られており、同温度計を黒体に対し
て較正し、その出力があらかじめ設定した2つの波長λ
1.λ2の放射エネルギーW、W、2の比に比例するよ
うに調整することにより、測温物体の放射率εに無関係
に物体の温度の測定を上式(4)により行うことができ
る。
Equation (4) above does not include the emissivity ε, so even if the value of the emissivity ε is unknown, the two wavelengths λ1. λ
2 radiant energy w1. By measuring W2,
It is possible to determine the temperature T of an object. As a temperature measurement device using such a two-color temperature 'fAt; two wavelengths λ
1. By adjusting the radiant energy of λ2 to be proportional to the ratio of W, W, 2, the temperature of the object can be measured by the above equation (4) regardless of the emissivity ε of the temperature measuring object.

以上説明した通り、二色温度演算法は指定した波長λ 
、λ の放射率ε 、ε が等しいと仮定した測定方法
である。しかしながら、よ11塙する物体の放射率εは
物質の酸化・還元状態や表面の粗さ等により大ぎく変動
し、その変化の割合が波長λに対し常に一様との保証は
ない。また、波長λに対する放射率εの変化につき、そ
の規則性を測定条件等から事前に予測することも困難で
ある。
As explained above, the two-color temperature calculation method uses the specified wavelength λ
This measurement method assumes that the emissivities ε and ε of λ and λ are equal. However, the emissivity ε of a large object varies greatly depending on the oxidation/reduction state of the substance, the roughness of the surface, etc., and there is no guarantee that the rate of change will always be uniform with respect to the wavelength λ. Furthermore, it is difficult to predict in advance the regularity of changes in emissivity ε with respect to wavelength λ based on measurement conditions and the like.

二色記1良演算法にJjいて、選定した波長λ1゜λ 
の放射率ε 、ε2が胃なっていると、理論的には測定
温度丁Rと真の温度1との間に次式−Cりえられる誤差
が生じる 実際に、ある測温物体に対し、二色温度演算法tこJj
いて選定する波長を変えて温度値を口出したところ、第
4図に承り結果がIIIられた。ff1図にJjいて、
hζ軸は波長、縦軸は(4)式の相対強度「くをイれぞ
れ示し、図中の左上=1−ノ一部の丸で囲む部分tよ、
右下コ一す部の丸で囲む領域を拡大したちのである。同
図に示すように、2波長(λ 、λ2)の組合せを4組
(550,660nm)、(660,730nm)、(
550,730nm)、(500,580nm)一定し
て、二色温度演算法により温度Tを算出したところ、そ
れぞれ1728℃、1553℃、1668℃、1678
℃が得られ、選定ηる波長により筒用温度値にかなりの
差異が認められた。なお、第4図における曲線Pは実測
したスペクトル分布を承り。
The selected wavelength λ1゜λ using Jj in the dichroic system 1 good arithmetic method
If the emissivity ε and ε2 of Color temperature calculation method
When the temperature value was determined by changing the selected wavelength, the result was shown in Figure 4. Jj is on the ff1 diagram,
The hζ axis represents the wavelength, and the vertical axis represents the relative intensity of equation (4).
We have expanded the area circled in the lower right corner. As shown in the figure, there are four combinations of two wavelengths (λ, λ2): (550, 660 nm), (660, 730 nm), (
550, 730 nm) and (500, 580 nm), the temperature T was calculated using the two-color temperature calculation method, and the results were 1728°C, 1553°C, 1668°C, and 1678°C, respectively.
℃ was obtained, and considerable differences in tube temperature values were observed depending on the selected wavelength. Note that the curve P in FIG. 4 corresponds to the actually measured spectral distribution.

このように、二色温度演算法で口出される温度lI/l
が、選定する波長λ 、λ2により異なるのは、現実に
は物体の放射!Vεが波長により変化しているにしかか
わらず、放射率εが一定であるどしてルーc′iを行う
ために、」−記(5)式で表わされる温度誤差が生じる
ものと考えられる。
In this way, the temperature lI/l determined by the two-color temperature calculation method
However, what actually differs depending on the selected wavelengths λ and λ2 is the radiation of the object! It is thought that a temperature error expressed by equation (5) occurs because the emissivity ε is constant even though Vε varies depending on the wavelength.

以上説明したにうに、二色温度演算法Cは、波長λに対
する物体の放射率εの変化の影響を受けて、0出湯度埴
にばらつきが生じるため、物体の温度測定を精度良く行
なえないという問題を有していた。
As explained above, the two-color temperature calculation method C cannot accurately measure the temperature of an object because it is affected by the change in the emissivity ε of the object with respect to the wavelength λ, which causes variations in the zero temperature. I had a problem.

(発明の目的) この発明の温度測定方法は、上記問題点を解決するため
になされたもので、波長に対する放)j率の変化の影響
を少なくして測温精度を向上できる温度測定方法を提供
することを目的とする。
(Objective of the Invention) The temperature measurement method of the present invention has been made in order to solve the above problems, and provides a temperature measurement method that can improve temperature measurement accuracy by reducing the influence of changes in the emissivity ratio with respect to wavelength. The purpose is to provide.

(目的を達成するための手段) この発明の温度測定方法は、上記目的を達成するために
、測温物体から放射されるエネルギーのスペクトル分布
を測定し、上記スペクトル分布の波長範囲内で任意の2
波長の組合せを適当数選定して、それぞれの組合せ毎に
、その組合せに係る2波Iqとその2波長の測定放射エ
ネルギー値を用いて二色温度演算法により温度値を算出
し、q出された温度(直の頻度分イ1iから測温物体の
温度を決定するようにしている。
(Means for Achieving the Object) In order to achieve the above object, the temperature measurement method of the present invention measures the spectral distribution of energy radiated from a temperature measuring object, and measures the spectral distribution of energy radiated from a temperature measuring object, 2
Select an appropriate number of combinations of wavelengths, and for each combination, calculate the temperature value using the two-color temperature calculation method using the two-wave Iq for that combination and the measured radiant energy values of the two wavelengths, and calculate the q output. The temperature of the temperature measuring object is determined from the measured temperature (direct frequency i1i).

(実施例) 第1図は、この発明の温度測定方法を実施するlこめの
温度測定装置の一例を示したブ1コック図である。この
装置においては、測温する物体1から発生する光2を、
石英系ファイバ3等で分光器・1に導いて、放射エネル
ギーのスペクトル分布liを測定するように構成される
。分光器4は、所定の波長範囲のスペクトル分イロが測
定できるように、例えばフォトダイオードアレーの検出
器を有する分光;Sを使用するが、機種などは特に限定
しない。
(Example) FIG. 1 is a block diagram showing an example of a temperature measuring device for carrying out the temperature measuring method of the present invention. In this device, light 2 generated from an object 1 whose temperature is to be measured is
It is configured to be guided to a spectrometer 1 using a quartz fiber 3 or the like to measure the spectral distribution li of radiant energy. As the spectrometer 4, a spectrometer S having a photodiode array detector is used, for example, so as to be able to measure spectral differences in a predetermined wavelength range, but the model is not particularly limited.

分光器4のフォトダイオードアレーにより検出された各
波長の放射エネルギー値を表すアブログデータは、それ
ぞれの波長毎に分光器4から時系列的に出力され、△/
D変換器5によりデジタルデータに変換されてコンビコ
ータ6へ入力するように構成される。コンピュータ6は
、各種演n処叩や外部機器等に対し各種指令を与えるた
めの中央処理装置(CPU)7に、バスを介してメ七り
8とI10ポート9を接続しており、このI10ボート
9に、上記A/D変111j!器5と、選定波長をへカ
するためのキーボード10等の入力手段と、温度頻度分
布図や測定温度値を表示するためのしニタ11′8の出
力手段をそれぞれ接続している。
Ablog data representing the radiant energy value of each wavelength detected by the photodiode array of the spectrometer 4 is output from the spectrometer 4 in time series for each wavelength.
It is configured to be converted into digital data by a D converter 5 and input to a combi coater 6. The computer 6 has a central processing unit (CPU) 7 connected via a bus to a central processing unit (CPU) 7 for performing various operations and giving various commands to external devices. On boat 9, the above A/D change 111j! The device 5 is connected to input means such as a keyboard 10 for inputting a selected wavelength, and output means of a monitor 11'8 for displaying a temperature frequency distribution diagram and measured temperature values.

次に、上記温度測定装置を用いた温度測定方法を、第2
図に示Jフローヂャ−1〜を用いて説明する。まず、ス
テップS1において、測温物体1から発生ずる光2をフ
ァイバ3ににり分光器4に導き、分光器4のフォトダイ
オードアレーにより、測温物体1の放射エネルギーのス
ペクトル分布を測定づる。分光器4の測定波長範囲は特
に限定されないが、−例を示せば、可>+S光(550
nm−650nm)の範囲につき、5nm等の所定波長
間隔でそれぞれのrIIIll−1エネルギーを測定す
る。こうして分光器4のフォトダイオードアレーにより
測定された各波長毎の成用エネルギー(直を表すアナ[
1グデータは、△/D変換器5へ時系列的に出力されて
デジタルデータに変換され、コンビコータ6のI10ボ
ート9 J3 J: U CP 1.J 7 ヲ介シテ
メしり8に格納される。これにより、メ[す8には、測
温物体1の放則エネルA=−のスペクトル分(1iを表
づデータが格納されることどなる。
Next, a second temperature measurement method using the above temperature measurement device will be described.
This will be explained using flowchart J shown in the figure. First, in step S1, the light 2 generated from the temperature measuring object 1 is guided to the spectrometer 4 through the fiber 3, and the spectral distribution of the radiant energy of the temperature measuring object 1 is measured by the photodiode array of the spectrometer 4. The measurement wavelength range of the spectrometer 4 is not particularly limited, but as an example, it is possible >+S light (550
Each rIIIll-1 energy is measured at predetermined wavelength intervals, such as 5 nm, over the range (nm-650 nm). In this way, the energy of each wavelength measured by the photodiode array of the spectrometer 4 (ana[
The 1g data is output in time series to the Δ/D converter 5 and converted into digital data, and is sent to the I10 port 9 of the combi coater 6. J 7 It is stored in the storage area 8. As a result, data representing the spectrum of the radial energy A=- (1i) of the temperature measuring object 1 is stored in the memory 8.

つぎに、オペレータはキーボード10を操作し、分光器
4により測定されるスペクトル分布範囲内で、任意の2
波長の組合せを適当数選定する。もっと6、この選定作
業は、′/)光器4によるスベク]ヘル分niの測定L
J、前に行って、選定波長を予めメモリ8へ格納してお
いてちJ:い。こうして波1定作業が行なわれると、C
P LJ 7に43いて、選定された波長の組合せ毎に
、その組合せに係る2波長λ 、λ と、その波長λ 
、λ2に対応するメモリ8に格納され一〇いる放射エネ
ルギーW1、W2を用いて、二色温度演算法(既述の(
4)式)により)温度値が算出される〈ステップS 2
 ) 、。
Next, the operator operates the keyboard 10 to select any two within the spectral distribution range measured by the spectrometer 4.
Select an appropriate number of wavelength combinations. More 6, this selection work is done by measuring L
J: Go ahead and store the selected wavelength in the memory 8 in advance. When the wave 1 constant work is carried out in this way, C
For each combination of wavelengths selected, the two wavelengths λ and λ related to that combination, and the wavelength λ
, λ2 are stored in the memory 8 and have 10 radiant energies W1 and W2, the two-color temperature calculation method (already described (
4) The temperature value is calculated by the formula (Step S2)
),.

各波長の組合せ1σの温度値口出処理が終了りると、続
いてCPU 7において、筒用された各温度値に阜づさ
、Q出温麿舶の頻度分布が求められ、110ボート9を
介してモニタ11土に温度値頻度分布図が作成される(
ステップ83)。二また、CP tJ 7にJ3いて、
Q出された各温度値の煩H,(1/、)布から測温物体
の温度が決定され、1,10ボート9を介してモニタ1
1に表示される(ステップS4)。この測温1勿体の温
度決定tよ、例えば二色1111’1度演Q法による口
出y1度のhat ’b高い温度(I゛1を求めること
により行なわれ、あるい【よ温R!、自贅11%ンン7
1iの中央値を求めることにより1牙すわれる。
When the temperature value output processing for each wavelength combination 1σ is completed, the CPU 7 calculates the frequency distribution of the temperature values and Q output temperature values for each temperature value, and calculates the 110 boats 9. A temperature value frequency distribution map is created on monitor 11 through
Step 83). Again, J3 at CP tJ 7,
The temperature of the temperature measuring object is determined from the cloth (1/,) of each temperature value obtained, and is sent to the monitor 1 via the 1,10 boat 9.
1 (step S4). This temperature measurement 1 is done by determining the temperature t, for example, by determining the high temperature (I゛1) of the output y1 degree by the two-color 1111'1 degree operation Q method, or [Yo temperature R! , self-indulgence 11%nnnn7
By finding the median value of 1i, one tooth is removed.

実際に、」二記方法を用いて、ある測温物体1の可視光
のスペクトル分布 rn )につき、5直a1間隔でそれぞれの放射エネル
ギーを測定し、その波長範囲内で210周の適当IJ、
2波長の組合せを選定して、各組合V毎に二色温度演ロ
法による温度値を算出し、算出された各;晶度賄に基づ
いて温度値頻度弁イロ図を作成した。
In fact, using the method described in ``2'', we measured the radiant energy of each visible light spectral distribution rn) of a certain temperature measuring object 1 at 5 diagonal and a1 intervals, and within that wavelength range, we measured the appropriate IJ of 210 rounds,
A combination of two wavelengths was selected, a temperature value was calculated for each combination V by the two-color temperature algorithm, and a temperature value frequency diagram was created based on the calculated crystallinity.

その−例を第3図に示す。横軸は専用温度値を示し、縦
軸は締出回数を示づ一0第3図に承りように二色温KI
演ロ法による測定1直は選定づる波長により1000℃
から1900℃の広い範囲でバラツキが生じている。ま
た、図には明示されないが、頻度分布の中央値からはず
れた温度を算出した波長には一定した傾向はなく、二邑
温磨演算法に使用する波長が同一であっても、算出され
る温度値は、温度や測定条件により、中央値に近い値や
速くばれたfMiを示している。この温度頻度力15図
を用いて、筒用頻度の最も高い温度値により測温物体の
温度決定を行うと、測温値は1460℃であった。実際
に、測温物体1の真の温度を、熱電対を用いて同時に測
定したところ、測温結果は1460℃であり、十記温庶
311!定方法の測温値と一致した。
An example of this is shown in FIG. The horizontal axis shows the dedicated temperature value, and the vertical axis shows the number of lockouts.As shown in Figure 3, the two-color temperature KI
One shift of measurement using the rotor method is 1000℃ depending on the selected wavelength.
Variations occur over a wide range from 1900°C to 1900°C. Also, although it is not clearly shown in the figure, there is no consistent trend in the wavelengths for which temperatures are calculated that deviate from the median of the frequency distribution, and even if the wavelengths used in the Futura Atma calculation method are the same, The temperature value indicates a value close to the median value or fMi that is quickly determined depending on the temperature and measurement conditions. Using this temperature frequency diagram 15, the temperature of the temperature measuring object was determined based on the most frequently used temperature value for the cylinder, and the measured temperature value was 1460°C. In fact, when the true temperature of the temperature measuring object 1 was simultaneously measured using a thermocouple, the temperature measurement result was 1460°C, which was 311 degrees Celsius! The temperature values were consistent with those measured using the same method.

なお、上記例では550nm〜650nmのスペクトル
分イ5につき5直m間隔で210個の+Pl”1値を二
色濡度演t)法により算出しているが、測定波長範囲や
測定値の数は上記に限定するものでないことは言うまで
もない。すなわち測定値の数については、測温物体の波
長による放射率の不均一性の影響を除去できる、最小の
組合μ数で十分である。
In addition, in the above example, 210 +Pl"1 values are calculated at 5 dm intervals for each 550 nm to 650 nm spectrum component 5 using the two-color wetness calculation method, but the measurement wavelength range and the number of measured values Needless to say, is not limited to the above. That is, regarding the number of measured values, the minimum combined μ number that can eliminate the influence of non-uniformity of emissivity due to the wavelength of the temperature measuring object is sufficient.

また、上記実施例では、分光器4により測定したスペク
トル分布をオンラインでコンピュータ6へ入力するよう
に構成しているが、分光器4により測定したスペクトル
分布のデータを、オペレータがキーボード10を用いて
コンピュータ6へ入力するように構成してもよい。また
、上記二色揚度演咋処理、温度頻度分布図作成処理およ
び測定温度値決定処理は、コンビコータ6によらずに人
手により11つCもよく、また人手とコンピュータを1
1f<川Jるようにしでもよい。
Furthermore, in the above embodiment, the spectral distribution measured by the spectrometer 4 is input into the computer 6 online, but the operator inputs the data of the spectral distribution measured by the spectrometer 4 using the keyboard 10. It may also be configured to be input to the computer 6. Furthermore, the above-mentioned two-color temperature calculation process, temperature frequency distribution map creation process, and measured temperature value determination process can be performed manually without using the combi coater 6, or can be performed manually and by using a computer.
You can also make it so that 1f<river J.

この温度測定方法によれば、測温物体1の波長に対づる
放射率εの変化の影響を少なくできて、Jl)1温れ7
度の向上を図れる。また、測温物体1と石英系ファイバ
ー3′8の間に存在ザる煙・水恭気等ににる光の散乱や
吸収の影響ら自動的に取り除くことができて、この点で
も測湿粘度の向上を図れる。
According to this temperature measurement method, it is possible to reduce the influence of changes in emissivity ε with respect to the wavelength of the temperature measuring object 1, and Jl) 1 temperature 7
You can improve your level of performance. In addition, it is possible to automatically remove the effects of light scattering and absorption caused by smoke, water, etc. that exist between the temperature measuring object 1 and the quartz fiber 3'8, and in this respect, humidity measurement is also possible. Viscosity can be improved.

(発明の効果) 以−1のJ、うに、この発明の温度測定装置によれば、
1lll+湯物体の故用、Yネルギーのスペクトル分布
11を測定し、そのスペクトル分布の波長範囲内で・任
7への2波良の組合せを適当数rべ定してそれぞれの組
合Uf0に二色基1JII演C’)仏により温度(nを
C)出し、Lン出された温度(直の頻度分布から測温物
体の湿度を一決定りろJ、うtこしたため、測温物体の
波長に対りる族α1揉・′の変化の:影響を少なくしま
た、測温物体と測定器との間(′1じる先の119乱や
吸収の影Vキを取り除くことかでさるため、測温lI’
j Iαの向−[を図れるとい゛う効果が1’?られる
(Effect of the invention) According to the temperature measuring device of the present invention,
Measure the spectral distribution 11 of Y energy using the 1llll + hot water object, determine an appropriate number of combinations of 2 waves to 7 within the wavelength range of the spectral distribution, and add two colors to each combination Uf0. Base 1 JII performance C') According to Buddha, calculate the temperature (n for C) and determine the humidity of the temperature measuring object from the frequency distribution of the temperature (L). In order to reduce the effect of changes in the family α1/' on , temperature measurement lI'
Is the effect of being able to aim for the direction of Iα 1'? It will be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の温度測定方法が実施される温度測定
装置の一例を示すブロック図、第2図はその動作を示す
ノローヂャート、第3図は上記装置により作成された温
度頻度分布の一例を示す図、第4図は従来の二色渇麻演
緯法による測定器と選定波長との関係を示ザ図である。 1・・・測温物体、 4・・・分光器 6・・・コンピュータ 代理人 弁理上 −、!r 11茂明 弁叩十 吉竹矢俊 弁理1〜 有田肖弘 第2図 突后回殻
Fig. 1 is a block diagram showing an example of a temperature measuring device in which the temperature measuring method of the present invention is implemented, Fig. 2 is a diagram showing its operation, and Fig. 3 is an example of the temperature frequency distribution created by the above device. The figure shown in FIG. 4 is a diagram showing the relationship between a measuring device and a selected wavelength using the conventional two-color thirst calculation method. 1...Temperature measuring object, 4...Spectrometer 6...Computer agent For patent attorney purposes -,! r 11 Shigeaki Bentakuju Yoshitake Yatoshi Benri 1~ Takahiro Arita Figure 2 Toukou Kaishu

Claims (2)

【特許請求の範囲】[Claims] (1)測温物体から放射されるエネルギーのスペクトル
分布を測定し、前記スペクトル分布の波長範囲内で任意
の2波長の組合せを適当数選定して、それぞれの組合せ
毎に、その組合せに係る2波長とその2波長の測定放射
エネルギー値を用いて二色温度演算法により温度値を算
出し、算出された温度値の頻度分布から測温物体の温度
を決定することを特徴とする温度測定方法。
(1) Measure the spectral distribution of energy emitted from the temperature measuring object, select an appropriate number of combinations of any two wavelengths within the wavelength range of the spectral distribution, and for each combination, A temperature measurement method characterized by calculating a temperature value by a two-color temperature calculation method using a wavelength and measured radiant energy values of the two wavelengths, and determining the temperature of a temperature measuring object from the frequency distribution of the calculated temperature values. .
(2)前記測温物体の温度決定は、二色温度演算法によ
る算出頻度の最も高い温度値を求めることにより行う特
許請求の範囲第1項記載の温度測定方法。
(2) The temperature measuring method according to claim 1, wherein the temperature of the temperature measuring object is determined by determining the most frequently calculated temperature value using a two-color temperature calculation method.
JP28414685A 1985-12-16 1985-12-16 Temperature measuring method Pending JPS62142246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28414685A JPS62142246A (en) 1985-12-16 1985-12-16 Temperature measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28414685A JPS62142246A (en) 1985-12-16 1985-12-16 Temperature measuring method

Publications (1)

Publication Number Publication Date
JPS62142246A true JPS62142246A (en) 1987-06-25

Family

ID=17674762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28414685A Pending JPS62142246A (en) 1985-12-16 1985-12-16 Temperature measuring method

Country Status (1)

Country Link
JP (1) JPS62142246A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009130255A (en) * 2007-11-27 2009-06-11 Ulvac Japan Ltd Deposition device
JP2021139705A (en) * 2020-03-04 2021-09-16 日本製鉄株式会社 Temperature measurement device, and temperature measurement method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009130255A (en) * 2007-11-27 2009-06-11 Ulvac Japan Ltd Deposition device
JP2021139705A (en) * 2020-03-04 2021-09-16 日本製鉄株式会社 Temperature measurement device, and temperature measurement method

Similar Documents

Publication Publication Date Title
EP0335224B1 (en) Radiation thermometry
JP5030629B2 (en) Method and apparatus for quantitative analysis of gas concentration
US10957564B2 (en) Self-calibration apparatus and method for real-time temperature measurement system of MOCVD device
US5690429A (en) Method and apparatus for emissivity independent self-calibrating of a multiwavelength pyrometer
JPS62142246A (en) Temperature measuring method
JPH06500387A (en) Multiwavelength pyrometer
JPH0210206A (en) Optical film thickness measuring apparatus
JP6061031B2 (en) Spectroscopic analysis system and method
JPS6140928B2 (en)
GB2090402A (en) Measurement of temperature by radiation pyrometry
JPH0217429A (en) Concentration measuring method by using laser type gas sensor
RU2247339C2 (en) Method and device for measuring emissive power of inner surfaces of non-uniformly heated space
JPS606833A (en) Spectrophotometer
Reichel Development and Validation of an Algorithm for Emissivity-Corrected Pyrometry Independent of Material Properties.
JPS6190024A (en) Radiation thermometer
Rusin Using spectral distribution of radiance temperature and relative emissivity for determination of the true temperature of opaque materials
JP2703326B2 (en) How to measure the transmittance of a substance
JP2000131228A (en) Spectroscopic measurement method using ultraviolet rays and near infrared rays
JPH05164616A (en) Multiple-wavelength type radiation thermometer
JPH05142051A (en) Two-color multiple radiation thermometer
Sen’kov et al. Reduction of methodological errors in determining the temperature of metals by two-color pyrometers
JPS6148735A (en) Measuring device for concentration and partial pressure of gas
JPH03287028A (en) Radiation thermometer
JPH0194248A (en) Infrared ray emitting spectrophotometric method and apparatus
JPH05346353A (en) Optical fiber temperature distribution sensor