JPS62141651A - Optical head device - Google Patents

Optical head device

Info

Publication number
JPS62141651A
JPS62141651A JP60282204A JP28220485A JPS62141651A JP S62141651 A JPS62141651 A JP S62141651A JP 60282204 A JP60282204 A JP 60282204A JP 28220485 A JP28220485 A JP 28220485A JP S62141651 A JPS62141651 A JP S62141651A
Authority
JP
Japan
Prior art keywords
light
photodetector
diffraction grating
optical
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60282204A
Other languages
Japanese (ja)
Other versions
JPH0743845B2 (en
Inventor
Masakuni Yamamoto
昌邦 山本
Kiyonobu Endo
遠藤 清伸
Tetsuo Kuwayama
桑山 哲郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60282204A priority Critical patent/JPH0743845B2/en
Publication of JPS62141651A publication Critical patent/JPS62141651A/en
Publication of JPH0743845B2 publication Critical patent/JPH0743845B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To simplify an optical adjustment and to reduce the influences of fluctuation of wavelength of a light source by dividing a diffraction grating structure into plural areas that diffract a luminous flux to different directions. CONSTITUTION:Reflected light rotated by the polarizing surface is led to a photodetector 9 through an photodetecting element 8, and control signals for automatic focusing and automatic tracking and signals of information recorded on a recording face 6 are detected. In the photodetector 9, four light receiving faces 9a, 9b, 9c, 9d are arranged in series in the direction of paper face. Focus error signals are detected by a diffraction grating 10a and light receiving faces 9a, 9b of the photodetector 9, and automatic focusing is made possible by moving an objective lens 5 or whole light head to a disk along the optical axis of incident light through an actuator. Track error signals are detected by diffraction gratings 10c, 10d and light receiving faces 9c, 9d of the photodetector, and automatic tracking is made possible by driving an tracking actuator and moving an objective lens 7 perpendicular to the optical axis.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は情報担体に光を照射し、光学的に情報の記録又
は再生を行なう光ヘッド装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an optical head device for optically recording or reproducing information by irradiating light onto an information carrier.

〔従来技術〕[Prior art]

近年、デジタル化された音声を表面の凹凸で記録したコ
ンパクトディスクヤ、TV映像を記録したビデオティス
フの普及が著しい。
In recent years, compact discs, which record digitized audio using uneven surfaces, and video discs, which record TV images, have become extremely popular.

特にコンパクトディスクプレイヤーは据tit、mから
自由に持ち運べるポータプル型、又は車載用のプレーヤ
ーへの進出か大いに期待されている。
In particular, it is highly anticipated that compact disc players will expand from desktop and compact discs to portable portable players and car-mounted players.

これら光学的清報記録再生装置は、使用側からの要求と
して薄型、小型、安価な事が要求されており、従って上
記の9口き情報担体にT)f報を記録又は再生する元ヘ
ッド装置に関しても同様の要求が大きくなっている。
These optical information recording/reproducing devices are required to be thin, small, and inexpensive as requirements from the user side. Similar demands are also growing for

従来、上記のような元ヘッド装置は、光検出器に向かう
光路中にシリンドリカルレンズ等を配置し、非点収差を
利用してフォーカスニラ−16号を検出するのが普通で
あった。しかしながら、シリンドリカルレンズ等の特殊
な光学部品は装置の高価格化の原因となシ、また組立時
に谷部品間の光学調整が煩雑であった。そこで、このよ
うな欠点を解決した光ヘッド装置が特開昭60−542
5号等で提案されている。この例を第15凶を用いて説
明する。
Conventionally, in the original head device as described above, a cylindrical lens or the like is disposed in the optical path toward the photodetector, and the focus lens No. 16 is detected using astigmatism. However, special optical components such as a cylindrical lens do not increase the cost of the device, and optical adjustment between valley components is complicated during assembly. Therefore, an optical head device that solved these drawbacks was developed in Japanese Patent Application Laid-Open No. 60-542.
It is proposed in No. 5, etc. This example will be explained using the 15th bad.

第15図は従来の光ヘッド装置の構成を示す概略図であ
る。ここで、半導体レーザー光源41からの光束46は
、コリメーターレンズ42により平行光束となって偏光
ビームスプリッタ−44を透過し、%波長板15′5を
透過した後、対物レンズ45により↑R報記録担体面1
7に集光される。この情報記録担体面で反射され、情報
を含んだ光束は、ビームスプリッタ−44で反射された
後、プレース型回折格子20に入射する。この回折格子
は、入射面に対してほぼ臨界角となる方向に、入射する
光束を回折する設計となっている。情報記録担体が正規
の位置よシも遠い場合、あるいは近い場合に、回折格子
に入射する光束は収束光あるいは発成光となる。
FIG. 15 is a schematic diagram showing the configuration of a conventional optical head device. Here, the light beam 46 from the semiconductor laser light source 41 becomes a parallel light beam by the collimator lens 42, passes through the polarizing beam splitter 44, passes through the % wavelength plate 15'5, and then passes through the objective lens 45 with the ↑R signal. Record carrier side 1
The light is focused on 7. The light beam reflected on the information recording carrier surface and containing information is reflected by the beam splitter 44 and then enters the place type diffraction grating 20. This diffraction grating is designed to diffract an incident light beam in a direction that is approximately at a critical angle with respect to the plane of incidence. When the information recording carrier is far away from its normal position or close to it, the light beam incident on the diffraction grating becomes convergent light or emitted light.

この結果、光検出器51上での光量分布のアンバランス
が生じ、7オーカス誤差検出が行なわれる。
As a result, an imbalance in the light amount distribution on the photodetector 51 occurs, and seven orcus error detection is performed.

しかしながら、上記の如き光ヘッド装置は、使用時の環
境温度の変化、駆動電流の変動等によって光源の波長が
変化すると正しいオートフォーカス動作が行なえなくな
る欠点があった。
However, the above-mentioned optical head device has a drawback that correct autofocus operation cannot be performed if the wavelength of the light source changes due to changes in environmental temperature, fluctuations in drive current, etc. during use.

たとえば−例として、λ=830nmの波長の半導体レ
ーザは、1℃の温度上昇に対して約0.5nmの波長シ
フトを生じ、この結果20℃の温度上昇では6 nmも
の波長変動を生じる。これだけの波長変化が生じたとき
には、回折光は児全に全反射の状態となシ、±1μm程
度のフォーカスずれでは光検出器51上の光量分布が全
く変化しないという状態が生じてしまい、オートフォー
カス動作は不可能となる。
For example - by way of example, a semiconductor laser with a wavelength of λ=830 nm experiences a wavelength shift of about 0.5 nm for a temperature increase of 1 DEG C., resulting in a wavelength shift of as much as 6 nm for a temperature increase of 20 DEG C. When such a wavelength change occurs, the diffracted light is totally reflected, and a focus shift of about ±1 μm causes a state in which the light intensity distribution on the photodetector 51 does not change at all, resulting in an automatic failure. Focus operation becomes impossible.

〔発明の概要〕[Summary of the invention]

本発明の目的は、上記の従来技術の問題点を解決し、光
学v8整が簡単で、しかも光源の波長変動の影響が少な
い元ヘッド装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art and to provide an original head device in which optical V8 adjustment is simple and is less affected by wavelength fluctuations of a light source.

本発明の上記目的は、情報担体に光を照射する光源と、
前記光源と1に報担体との間に配され。
The above object of the present invention is to provide a light source that irradiates light onto an information carrier;
disposed between the light source and the information carrier.

前記情報担体で反射された光束を前記照射光束から分離
する光分割器と、前記光分割器で分離された反射光束を
検出する光検出器とから成る光ヘッド装置1において、
前記光分割器と光検出器との間に、前記反射光束の少な
くとも一部を回折して光検出器に導く回折格子構造体を
有する光学素子t−設け、前記回折格子構造体を、光束
を各々異なる方向に回折する複数の領域に分割されたも
のとすることによって達成される。
An optical head device 1 comprising a light splitter that separates the light beam reflected by the information carrier from the irradiation light beam, and a photodetector that detects the reflected light beam separated by the light splitter,
An optical element t having a diffraction grating structure that diffracts at least a part of the reflected light beam and guides it to the photodetector is provided between the light splitter and the photodetector, and the diffraction grating structure is used to guide the light beam to the photodetector. This is achieved by dividing the beam into a plurality of regions, each of which diffracts in a different direction.

〔実施例〕〔Example〕

以下、図面を用いて本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail using the drawings.

第1図は本発明の光ヘッド装置の一実施例を示す概略図
である。ここで、半纏体レーザ1から出射したS偏光は
コリメータレンズ2、ビーム整形プリズム3を経て平行
光束となり、適当な偏光時性(例えばP偏光の反射率が
70係で透過率か30チ、S偏光の反射率が100優)
の偏光ビームスグリツタ4を透過し、対物し/ズ5によ
って情報記録面6に集光される。そして、磁気的に情報
が記録された記録面46における、上向きおよび下向き
の磁化の情報に応じて偏光面が回転された反射光は、再
び対物レンズ5を経て、偏光ビームスプリッタ4で入射
光束と分離され、−面にレリーフ型回折格子か形成され
た平行平板から成る光学素子7に入射する。そして前記
回折格子で回折された光は、検光子8を経て光検出器9
に導かれ、オートフォーカス(以下ムFと称す)及びオ
ートトラッキング(以下ATと称す)の為の制御信号と
、前記記録面6に記録された情報の信号とが検出される
FIG. 1 is a schematic diagram showing an embodiment of an optical head device of the present invention. Here, the S-polarized light emitted from the semi-integrated laser 1 passes through the collimator lens 2 and the beam-shaping prism 3 to become a parallel beam of light, and the S-polarized light passes through the collimator lens 2 and the beam-shaping prism 3 to become a parallel beam of light, and has an appropriate polarization time (for example, if the reflectance of P-polarized light is 70, the transmittance is 30, or S Reflectance of polarized light is better than 100)
The light beam passes through the polarized beam sinter 4 and is focused on the information recording surface 6 by the objective lens 5. Then, the reflected light whose polarization plane has been rotated according to the upward and downward magnetization information on the recording surface 46 on which information is magnetically recorded passes through the objective lens 5 again, and is combined with the incident light beam by the polarizing beam splitter 4. The light is separated and incident on an optical element 7 consisting of a parallel flat plate having a relief type diffraction grating formed on its -plane. The light diffracted by the diffraction grating passes through the analyzer 8 and is detected by the photodetector 9.
, and control signals for autofocus (hereinafter referred to as F) and autotracking (hereinafter referred to as AT) and signals of information recorded on the recording surface 6 are detected.

第1図に示した光学素子7を、偏光ビームス1リツタ4
側から見た図1r第2図に示す。本実施例の、レリーフ
型回折格子は3つの部分10a。
The optical element 7 shown in FIG.
It is shown in FIG. 1r and FIG. 2 as viewed from the side. The relief type diffraction grating of this embodiment has three parts 10a.

10b、10cに分割されていて、おのおの格子が円錐
形に形成されており、回折光束11a、11b、11c
を集束せしめるレンズ作用を有する。また光検出器9は
4つの受、光面9a、9b、9c、9dが紙面方向に直
列に配置されている。この・光検出器上の光量分布は、
第1図における記録面6上のスボツトの合焦状態に応じ
て変化する。まず、オートフォーカスの原理を以下に詳
しく説明する。
It is divided into 10b and 10c, each of which has a conical grating, and diffracted light beams 11a, 11b, 11c.
It has a lens action that focuses the light. Further, the photodetector 9 has four receivers and optical surfaces 9a, 9b, 9c, and 9d arranged in series in the direction of the paper. This light intensity distribution on the photodetector is
It changes depending on the focusing state of the spot on the recording surface 6 in FIG. First, the principle of autofocus will be explained in detail below.

フォーカスエラー信号は回折格子10aと、光検出器9
の受光面9a、9bで検出する。第3図(A)。
The focus error signal is transmitted by the diffraction grating 10a and the photodetector 9.
It is detected by the light receiving surfaces 9a and 9b. Figure 3 (A).

(B)、 (C)は、光検出器9の受光面9a、9b 
f、光の入射側から見た図で、斜線部はビームの形状を
示し、(B)は合焦状態、(A)、(0)は焦点外れ状
態を示す。受光面からの出力を夫々I&* Ibeとす
ると、第4図μ)に示すような電気系において、Ia−
Ibなる演算を差動増′@器12で行なうことにより、
出力端子13には、第4図(句に示す様なフォーカスエ
ラー信号が得られる。第4図(司において横軸は合焦位
置を零としたときの対物レンズと記録面との距離(フォ
ーカス誤差)を示し、縦軸は信号出力を示す。得られた
フォーカスエラー信号に従い、不図示の7クチユエータ
を介して対物レンズ5或いは光ヘッド全体を入射光の光
軸に沿ってディスクに対して動かすことにより、オート
フォーカスが可能となる。
(B) and (C) are light receiving surfaces 9a and 9b of the photodetector 9.
f, A diagram seen from the light incidence side, where the shaded area shows the shape of the beam, (B) shows the focused state, and (A) and (0) show the out-of-focus state. If the outputs from the light-receiving surface are respectively I and * Ibe, then in the electrical system shown in Figure 4 μ), Ia-
By performing the operation Ib in the differential multiplier 12,
At the output terminal 13, a focus error signal as shown in Figure 4 is obtained. error), and the vertical axis indicates the signal output.According to the obtained focus error signal, the objective lens 5 or the entire optical head is moved relative to the disk along the optical axis of the incident light via a 7-cut unit (not shown). This enables autofocus.

次に、$1図示の実施例におけるオートトラッキングの
原理を説明する。トラックエラー信号は回折格子10c
、10bと光検出器の受光面9c。
Next, the principle of auto-tracking in the embodiment shown in FIG. 1 will be explained. The track error signal is the diffraction grating 10c.
, 10b and the light receiving surface 9c of the photodetector.

9d で検出する。第5図(A) 、 (B) 、 (
C)のように情報記録担体の基板18に綽18aが形成
されているとすると、対物レンズ5により、入射光束は
この@18aの近傍に集光される。ここで(ロ)は。
Detected with 9d. Figure 5 (A), (B), (
Assuming that a cage 18a is formed on the substrate 18 of the information recording carrier as shown in C), the incident light beam is focused near this @18a by the objective lens 5. Here (b) is.

目的の酵18aの上にスポットが生じている状態、(A
) 、 ((’)は夫々酵に対してスポットが右または
左にずれている状態を示す。この蓋板18上の記録面1
9で反射される光束は溝18aでの回折或いは散乱によ
るトラッキング情報を含む。
A state where a spot is formed on the target yeast 18a, (A
), ((') indicates that the spot is shifted to the right or left with respect to fermentation.The recording surface 1 on this cover plate 18
The light beam reflected at the groove 18a includes tracking information due to diffraction or scattering at the groove 18a.

第2図図示の光検出Or9の受光面9c、9dで前記反
射光を受けると、その光波は、前述の第5図(A)、 
(B) 、 (C)の状態に応じて、それぞれ第6図(
A) t (B) * ((Jのように変化する。従っ
て第7図(A)に示すよりな゛電気系においてId−1
cなる演算を差動増幅器14で行なうことにより出力端
子16には、第7図(均に示すようなトラッキングエラ
ー18号が得られる。第7図(B)において、横軸はト
ラッキング誤差、縦軸は1ざ号出力を示す。得られたト
ラッキングエラー信号に従って、不図示のトラッキング
アクチュエータを駆動し、対物レンズ7を光軸に垂直に
移動させる等の方法で、オートトラッキングが可能とな
る。
When the reflected light is received by the light receiving surfaces 9c and 9d of the photodetector Or9 shown in FIG. 2, the light waves are
Figure 6 (
A) t (B) * ((J) Therefore, in an electric system other than that shown in FIG.
By performing the calculation c in the differential amplifier 14, a tracking error No. 18 as shown in FIG. 7 is obtained at the output terminal 16. In FIG. The axis indicates the No. 1 output.Auto tracking is possible by driving a tracking actuator (not shown) according to the obtained tracking error signal and moving the objective lens 7 perpendicular to the optical axis.

以上説明したフォーカスニラ−信号、トラックエラー信
号の検出法において半導体レーザーの波長変動の影響に
ついて説明する。波長変動により、考えられる影響は、
回折格子から回折される元の回折方向が変化し、”k、
@出器上での位置か変わる事、及び一つの次数の光にエ
ネルギーが集中せず複数のビームが光快出器上にやって
くる事である。光伏出器上でのビーム位置の変化は、本
発明においては光検出器の分割線に対し、平行方向のみ
で垂直方向には変化しないので、波長変動による。ビー
ム位置変化による影響はない。また、仮数のビームが光
検出器上にぐる状態は、一つのビームのエネルギが複数
に分散され分割線と、平行移動した位置に入射している
ので合計光量では、一つのビームの元を検出と変わらな
いので、複数のビームが光検出器上にくることによる影
響もない。
The influence of the wavelength fluctuation of the semiconductor laser in the detection method of the focus error signal and the track error signal explained above will be explained. The possible effects of wavelength variation are:
The original diffraction direction diffracted from the diffraction grating changes, “k,
@The position on the light output device changes, and the energy is not concentrated in one order of light, but multiple beams arrive on the light output device. In the present invention, the beam position on the optical oblique device changes only in the direction parallel to the dividing line of the photodetector and does not change in the perpendicular direction, so it is due to the wavelength fluctuation. There is no effect due to changes in beam position. In addition, when the mantissa beam goes around the photodetector, the energy of one beam is dispersed into multiple parts and is incident on the dividing line and a position that has moved parallel to it, so the total light intensity detects the source of one beam. Therefore, there is no effect due to multiple beams falling on the photodetector.

以上のように光検出器の受光面を波長変動で光束の移動
する方向に相対的に大きな寸法で作り、また、各受光面
の境界線をこの方向に平行にすることにより、光源の波
長変動が生じても、6光検出部の出力はほとんど影響を
受けず、正しいオートフォーカスおよびオートトラッキ
ングを行なうことができる。
As described above, by making the light-receiving surface of the photodetector relatively large in the direction in which the light flux moves due to wavelength fluctuations, and by making the boundaries of each light-receiving surface parallel to this direction, the wavelength fluctuation of the light source can be Even if this occurs, the output of the six-light detection section is hardly affected, and correct autofocus and autotracking can be performed.

次に本発明に用いる光学素子の回折格子構造体を製造す
るための型作成の1例を示す。
Next, an example of mold creation for manufacturing the diffraction grating structure of the optical element used in the present invention will be described.

型作成においては第8図に示すように型材2゜を回転し
、ダイヤモンド寺のカッター21を紙面に垂直方向へ移
動させながら型を作成する。
In making the mold, as shown in FIG. 8, the mold is made by rotating the mold material 2° and moving the cutter 21 of the diamond temple in a direction perpendicular to the plane of the paper.

カッター21の刃先の頂角は、角α、βによって定まり
、上記例では65′の角度を持たせる。型材20はリン
fw4、X鍮N1等の金属でも良いし。
The apex angle of the cutting edge of the cutter 21 is determined by angles α and β, and in the above example, it has an angle of 65'. The mold material 20 may be made of metal such as phosphorus FW4 or X-brass N1.

ロウ盤やグラスチック材等の高分子系の材買でもかまわ
ない。但し、金属型材の場合は直接スタンバ−として使
用可能であり電鋳等でスタンバ−を作成する工程が必要
ないと云う利点がある。第8図で示した方法で切削され
るとレリーフ構造は第9図CB)に示した如く、同心円
状のし!J−7m造が得られる。第9図(6)は(司図
の一部を拡大した図で、α−35°、β〜80°、ピッ
チ〜20μmである。
You can also purchase polymeric materials such as wax discs and glass materials. However, in the case of a metal mold material, it has the advantage that it can be used directly as a stub bar, and there is no need for a step of creating a stub bar by electroforming or the like. When cut using the method shown in Figure 8, the relief structure is shaped like concentric circles as shown in Figure 9 (CB). J-7m construction is obtained. FIG. 9(6) is an enlarged view of a part of the diagram, with α-35°, β~80°, and pitch ~20 μm.

次に、第10図に示す如く、アクリルの如きプラスチッ
ク材23にコンプレッション転写を行なう。この時、型
22、アクリル材25を適当な温度と圧力をかける事に
よシ金m22のレリーフ構造を忠実にアクリル材25に
転写する事が可能である。
Next, as shown in FIG. 10, compression transfer is performed on a plastic material 23 such as acrylic. At this time, by applying appropriate temperature and pressure to the mold 22 and the acrylic material 25, it is possible to faithfully transfer the relief structure of the mold m22 to the acrylic material 25.

転写したアクリル材のレリーフ構造部に第11図に示す
如く1例えば蒸着等で反射層24を設ける。反射層24
は多層構造でも単層構造でもかまわない。また、MfF
2. Tie□、 ZrO7,8102等の誘″dt膜
でもAu、 At 、 A4 ”等の金属膜でもかまわ
ない0以上のような方法によυ本発明に用いる光学素子
が作成される。
As shown in FIG. 11, a reflective layer 24 is provided on the transferred relief structure of the acrylic material by, for example, vapor deposition. Reflective layer 24
may have a multilayer structure or a single layer structure. Also, MfF
2. The optical element used in the present invention is fabricated by any of the above methods, which may be a dielectric dt film such as Tie□, ZrO7, 8102, etc., or a metal film such as Au, At, A4'', etc.

一般に1元磁気記録再生装置に用いる光ヘッド!装置に
おいて1反射光は記録面でその偏光向が回転されるとと
もに検光子に至るまでの間。
Optical head commonly used in single-source magnetic recording and reproducing devices! In the device, one reflected light has its polarization direction rotated on the recording surface, and the time it reaches the analyzer.

記録面及び、その間の光学素子の偏光特性によってP偏
光成分と8偏光成分とに位相差が生じそのためRf信号
のSρ値が低下する場合がある。
Depending on the polarization characteristics of the recording surface and the optical elements therebetween, a phase difference may occur between the P-polarized light component and the 8-polarized light component, resulting in a decrease in the Sρ value of the Rf signal.

そこで第12図(A) 、 (B) 、 (Cりにその
位相差を補正する手段を設けた本発明の他の実施例の構
成を示す。
Therefore, FIGS. 12(A), 12(B), and 12(C) show the structure of another embodiment of the present invention in which means for correcting the phase difference is provided.

第12図(尋は、記録面6.対物レンズ5、偏光ビーム
スプリッタ4による位相差が大きく光学素子7による位
相差が小さいときの構成図である。偏光ビームスグリツ
タ4と光学索子7との間にパビネソレイ二等の位相補正
板25を入れることにより、位相が補正され、s外が向
上する。第12図CB)は、記録1ki6、対物し/ズ
5゜偏光ビームスグリツタ4による位相差が小さく光学
素子7による位相差が大きいときの構成図である。偏光
子26の位置を偏光ビームスグリツタ4と光学素子7と
の間にすることにより光字素子7による位相差の影響が
なく、S/Nが向上する。
FIG. 12 (lower side is a configuration diagram when the phase difference caused by the recording surface 6, objective lens 5, and polarizing beam splitter 4 is large and the phase difference caused by the optical element 7 is small. By inserting a phase correction plate 25 such as Pavine Soley 2 in between, the phase is corrected and the s-output is improved. FIG. 3 is a configuration diagram when the phase difference is small and the phase difference caused by the optical element 7 is large. By positioning the polarizer 26 between the polarization beam sinter 4 and the optical element 7, there is no effect of phase difference caused by the optical element 7, and the S/N ratio is improved.

第12図(qは、記録面6.対物レンズ5、偏光ビーム
スプリッタ4及び光学素子7のおのおので位相差が大き
くなるときの構成図である。
FIG. 12 (q is a configuration diagram when the phase difference becomes large in each of the recording surface 6, objective lens 5, polarizing beam splitter 4, and optical element 7).

偏光ビームスプリッタ4と光学素子7の間に。between the polarizing beam splitter 4 and the optical element 7.

位相補正板25金入れ、検光子27の位1Rを位4tl
補正板25と、光学索子7との間にすることによって位
相差が補正され、sAの値が向上する。
Phase correction plate 25 gold case, analyzer 27 position 1R to position 4tl
By interposing it between the correction plate 25 and the optical cable 7, the phase difference is corrected and the value of sA is improved.

第13図は、トラックエラー信号及びフォーカスエラー
信号と情報信号との相互のもれごみが大きい場合に好適
な実施例を示す図である。
FIG. 13 is a diagram showing a preferred embodiment when there is a large amount of mutual leakage between the track error signal, the focus error signal, and the information signal.

記録面6からの反射光は、対物レンズ5、偏光ビームス
グリツタ4を経て光学素子7に入射する。光−r−索子
7は反射光束のうちの適当な光fを回折して光検出器9
に導き、トラックエラー1ご号、フォーカスニラ−信号
を構出する。反射光ののこりは光学素子7を透過し、検
光子28、集光レンズ29を経てもう1つの光検出器3
0に至り、情報担体に記録された情報信号が横比される
。このことにエラ、トランクエラー信号及びフォーカス
エラー信号とf# N信号との相互のもれこみは軽減さ
れる。
The reflected light from the recording surface 6 passes through the objective lens 5 and the polarizing beam sinter 4 and enters the optical element 7 . The light r-wavelength element 7 diffracts a suitable light f out of the reflected light beam and sends it to a photodetector 9.
When the track error number 1 is detected, a focus error signal is generated. The rest of the reflected light passes through the optical element 7, passes through the analyzer 28 and the condensing lens 29, and then reaches another photodetector 3.
0 and the information signal recorded on the information carrier is compared. This reduces the mutual leakage between the error, trunk error signal, focus error signal, and f#N signal.

第14図は光デイスク装置に適用される光ヘッド装置の
構成図である。この場合、半24体レーザ1t″出た日
偏光の直線偏光は、コリメータレンズ2.ビーム整形プ
リズム3を経て平行光束となり、さらに偏光ビームスプ
リッタ例えば、8偏光、98慢反射、P偏光98チ透過
)34で反射し、阿波長板31で円偏光となり、対物し
/ズ5により記録面56に集光される。記録面36に形
成されたビットによって反射光は。
FIG. 14 is a configuration diagram of an optical head device applied to an optical disk device. In this case, the linearly polarized light emitted from the semi-24-body laser 1t'' passes through the collimator lens 2 and the beam shaping prism 3 to become a parallel beam of light, and is further transmitted by a polarizing beam splitter such as 8 polarized lights, 98 long reflections, and 98 P polarized lights. ) 34, becomes circularly polarized light by the wavelength plate 31, and is focused on the recording surface 56 by the objective lens 5. The reflected light is reflected by the bits formed on the recording surface 36.

再び対物レンズ5、%波長板31を透過し、P偏光の直
線偏光となる。このP偏光の直線1fiil光は、偏光
ビームスプリッタ64f、透過して光学索子7に至り、
光検出器9に導かれトラックエラー信号とフォーカスエ
ラー信号及び情@信号が得られる。
The light passes through the objective lens 5 and the % wavelength plate 31 again, and becomes P-polarized linearly polarized light. This P-polarized linear 1fiil light passes through the polarizing beam splitter 64f and reaches the optical fiber 7.
A track error signal, a focus error signal, and an information signal are obtained by the photodetector 9.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように本発明の光ヘッド装置によれば温
度変化などKよって光源の波長変動が生じた場合でもド
リフトを生じることなく、信号全検出することが可能と
なった。
As described above, according to the optical head device of the present invention, even if the wavelength of the light source varies due to K such as temperature change, it is possible to detect all signals without causing drift.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光ヘッド装置の実施例を示す構成図、
!@2図はW、1図示の光学素子を示す図、第3図及び
第4図は夫々本発明におけるオートフォーカスの原理を
示す図、第5図、第6図及び第7図は夫々本発明におけ
るオートトラッキングの原理を示す図、第8図、第9図
、第10図及び第11図は夫々本発明に用いる光学素子
の製造方法を示す図、第12図、第13図及びlA14
図は夫々本発明の光ヘッド装置の他の実施例を示す構成
図、第15図は従来の光ヘッド装置を示す構成図である
。 1 ・・・半導体レーザ 2・・・コリメータレンズ 3・・・ビーム整形プリズム 4・・・偏光ビームスプリッタ 5・・・対物レンズ 6・・・記録面 7・・・光学素子 8・・・倹元子 9・・・光検出器
FIG. 1 is a configuration diagram showing an embodiment of an optical head device of the present invention;
! @Figure 2 is W, Figure 1 is a diagram showing the optical element shown in Figure 1, Figures 3 and 4 are diagrams each showing the principle of autofocus in the present invention, Figures 5, 6, and 7 are diagrams showing the optical element shown in Figure 1, respectively. Figures 8, 9, 10 and 11 are diagrams showing the method of manufacturing the optical element used in the present invention, Figures 12, 13 and 1A14, respectively.
The figures are block diagrams showing other embodiments of the optical head device of the present invention, and FIG. 15 is a block diagram showing a conventional optical head device. 1... Semiconductor laser 2... Collimator lens 3... Beam shaping prism 4... Polarizing beam splitter 5... Objective lens 6... Recording surface 7... Optical element 8... Saving element Child 9...Photodetector

Claims (1)

【特許請求の範囲】[Claims] (1)情報担体に光を照射する光源と、前記光源と情報
担体との間に配され、前記情報担体で反射された光束を
前記照射光束から分離する光分割器と、前記光分割器で
分離された反射光束を検出する光検出器とから成る光ヘ
ッド装置において、 前記光分割器と光検出器との間に、前記反射光束の少な
くとも一部を回折して光検出器に導く回折格子構造体を
有する光学素子を設け、前記回折格子構造体が光束を各
々異なる方向に回折する複数の領域に分割されているこ
とを特徴とする光ヘッド装置。
(1) a light source that irradiates light onto an information carrier; a light splitter that is disposed between the light source and the information carrier and separates the light flux reflected by the information carrier from the irradiation light flux; and a photodetector that detects the separated reflected light beam, the optical head device comprising: a diffraction grating that diffracts at least a portion of the reflected light beam and guides it to the photodetector between the light splitter and the photodetector. An optical head device comprising an optical element having a structure, the diffraction grating structure being divided into a plurality of regions each diffracting a light beam in a different direction.
JP60282204A 1985-12-16 1985-12-16 Optical head device Expired - Lifetime JPH0743845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60282204A JPH0743845B2 (en) 1985-12-16 1985-12-16 Optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60282204A JPH0743845B2 (en) 1985-12-16 1985-12-16 Optical head device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP8112508A Division JP2578589B2 (en) 1996-05-07 1996-05-07 Optical head device

Publications (2)

Publication Number Publication Date
JPS62141651A true JPS62141651A (en) 1987-06-25
JPH0743845B2 JPH0743845B2 (en) 1995-05-15

Family

ID=17649421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60282204A Expired - Lifetime JPH0743845B2 (en) 1985-12-16 1985-12-16 Optical head device

Country Status (1)

Country Link
JP (1) JPH0743845B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5745265A (en) * 1995-02-07 1998-04-28 Fujitsu Limited Optical element utilized for optical storage unit and optical device including the optical element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59231736A (en) * 1983-06-13 1984-12-26 Hitachi Ltd Focus and tracking error detector
JPS605425A (en) * 1983-06-22 1985-01-12 Mitsubishi Electric Corp Optical information reader
JPS60129938A (en) * 1983-12-16 1985-07-11 Hitachi Ltd Optical head
JPS60171644A (en) * 1984-02-17 1985-09-05 Mitsubishi Electric Corp Focus deviation detecting device of light disk head

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59231736A (en) * 1983-06-13 1984-12-26 Hitachi Ltd Focus and tracking error detector
JPS605425A (en) * 1983-06-22 1985-01-12 Mitsubishi Electric Corp Optical information reader
JPS60129938A (en) * 1983-12-16 1985-07-11 Hitachi Ltd Optical head
JPS60171644A (en) * 1984-02-17 1985-09-05 Mitsubishi Electric Corp Focus deviation detecting device of light disk head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5745265A (en) * 1995-02-07 1998-04-28 Fujitsu Limited Optical element utilized for optical storage unit and optical device including the optical element

Also Published As

Publication number Publication date
JPH0743845B2 (en) 1995-05-15

Similar Documents

Publication Publication Date Title
JP3155287B2 (en) Optical information recording / reproducing device
EP0390610B1 (en) Optical element and optical pickup device comprising the same
US5258871A (en) Dual diffraction grating beam splitter
US20090034401A1 (en) Optical disk apparatus
JP2001059905A (en) Diffraction type optical element and optical pickup using this diffraction type optical element
US4689481A (en) Focus error detector and optical head using the same
US7710849B2 (en) Optical head device and optical information recording or reproducing device
JPS62141652A (en) Optical head device
US6327237B2 (en) Optical pickup for recording or reproducing system
US6556532B2 (en) Optical pickup device
JPS6117103A (en) Polarizing beam splitter
JPS62141651A (en) Optical head device
JPS59142758A (en) Optical head for optical memory
JP2578589B2 (en) Optical head device
JPH08297875A (en) Optical pickup
JPS61233441A (en) Optical head device
JP2505984B2 (en) Optical head device
JPH08153336A (en) Optical head device
KR0181815B1 (en) Dual focus optical pickup device
KR19990049998A (en) Light Control LCD Dual Focus Optical Pickup Device
JPH11353728A (en) Magneto-optical head
JPH0352145A (en) Optical pickup
JP2594421B2 (en) Optical head device
KR100595509B1 (en) Base optical unit in optical disk player
JPS61233442A (en) Optical head device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term