JPS6213484B2 - - Google Patents

Info

Publication number
JPS6213484B2
JPS6213484B2 JP8178682A JP8178682A JPS6213484B2 JP S6213484 B2 JPS6213484 B2 JP S6213484B2 JP 8178682 A JP8178682 A JP 8178682A JP 8178682 A JP8178682 A JP 8178682A JP S6213484 B2 JPS6213484 B2 JP S6213484B2
Authority
JP
Japan
Prior art keywords
turbine
turbines
generator
control
controlling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8178682A
Other languages
Japanese (ja)
Other versions
JPS58200011A (en
Inventor
Haruo Asami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP8178682A priority Critical patent/JPS58200011A/en
Publication of JPS58200011A publication Critical patent/JPS58200011A/en
Publication of JPS6213484B2 publication Critical patent/JPS6213484B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow

Description

【発明の詳細な説明】 この発明は、冷熱発電設備における輻流タービ
ン制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling a flow turbine in a cold-thermal power generation facility.

周知の如く電気事業法の適用を受ける場合全負
荷遮断時におけるタービンのオーバーロードを
111%未満に抑える必要があり、この遮断時にあ
つては瞬時にタービン負荷が減衰するため急速に
タービン流量の方を減少することが必要となる。
そのため第1図示のように輻流型膨脹タービンT
の入口側の緊急遮断弁1との間に容量コントロー
ル用の絞り弁(蒸気加減弁)2を配し対処してき
たが、この方法では絞り弁2とタービンT間の配
管ボリユームが大となつて応答制御に遅れが生
じ、またこの絞り弁2で絞ると圧損が生じこれに
よつてタービンTでの膨脹比が低下するためター
ビン駆動効率がタウンする問題があつた。
As is well known, when applying the Electricity Business Law, it is necessary to prevent overloading of the turbine during full load interruption.
It is necessary to suppress the flow rate to less than 111%, and since the turbine load is instantaneously attenuated during this shutdown, it is necessary to rapidly reduce the turbine flow rate.
Therefore, as shown in the first diagram, a radial expansion turbine T
This has been dealt with by placing a throttle valve (steam control valve) 2 for capacity control between the emergency shutoff valve 1 on the inlet side of the turbine, but with this method, the piping volume between the throttle valve 2 and the turbine T becomes large. There was a problem in that there was a delay in the response control, and when the throttle valve 2 was used to throttle the throttle valve, a pressure loss occurred, which lowered the expansion ratio in the turbine T, thereby reducing the turbine drive efficiency.

そのことに鑑みここではタービンTのタービン
ランナ3外周に角度変更自在な可変ノズルNを配
しこれを第2図・第3図示の如く電気ガバナ4と
ノズル操作器5とでもつて前述の問題に対処した
のであり、この場合第4図に示すように従来の絞
り弁2を用いたものに比し可変ノズルNを用いた
型式のものが断熱効率比較において格段に優れた
ものとなることをここに付記する。
In view of this, a variable nozzle N whose angle can be freely changed is arranged on the outer periphery of the turbine runner 3 of the turbine T, and this is connected to an electric governor 4 and a nozzle operating device 5 as shown in FIGS. 2 and 3 to solve the above problem. In this case, as shown in Fig. 4, it can be seen that the model using the variable nozzle N is much superior to the model using the conventional throttle valve 2 in terms of insulation efficiency. Add a note to.

この発明ではこうした応答性・断熱効率等に優
れた可変ノズル制御を、1基の輻流タービンに同
じく一基の発電機を組み合わせて構成されるもの
を制御の前提条件とするのでなく2基のタービン
に単一基の発電機を構成したものに対しそれらの
特殊な関係において要求される3つの運転モード
を前記可変ノズル制御によつて好適に実現するこ
とをその目的とするものであり、従つてここに特
徴とする処は、異なるプロセスからの回収ガスに
より2基の輻流型タービンを回転駆動すると共
に、両タービンにて単一の発電機を駆動すべくな
した冷熱発電設備における輻流タービン制御方法
であつて、2基のタービンの各入口側に角度変更
自在に配した可変ノズルを、互いに同率のノズル
開度として調節制御して両タービンの回転数制御
と発電機の出力制御をなす一方、各可変ノズルを
個別的に開度調整し一方のタービンの出口圧力と
他方のタービンの入口圧力を別個独立した関係で
一定化すべく制御する点にある。
In this invention, variable nozzle control with excellent responsiveness, adiabatic efficiency, etc. is achieved by using two generators instead of one radial turbine and one generator as a prerequisite for control. The purpose of the present invention is to suitably realize three operating modes required in their special relationship for a turbine configured with a single generator, by means of the variable nozzle control. The feature here is that the collected gas from different processes rotates two radial flow turbines, and both turbines drive a single generator. This is a turbine control method in which variable nozzles arranged at the inlet sides of two turbines so that their angles can be changed freely are adjusted and controlled so that the nozzle openings are at the same rate, thereby controlling the rotational speed of both turbines and the output of the generator. On the other hand, the opening degree of each variable nozzle is individually adjusted to control the outlet pressure of one turbine and the inlet pressure of the other turbine to be constant in a separate and independent relationship.

以下、図示した実施例について説明する。 The illustrated embodiment will be described below.

第5図及び第6図は、夫々第2図及び第3図に
略示した可変ノズル機構をより詳細に示したもの
であり、まず該機構から説明に入る。
FIGS. 5 and 6 show in more detail the variable nozzle mechanism schematically shown in FIGS. 2 and 3, respectively, and the mechanism will be explained first.

これら図示において、6はタービンケーシン
グ、7はケーシングカバーでこの場合双方は接結
されてタービンケーシング6に導入路8を形成し
内部のインペラとかタービンシヤフト等は図示省
略されている。9は導入路8の末端付近において
周方向に多数配設したノズル支点ピン、Nは該各
ピン9に内周側基端を枢支された多数の可変ノズ
ルであり、また10はノズル一側において同ノズ
ルを同調的に角度変更するために介装したノズル
操作リング、11は同リング10の周部に連結さ
れたスピンドル、12はそれを応動伝達するため
の伝達レバーであつて、こうしたものをノズル操
作器5の油圧によつて応動する関係とされてい
る。
In these figures, 6 is a turbine casing, 7 is a casing cover, and in this case, both are connected to form an introduction passage 8 in the turbine casing 6, and the internal impeller, turbine shaft, etc. are not shown. Reference numeral 9 indicates a number of nozzle fulcrum pins disposed in the circumferential direction near the end of the introduction path 8, N indicates a number of variable nozzles whose inner peripheral base ends are pivotally supported by each pin 9, and 10 indicates a number of variable nozzles on one side of the nozzle. 11 is a spindle connected to the periphery of the ring 10, and 12 is a transmission lever for responsively transmitting the nozzle. The relationship is such that it responds to the hydraulic pressure of the nozzle operating device 5.

以上は2基の輻流タービンに共通的に構成され
る構造例を示したものであり、実際の冷熱タービ
ン制御システム全体として捉えると第7図示の如
くであり、以下、これについて実際の運転制御シ
ステムを説明する。
The above is an example of a structure commonly configured for two radial turbines, and the actual cooling and heating turbine control system as a whole is as shown in Figure 7. Explain the system.

即ち、発電機Gは一基であり、これに対し天然
ガス膨脹タービンT1とプロパン膨脹タービンT2
とが並設され、各減速機R/G,R/Gを介して
同期発電機Gに連結する構造をとつている。この
場合1つの発電機Gを駆動する2台の輻流タービ
ンT1,T2にそれぞれ可変ノズルN1,N2を設け、
1つの電気ガバナー4でそれぞれ別々の可変ノズ
ルN1,N2を操作することが本発明の要点であ
り、すなわち2台のタービン軸13,14に取付
けられたピツクアツプM.Pからの速度信号が電気
ガバナー4で制御電流としてアクチユエータに信
号を送りこのアクチユエータで電気信号から機械
的変位に変換される。さらに、アクチユエータの
変位はノズル操作器5の油圧によつて力を増幅さ
れ、同操作器5を直結された可変ノズル用レバー
12を動かし、各可変ノズルN1,N2を開閉する
ことによつて各膨脹タービンT1,T2の流入ガス
量をコントロールし、タービン出力を変えて、回
転数コントロール、プロセス圧力コントロール、
電力コントロールの3つのモードの運転を行う。
That is, there is one generator G, and there is a natural gas expansion turbine T1 and a propane expansion turbine T2.
are arranged in parallel and connected to the synchronous generator G via the respective reduction gears R/G and R/G. In this case, variable nozzles N 1 and N 2 are provided in two radial turbines T 1 and T 2 that drive one generator G, respectively.
The key point of the present invention is to operate separate variable nozzles N 1 and N 2 with one electric governor 4, that is, the speed signals from the pick-up MPs attached to the two turbine shafts 13 and 14 are controlled by the electric governor. 4, a signal is sent as a control current to an actuator, and the actuator converts the electrical signal into a mechanical displacement. Furthermore, the displacement of the actuator is amplified by the hydraulic pressure of the nozzle operating device 5, and the variable nozzle lever 12 directly connected to the operating device 5 is moved to open and close each variable nozzle N 1 and N 2 . The amount of gas flowing into each expansion turbine T 1 and T 2 is controlled, the turbine output is changed, the rotation speed is controlled, the process pressure is controlled,
Operates in three power control modes.

上記モードのうち回転数コントロール運転にあ
つては、タービンT1,T2を単独運転を行う場
合、同期発電機Gを駆動するときはタービン
T1,T2自身で回転数を制御する運転を行う。こ
の時2台のタービンT1,T2の可変ノズル開度は
同じ割合になる様に行う。この場合、回転数制御
を優先することからタービン出入口圧力はタービ
ンバイパス弁V1,V2で制御する。
In the rotation speed control operation among the above modes, when operating the turbines T 1 and T 2 independently, when driving the synchronous generator G, the turbine
T 1 and T 2 themselves operate to control the rotation speed. At this time, the variable nozzle opening degrees of the two turbines T 1 and T 2 are set to the same ratio. In this case, since priority is given to rotation speed control, the turbine inlet and outlet pressures are controlled by turbine bypass valves V 1 and V 2 .

電力コントロール運転にあつては、買電と並列
運転を行う場合、発電機Gの出力を一定にコント
ロールする機能を優先させた運転を行う。この場
合も回転数コントロールと同様、2台のタービン
T1,T2の可変ノズルN1,N2の開度は同じ割合に
なるよう行い、タービン出入口圧力はタービンバ
イパス弁V1,V2で制御する。その為運転中一方
のタービンの膨脹比が少なくなり圧縮運転になつ
たりタービン流量が流れなくなる様な現象は防ぐ
ことができる。
In power control operation, when performing parallel operation with power purchase, the operation is performed with priority given to the function of controlling the output of the generator G to a constant level. In this case as well, the two turbines
The opening degrees of variable nozzles N 1 and N 2 of T 1 and T 2 are set to the same ratio, and the turbine inlet and outlet pressures are controlled by turbine bypass valves V 1 and V 2 . Therefore, it is possible to prevent a phenomenon in which the expansion ratio of one turbine decreases during operation, resulting in compression operation, or in which the turbine flow rate stops flowing.

プロセス圧力コントロール運転にあつては、買
電と並列運転を行なつておりタービンの入口圧又
は出口圧を優先してコントロールする運転でこの
場合、各タービンの異なつた圧力をコントロール
することになるので2台のタービンの可変ノズル
N1,N2は圧力コントロールの為必要なそれぞれ
異つた開度となる。この時タービンバイパス弁
V1,V2は閉じた状態となつている。
In process pressure control operation, parallel operation is performed with power purchase, and the operation prioritizes and controls the inlet pressure or outlet pressure of the turbine. In this case, different pressures of each turbine are controlled. Variable nozzles for two turbines
N 1 and N 2 have different opening degrees necessary for pressure control. At this time, the turbine bypass valve
V 1 and V 2 are in a closed state.

以上の様な3つの運転モードを2台のタービン
の可変ノズルN1,N2で行なえるのが本発明の特
徴点である。
The feature of the present invention is that the three operating modes described above can be performed using the variable nozzles N 1 and N 2 of the two turbines.

尚、図示したPIC1〜4は圧力調整器を示すも
のであり、また前述では減速機R/Gを2個備え
たが単一個にまとめる場合もある。
Note that the illustrated PICs 1 to 4 indicate pressure regulators, and although two reducers R/G are provided in the above example, they may be combined into a single reducer.

この発明は以上の如くであり、従つて可変ノズ
ルを使用しストローク小さくして制御応答性に優
れかつ圧損もなく部分負荷運転時の効率にも優れ
たものとなつて非常に有利であり、特に2基のタ
ービンによつて1基の発電機を回転駆動する型式
において各可変ノズルを同率又は別個の開度とし
て選択制御自在となしたので上述した3つの運転
モードを夫々効果的に得ることができるに至つた
ものである。また付記するに2基タービンと一基
発電機の統合は発電機が一台で済むことからコス
ト的にまた諸工事等に有利であるばかりでなく据
付面積が狭くて済む等の利点がある。
As described above, the present invention is very advantageous because it uses a variable nozzle, has a small stroke, has excellent control response, and has no pressure loss and is also excellent in efficiency during partial load operation. In a model in which one generator is rotationally driven by two turbines, each variable nozzle can be selectively controlled to have the same opening rate or different opening degrees, making it possible to effectively obtain each of the three operating modes described above. We have now been able to do it. Additionally, since the integration of two turbines and one generator requires only one generator, it is not only advantageous in terms of cost and construction work, but also has the advantage of requiring a small installation area.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は絞り弁つき膨脹タービン例を示す略示
図、第2図は可変ノズルによる流量調整手段を示
す略示図、第3図は同じく同手段の横断略示図、
第4図はタービン容量制御方式の違いによる断熱
効率の比較図、第5図は可変ノズルつきタービン
の要部断面図、第6図はそのA−A線断面図、第
7図は冷熱タービン制御システムを示すプロセス
フロー図である。 T,T1,T2……輻流タービン、N,N1,N2
…可変ノズル、G……発電機。
FIG. 1 is a schematic diagram showing an example of an expansion turbine with a throttle valve, FIG. 2 is a schematic diagram showing a flow rate adjusting means using a variable nozzle, and FIG. 3 is a cross-sectional schematic diagram of the same means.
Figure 4 is a comparison diagram of adiabatic efficiency depending on the turbine capacity control method, Figure 5 is a cross-sectional view of the main part of a turbine with a variable nozzle, Figure 6 is a cross-sectional view along line A-A, and Figure 7 is cold turbine control. FIG. 2 is a process flow diagram showing the system. T, T 1 , T 2 ... Radiation turbine, N, N 1 , N 2 ...
...Variable nozzle, G... Generator.

Claims (1)

【特許請求の範囲】[Claims] 1 異なるプロセスからの回収ガスにより2基の
輻流型タービンを回転駆動すると共に、両タービ
ンにて単一の発電機を駆動すべくなした冷熱発電
設備における輻流タービン制御方法であつて、2
基のタービンの各入口側に角度変更自在に配した
可変ノズルを、互いに同率のノズル開度として調
節制御して両タービンの回転数制御と発電機の出
力制御をなす一方、各可変ノズルを個別的に開度
調整し一方のタービンの出口圧力と他方のタービ
ンの入口圧力を別個独立した関係で一定化すべく
制御することを特徴とする冷熱発電設備における
輻流タービン制御方法。
1. A method for controlling a radiant turbine in a cold thermal power generation facility in which two radiant turbines are rotationally driven by gases recovered from different processes, and a single generator is driven by both turbines, comprising: 2
The variable nozzles placed on each inlet side of the main turbine can be adjusted and controlled so that the nozzle openings are at the same rate to control the rotational speed of both turbines and the output of the generator. 1. A method for controlling a radial turbine in a cold-thermal power generation facility, characterized by controlling the opening of one turbine and the inlet pressure of the other turbine in a separate and independent relationship by adjusting the opening.
JP8178682A 1982-05-15 1982-05-15 Control of axial flow turbine in power generating facility with low temperature heat Granted JPS58200011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8178682A JPS58200011A (en) 1982-05-15 1982-05-15 Control of axial flow turbine in power generating facility with low temperature heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8178682A JPS58200011A (en) 1982-05-15 1982-05-15 Control of axial flow turbine in power generating facility with low temperature heat

Publications (2)

Publication Number Publication Date
JPS58200011A JPS58200011A (en) 1983-11-21
JPS6213484B2 true JPS6213484B2 (en) 1987-03-26

Family

ID=13756162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8178682A Granted JPS58200011A (en) 1982-05-15 1982-05-15 Control of axial flow turbine in power generating facility with low temperature heat

Country Status (1)

Country Link
JP (1) JPS58200011A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183078A (en) * 2006-01-10 2007-07-19 Ebara Corp Refrigerating machine and refrigerating device
IT1400053B1 (en) * 2010-05-24 2013-05-17 Nuovo Pignone Spa METHODS AND SYSTEMS FOR VARIABLE GEOMETRY ENTRY NOZZLES FOR USE IN TURBOESPANSORI.

Also Published As

Publication number Publication date
JPS58200011A (en) 1983-11-21

Similar Documents

Publication Publication Date Title
US2336232A (en) Gas turbine power unit
JP2006291948A (en) Gas turbine engine and turboshaft engine
US3236498A (en) Hydraulic reaction turbines and pump turbines
JP5897274B2 (en) Steam turbine flow control system
GB1439973A (en) Load regulating apparatus for a closed cycle gas turbine installation
JPS6158644B2 (en)
US2654217A (en) Gas turbine system with treatment between turbine stages
US5309492A (en) Control for a closed cycle gas turbine system
US3418806A (en) Elastic fluid turbine apparatus
US2961939A (en) Vehicle air conditioning and accessory drive system
US3472487A (en) Wide speed range gas power converter
EP0549637A1 (en) Diverter valves
JPS6213484B2 (en)
US2303295A (en) Gas turbine drive
US2567581A (en) Turbine drive
JPH08177409A (en) Steam turbine plant
EP0067453B1 (en) Apparatus for controlling operation of hydraulic machine
US2483073A (en) Gas turbine system
US3148503A (en) Combined gas and steam power plant
JPH0364603A (en) Method and apparatus for charging steam turbine
US3731483A (en) Free power gas turbine engine with aerodynamic torque converter drive
JPH08270538A (en) Water flow control device for water turbine
US1494354A (en) Steam turbine
JPS5937207A (en) Control device for turbine
JPH0583744B2 (en)