JPS62140376A - Starting method for power generating system with molten type fuel cell - Google Patents

Starting method for power generating system with molten type fuel cell

Info

Publication number
JPS62140376A
JPS62140376A JP60280439A JP28043985A JPS62140376A JP S62140376 A JPS62140376 A JP S62140376A JP 60280439 A JP60280439 A JP 60280439A JP 28043985 A JP28043985 A JP 28043985A JP S62140376 A JPS62140376 A JP S62140376A
Authority
JP
Japan
Prior art keywords
fuel cell
gas
cell stack
lamination
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60280439A
Other languages
Japanese (ja)
Other versions
JPH0732024B2 (en
Inventor
Hakaru Ogawa
斗 小川
Kenji Murata
謙二 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60280439A priority Critical patent/JPH0732024B2/en
Publication of JPS62140376A publication Critical patent/JPS62140376A/en
Publication of JPH0732024B2 publication Critical patent/JPH0732024B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/244Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes with matrix-supported molten electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To make it possible to raise temperature with a small energy, by feeding a heated gas from preheaters to a specific fuel cell lamination to raise the temperature and to start the operation, and then raising the temperature and starting the operation of the other fuel cell laminations by using the exhaust gas from the first cell lamination. CONSTITUTION:First, valves 3, 7, 11, and 13 are opened while the other valves are all closed. A heated gas is fed from gas preheaters 1 and 2 to the cathodes and anodes of a fuel cell lamination 4 to raise the temperature. Then, the lamination 4 is connected to a fuel gas P and an oxidizing agent gas Q by converting valves to start the operation. Furthermore, the gas preheaters 1 and 2 are connected to another lamination 6 to raise its temperature. After that, by the exhaust gas of the lamination 4, a lamination 10 in the next stage is heated and started, and a lamination 15 is also heated and started by the exhaust gas of the lamination 6 in a same manner. Therefore, as well as a uniformed temperature rising can be realized by using gases, the temperatures of plural fuel cell laminations can be raised by a small energy, and the system can be started efficiently.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、溶融炭酸1塩型燃料電池積層体を均一にかつ
少ないエネルギーで昇温させるようにした溶融炭酸塩型
燃料電池発電システムの起動方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention provides a method for starting a molten carbonate fuel cell power generation system, which raises the temperature of a molten monosalt carbonate fuel cell stack uniformly and with little energy. Regarding.

〔発明の技術的背県とその問題点〕[Technical background of the invention and its problems]

溶融炭酸塩型燃料電池では、電池の運転に先立ち、燃料
電池積層体を反応)品度近くまで予熱する必要がある。
In molten carbonate fuel cells, the fuel cell stack must be preheated to near-reaction grade prior to operation of the cell.

従来、この予熱手段として積層体の内部に設【プた電気
ヒーターを用いていたが、積層数が多くなると、電気ヒ
ータでは積層方向に均一に昇温させるのが困難になると
いう問題があった。
Conventionally, electric heaters installed inside the laminate have been used as a means of preheating, but as the number of layers increases, it becomes difficult for the electric heater to raise the temperature uniformly in the direction of the laminate. .

また、多数の燃料電池積層体を備えた大規模な発電シス
テムを構成しようとすると、これに伴って多数の電気ヒ
ータを備えなくてはならず、メインテナンスの困難性が
増大するというおそれもあった。
Additionally, if a large-scale power generation system with a large number of fuel cell stacks was constructed, it would be necessary to install a large number of electric heaters, which could increase the difficulty of maintenance. .

さらには、腐蝕性が強く、しかも高温度で運転される溶
融炭酸塩型燃料電池の内部に電気ヒータを内蔵するとい
うことは、長期間の運転に伴う電気ヒータの劣化を免れ
得ない。
Furthermore, since an electric heater is built into a molten carbonate fuel cell which is highly corrosive and operates at high temperatures, it is inevitable that the electric heater will deteriorate over long periods of operation.

〔発明の目的〕[Purpose of the invention]

本発明は、このような問題に基づきなされたもので、燃
料電池の積層数が増えても均一な昇温か可能であるうえ
、メインテナンスが容易で、しかも経時的な劣化を伴わ
ない溶融炭酸塩型燃料電池発電システムの起動方法を提
供することを目的とする。
The present invention was made based on these problems, and is a molten carbonate type fuel cell that can be heated uniformly even when the number of stacked fuel cells increases, is easy to maintain, and does not deteriorate over time. The purpose is to provide a method for starting a fuel cell power generation system.

〔発明の概要〕[Summary of the invention]

本発明は、複数の溶融炭酸JilA型燃料電池積層体を
備えた溶融炭酸塩型燃料電池発電システムを起動するに
際し、まず所定の溶融炭酸塩型燃料電池積層体にガス予
熱器からの加熱ガスを供給して該燃料電池積層体をUt
した後、起動させ、次に該燃料電池積層体からのlit
ガスで他の前記溶融炭酸塩型燃料電池積層体を昇温ざU
るようにしたことを特徴としている。
In the present invention, when starting up a molten carbonate fuel cell power generation system equipped with a plurality of molten carbonate JILA fuel cell stacks, heating gas from a gas preheater is first applied to a predetermined molten carbonate fuel cell stack. The fuel cell stack is supplied to Ut.
After that, it is started up, and then the lit from the fuel cell stack is
The temperature of the other molten carbonate fuel cell stack is raised with gas.
The feature is that it is made to look like this.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、先ず所定の溶融炭酸塩型燃料電池積層
体をガス予熱器で胃温さけ、その後、運転状態となった
上記燃料電池積層体の11ガスを利用して他の溶融炭酸
塩型燃料電池積層体の昇温を行なうようにしているので
、昇温手段はすべてガスである。ガスは各中位電池に均
一に供給されるので、積層体の積層数が増えた場合でも
均一な昇)届が可能である。
According to the present invention, a predetermined molten carbonate fuel cell stack is first warmed with a gas preheater, and then other molten carbonate is heated using the 11 gases of the fuel cell stack that is in operation. Since the temperature of the type fuel cell stack is raised, all temperature raising means are gas. Since gas is uniformly supplied to each intermediate battery, uniform heating is possible even when the number of layers in the stack increases.

しかも、この発明によれば、昇温手段どして電気ヒータ
を必要どじないので、積層体の構造ら簡単になり、メイ
ンテナンスが容易になる。
Moreover, according to the present invention, since an electric heater is not required as a temperature raising means, the structure of the laminated body is simplified and maintenance is facilitated.

また、この発明では運転状態の燃料電池v4層体で発生
ずるジュール熱を利用して、他の積層体を臂瀉するよう
にしているので、エネルギー効率の向上化を図ることが
でき、省エネルギーに寄与するところ大である。
In addition, in this invention, the Joule heat generated in the V4 fuel cell stack in operation is used to evacuate the other stacks, making it possible to improve energy efficiency and save energy. This is a great contribution.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細を図示の実施例に基づき説明する。 Hereinafter, details of the present invention will be explained based on illustrated embodiments.

第1図は本実施例に係る溶融炭酸塩型燃料電池発電シス
テムの構成を示す図である。予熱のために供給されるガ
スR(例えば空気)は、ガス予熱器1,2に供給されて
、ここで加熱される。予熱器1の排出側は、バルブ3を
介して燃料電池積層体4のアノード側の供給マニホール
ドに接続されるとともに、バルブ5を介して燃料電池積
層体6のアノード側の供給マニホールドに接続され、必
要に応じてさらに図示しない他の燃料電池積層体にバル
ブを介して接続される。一方、予熱器2の排出側は、バ
ルブ7を介して燃料電池積層体4のカソード側の供給マ
ニホールドに接続されるとともに、バルブ8を介して燃
料電池積層体6のカソード側の供給マニホールドに接続
され、必要に応じてさらに図示しない伯の燃料転地積層
体にバルブを介して接続される。燃料電池積層体4のア
ノード側の排出マニホールドは、バルブ9を介してさら
に次の燃おl電池積層体10のアノード側の供給マニホ
ールドに接続されるとともに、バルブ11を介して排出
系統に接続されている。また、燃料電池積層体4のカソ
ード側の排出マニホールドは、バルブ12を介して燃料
転地積層体10のカソード側の供給マニホールドに接続
されるとともに、バルブ13を介してJ、Il出糸系統
接続されている。一方、燃料電池積層体6のアノード側
の排出マニホールドは、バルブ14を介してさらに次の
燃料電池積層体15のアノード側の供給マニホールドに
接続されるとともに、バルブ16を介して排出系統に接
続されている。また、燃利電池積5一 層体6のカソード側の排出マニホールドは、バルブ17
を介して燃料電池積層体15のカソード側の供給マニホ
ールドに接続されるとともに、バルブ18を介して排出
系統に接続されている。これら燃料電池積層体4,6.
10.15の各排出系は必要に応じてさらに次段の図示
しない燃料電池積層体に接続することもできる。
FIG. 1 is a diagram showing the configuration of a molten carbonate fuel cell power generation system according to this embodiment. Gas R (for example, air) supplied for preheating is supplied to gas preheaters 1 and 2 and heated there. The discharge side of the preheater 1 is connected to a supply manifold on the anode side of the fuel cell stack 4 via a valve 3, and is connected to a supply manifold on the anode side of the fuel cell stack 6 via a valve 5. If necessary, it is further connected to other fuel cell stacks (not shown) via valves. On the other hand, the discharge side of the preheater 2 is connected to the supply manifold on the cathode side of the fuel cell stack 4 via a valve 7 and also to the supply manifold on the cathode side of the fuel cell stack 6 via a valve 8. If necessary, it is further connected to a fuel diversion stack (not shown) via a valve. The exhaust manifold on the anode side of the fuel cell stack 4 is further connected to the supply manifold on the anode side of the next fuel cell stack 10 via a valve 9, and is connected to the exhaust system via a valve 11. ing. In addition, the discharge manifold on the cathode side of the fuel cell stack 4 is connected to the supply manifold on the cathode side of the fuel transfer stack 10 via a valve 12, and is also connected to the J and Il spinning systems via a valve 13. ing. On the other hand, the exhaust manifold on the anode side of the fuel cell stack 6 is further connected via a valve 14 to the supply manifold on the anode side of the next fuel cell stack 15, and is also connected to the exhaust system via a valve 16. ing. Further, the discharge manifold on the cathode side of the fuel cell stack 5 single-layer assembly 6 has a valve 17.
It is connected to a supply manifold on the cathode side of the fuel cell stack 15 via a valve 18, and to an exhaust system via a valve 18. These fuel cell stacks 4, 6.
Each of the exhaust systems 10.15 can be further connected to a fuel cell stack (not shown) in the next stage, if necessary.

燃料ガスPの供給系統は、バルブ21を介して燃料電池
積層体4のアノード側供給マニホールドに接続され、バ
ルブ21.22を介して燃料電池積層体6のアノード側
供給マニホールドに接続され、バルブ23を介して燃料
電池積層体1oのアノード側供給マニホールドに接続さ
れ、バルブ23.24を介して燃料電池積層体15のア
ノード側供給マニホールドに接続され、さらに必要に応
じて図示しない他の燃料電池積層体にバルブを介して接
続される。一方、酸化剤ガスQの供給系統は、バルブ2
5を介して燃料電池積層体4のカソード側供給マニホー
ルドに接続され、バルブ25.26を介して燃料電池積
層体6のカソード6一 側供給マニホールドに接続され、バルブ27を介して燃
料電池積層体10のノコソード側供給マニホールドに接
続され、バルブ27.28を介して燃料電池積層体15
のアノード側供給マニホールドに接続され、さらに必要
に応じて図示しない他の燃料電池積層体にバルブを介し
て接続される。
The supply system for fuel gas P is connected to the anode side supply manifold of the fuel cell stack 4 via a valve 21, connected to the anode side supply manifold of the fuel cell stack 6 via valves 21 and 22, and connected to the anode side supply manifold of the fuel cell stack 6 via a valve 23. is connected to the anode side supply manifold of the fuel cell stack 1o through valves 23, 24, and connected to the anode side supply manifold of the fuel cell stack 15 via valves 23, 24, and further connected to other fuel cell stacks (not shown) as necessary. Connected to the body via a valve. On the other hand, the supply system for the oxidizing gas Q is the valve 2.
5 to the cathode side supply manifold of the fuel cell stack 4, connected to the cathode 6 side supply manifold of the fuel cell stack 6 via valves 25 and 26, and connected to the fuel cell stack 4 via the valve 27 to the cathode side supply manifold of the fuel cell stack 6. 10 to the fuel cell stack 15 via valves 27 and 28.
It is connected to the anode side supply manifold of the fuel cell, and is further connected to other fuel cell stacks (not shown) via valves as necessary.

このように構成された溶融炭酸塩型燃料電池発電システ
ムは、次のようにして起動される。
The molten carbonate fuel cell power generation system configured as described above is activated as follows.

まず、第1にバルブ3.7,11.13を開き、他のバ
ルブを全て閉じる。これによって第2図に示す系統が形
成される。この状態でガス予熱器1゜2から加熱ガスR
′を燃料電池積層体4のアノードおよびカソードの供給
マニホールドに送込み、燃料電池積層体4を昇温する。
First, valves 3.7 and 11.13 are opened, and all other valves are closed. As a result, the system shown in FIG. 2 is formed. In this state, the heated gas R is heated from the gas preheater 1゜2.
' is fed into the anode and cathode supply manifolds of the fuel cell stack 4 to raise the temperature of the fuel cell stack 4.

燃料電池積層体4の昇温に供された加熱ガスR′を、排
出系統を介して排出する。
The heated gas R' used to raise the temperature of the fuel cell stack 4 is discharged via the discharge system.

燃料電池積層体4が十分に予熱されたら、次にバルブ5
.8.9.12.16.18,21゜25を開き、伯の
バルブは閉じる。これにより、第3図に示すような系統
が形成される。この状態で燃料電池積層体4に燃料ガス
Pど酸化剤ガスQとを送込み、燃料電池積層体4で発電
を行なわせる。燃料電池積層体4は発電に伴い熱を発す
るので、この熱を伴う排ガスP’ 、Q’を次段の燃料
電池積層体10に供給し、この排ガスP’ 、Q’を燃
料電池積層体10の昇温に利用する。これと同時に、ガ
ス予熱器1,2からの加熱ガスR′を、別の燃料電池積
層体6に供給し、この積層体6を昇温させる。
After the fuel cell stack 4 is sufficiently preheated, the valve 5 is then heated.
.. 8.9.12.16.18,21°25 is opened, and the bar valve is closed. As a result, a system as shown in FIG. 3 is formed. In this state, fuel gas P and oxidant gas Q are fed into the fuel cell stack 4 to cause the fuel cell stack 4 to generate electricity. Since the fuel cell stack 4 generates heat as it generates electricity, the exhaust gases P' and Q' accompanied by this heat are supplied to the fuel cell stack 10 in the next stage. It is used to raise the temperature of At the same time, heated gas R' from the gas preheaters 1 and 2 is supplied to another fuel cell stack 6 to raise the temperature of this stack 6.

燃料電池積層体6,10が十分に品温したら、次にバル
ブ11.13,14.17,21.22゜23.25.
26.27を開ぎ、他のバルブは閉じる。これによって
第4図に示すような系統が形成される。この状態で燃料
電池積層体4,6゜10に燃料ガスPおよび酸化剤ガス
Qを供給し、これらを発電させる。燃料電池v4層体6
からの高温の排ガスP’ 、Q’ は、燃料電池vI層
体重5に供給して、この&!i層体15の昇温に利用す
る。他の燃料電池積層体4,10の高温の11ガスP′
Once the fuel cell stacks 6 and 10 have sufficient temperature, the valves 11.13, 14.17, 21.22°23.25.
26.27 is opened and the other valves are closed. As a result, a system as shown in FIG. 4 is formed. In this state, fuel gas P and oxidant gas Q are supplied to the fuel cell stack 4, 6, 10, and these are used to generate electricity. fuel cell v4 layer body 6
The high temperature exhaust gases P' and Q' from the &! It is used to raise the temperature of the i-layer body 15. High temperature 11 gas P' of other fuel cell stacks 4 and 10
.

Q′については、伯の燃料電池積層体の予熱に利用して
も、そのまま期用してム良い。
Regarding Q', even if it is used for preheating the fuel cell stack, it can be used as is.

なお、上記の実施例では、特に燃料電池積層体の数につ
いては特定けず、4以上として説明したが、少なくとも
2つの積層体で構成される発電システムであれば、本発
明の効果を奏することは可能である。
In the above embodiment, the number of fuel cell stacks is not specified and is explained as four or more, but the effects of the present invention can be achieved as long as the power generation system is composed of at least two stacks. It is possible.

また、ガス予熱器1.2は、電気ヒータであっても、燃
焼器であっても良い。このガス予熱器は、ただ一つの燃
料電池積層体を予熱するのに利用するものでも良い。J
:だ、ガス予熱器の電源に、運転状態の燃料電池積層体
を用いるようにしても良い。加熱ガスR′としては、燃
料ガスP、酸化剤ガスQあるいはこれらとは全く異なる
ガスの使用が考えられる。
Moreover, the gas preheater 1.2 may be an electric heater or a combustor. This gas preheater may be used to preheat only one fuel cell stack. J
: However, the fuel cell stack in operation may be used as the power source for the gas preheater. As the heating gas R', it is possible to use fuel gas P, oxidant gas Q, or a gas completely different from these.

また、本発明は、各スタックがそれぞれ別個の圧力容器
内に収容されていても、1個の容器内に複数のスタック
が直列に、あるいは並列に収容されていても、適用可能
であることは言うまでもない。
Furthermore, the present invention is applicable regardless of whether each stack is housed in a separate pressure vessel or a plurality of stacks are housed in series or in parallel within one vessel. Needless to say.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る溶融炭酸塩型燃料電池
弁型システムの構成図、第2図〜第4図は同システムの
起動時に各バルブの開閉によって選択される各種の系統
を示す図である。 1.2.・・・ガス予熱器、3,5.7〜9.11〜1
4.16〜28・・・バルブ、4,6,10゜15・・
・燃料電池積層体、R′・・・加熱ガス、P・・・燃料
ガス、Q・・・酸化剤ガス、P’ 、Q’ ・・・排ガ
ス。
Fig. 1 is a block diagram of a molten carbonate fuel cell valve type system according to an embodiment of the present invention, and Figs. 2 to 4 show various systems selected by opening and closing each valve at the time of starting up the system. FIG. 1.2. ...Gas preheater, 3,5.7~9.11~1
4.16~28...Valve, 4,6,10°15...
- Fuel cell stack, R'... heating gas, P... fuel gas, Q... oxidizing gas, P', Q'... exhaust gas.

Claims (1)

【特許請求の範囲】[Claims] 複数の溶融炭酸塩型燃料電池積層体を備えた溶融炭酸塩
型燃料電池発電システムを起動するに際し、まず所定の
溶融炭酸塩型燃料電池積層体にガス予熱器からの加熱ガ
スを供給して該燃料電池積層体を昇温した後、起動させ
、次に該燃料電池積層体からの排ガスで他の前記溶融炭
酸塩型燃料電池積層体を昇温させるようにしたことを特
徴とする溶融炭酸塩型燃料電池発電システムの起動方法
When starting up a molten carbonate fuel cell power generation system equipped with a plurality of molten carbonate fuel cell stacks, first, heating gas from a gas preheater is supplied to a predetermined molten carbonate fuel cell stack. Molten carbonate, characterized in that the temperature of the fuel cell stack is raised and then started, and then the exhaust gas from the fuel cell stack is used to raise the temperature of the other molten carbonate fuel cell stack. How to start a type fuel cell power generation system.
JP60280439A 1985-12-13 1985-12-13 Method for starting molten carbonate fuel cell power generation system Expired - Fee Related JPH0732024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60280439A JPH0732024B2 (en) 1985-12-13 1985-12-13 Method for starting molten carbonate fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60280439A JPH0732024B2 (en) 1985-12-13 1985-12-13 Method for starting molten carbonate fuel cell power generation system

Publications (2)

Publication Number Publication Date
JPS62140376A true JPS62140376A (en) 1987-06-23
JPH0732024B2 JPH0732024B2 (en) 1995-04-10

Family

ID=17625066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60280439A Expired - Fee Related JPH0732024B2 (en) 1985-12-13 1985-12-13 Method for starting molten carbonate fuel cell power generation system

Country Status (1)

Country Link
JP (1) JPH0732024B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260061A (en) * 1988-08-26 1990-02-28 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generating system
JP2000294263A (en) * 1999-04-08 2000-10-20 Toyota Motor Corp Fuel cell system and heating method for fuel cell
JP2001229950A (en) * 2000-02-14 2001-08-24 Nissan Motor Co Ltd Fuel cell system
EP1406332A1 (en) * 2001-07-09 2004-04-07 Zakrytoe Aktsionernoe Obschestvo Independent Power Technologies "IPT" Method and device for removing inert impurities
JP2004349093A (en) * 2003-05-22 2004-12-09 Tokyo Electric Power Co Inc:The Fuel cell plant
WO2010140557A1 (en) * 2009-06-03 2010-12-09 Honda Motor Co., Ltd. Fuel cell system
JP2010282798A (en) * 2009-06-03 2010-12-16 Honda Motor Co Ltd Control program for fuel cell system
WO2017017786A1 (en) * 2015-07-28 2017-02-02 日産自動車株式会社 Fuel-cell system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0260061A (en) * 1988-08-26 1990-02-28 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generating system
JP2000294263A (en) * 1999-04-08 2000-10-20 Toyota Motor Corp Fuel cell system and heating method for fuel cell
JP2001229950A (en) * 2000-02-14 2001-08-24 Nissan Motor Co Ltd Fuel cell system
EP1406332A1 (en) * 2001-07-09 2004-04-07 Zakrytoe Aktsionernoe Obschestvo Independent Power Technologies "IPT" Method and device for removing inert impurities
EP1406332A4 (en) * 2001-07-09 2009-05-06 Obschestvo S Ogranichennoi Otv Method and device for removing inert impurities
JP4670228B2 (en) * 2003-05-22 2011-04-13 東京電力株式会社 Fuel cell plant
JP2004349093A (en) * 2003-05-22 2004-12-09 Tokyo Electric Power Co Inc:The Fuel cell plant
WO2010140557A1 (en) * 2009-06-03 2010-12-09 Honda Motor Co., Ltd. Fuel cell system
JP2010282798A (en) * 2009-06-03 2010-12-16 Honda Motor Co Ltd Control program for fuel cell system
US8563193B2 (en) 2009-06-03 2013-10-22 Honda Motor Co., Ltd. Fuel cell system
WO2017017786A1 (en) * 2015-07-28 2017-02-02 日産自動車株式会社 Fuel-cell system
JPWO2017017786A1 (en) * 2015-07-28 2018-05-17 日産自動車株式会社 Fuel cell system
US10249894B2 (en) 2015-07-28 2019-04-02 Nissan Motor Co., Ltd. Fuel cell system

Also Published As

Publication number Publication date
JPH0732024B2 (en) 1995-04-10

Similar Documents

Publication Publication Date Title
Kendall et al. A small solid oxide fuel cell demonstrator for microelectronic applications
US7470477B2 (en) Cascaded fuel cell stacks for fast start-up and anode coking control
GB1534621A (en) Pressurized high temperature fuel cell power plant
JPH08171928A (en) Laminated body of fuel cell
JP2001052727A (en) Power generating system by fuel cell
CN108172863A (en) Fuel cell system and its quick start method
NO991802D0 (en) System for generating electrical energy by utilizing fuel cells
JPS62140376A (en) Starting method for power generating system with molten type fuel cell
CN206685472U (en) A kind of high-power molten carbonate fuel cell heap
KR20090078700A (en) A thermally self-controllable solid oxide fuel cell system
CN104577157A (en) Device and method for heating fuel cell stack and fuel cell system
US20080248342A1 (en) Solid oxide fuel cell power generation apparatus and power generation method thereof
JP2585210B2 (en) Fuel cell power plant
EP1376726A3 (en) Solid-oxide fuel cell system having a fuel combustor to pre-heat a fuel reformer on start-up
CA2242329A1 (en) Electric power generation system including fuel cells
PL1726056T3 (en) Fuel-cell installation, method for activating and deactivating said installation
JP3358956B2 (en) Solid electrolyte fuel cell module
JP3602357B2 (en) Polymer electrolyte fuel cell system
JPH09289030A (en) Solid electrolyte fuel cell module
JP2510982B2 (en) Method of starting internal reforming molten carbonate fuel system
CN210092229U (en) Multi-fuel self-adaptive fuel cell integrated system
US7485382B2 (en) Parallel stack antifreeze system
JP2004119298A (en) Fuel cell power generation system
JPS63279576A (en) Cathode recycle device for fused carbonate fuel cell
CN216250820U (en) Magnesium-based solid hydrogen storage power generation system

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees