JPS62132597A - Method and device for treating waste water - Google Patents

Method and device for treating waste water

Info

Publication number
JPS62132597A
JPS62132597A JP60272987A JP27298785A JPS62132597A JP S62132597 A JPS62132597 A JP S62132597A JP 60272987 A JP60272987 A JP 60272987A JP 27298785 A JP27298785 A JP 27298785A JP S62132597 A JPS62132597 A JP S62132597A
Authority
JP
Japan
Prior art keywords
sludge
aeration
treatment tank
wastewater
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60272987A
Other languages
Japanese (ja)
Inventor
Keisuke Iwabori
岩堀 恵祐
Masao Fujio
藤生 昌男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP60272987A priority Critical patent/JPS62132597A/en
Priority to US06/889,754 priority patent/US4824563A/en
Priority to DE8686110426T priority patent/DE3677163D1/en
Priority to AU60729/86A priority patent/AU599324B2/en
Priority to EP86110426A priority patent/EP0225965B1/en
Priority to CN86105710A priority patent/CN1032527C/en
Priority to ZA865683A priority patent/ZA865683B/en
Priority to CA000514996A priority patent/CA1307059C/en
Priority to KR1019860006260A priority patent/KR940000563B1/en
Publication of JPS62132597A publication Critical patent/JPS62132597A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E50/343

Abstract

PURPOSE:To obtain a high denitrification effect by firstly carrying out aerobic treatment, supplying an org. material as a hydrogen donor into waste water, conducting anaerobic treatment, and then again performing aerobic treatment. CONSTITUTION:Waste water is supplied into the liq. mixture of activated sludge in the treating vessel 1 by a waste water supply part 2, and then the inside of the vessel 1 is aerated by an aerating means 3 and an agitating means 4. Then after aeration is stopped, a hydrogen donor soln. contg. org. materials is supplied from a feed part 5 to remove nitrogen in the supernatant liq. by the respiration of denitrifying bacteria, the soln. is mixed with sludge and the supernatant liq., and aeration is again carried out. Then aeration is stopped, solid is separated from liq., the deposited sludge is extracted by a pump P1, and the supernatant liq. is discharged as treated water by a drain mechanism consisting of a buoyancy body 6, a flexible pipe 7, a drainage pump P2, etc. Consequently, a high denitrification effect is obtained, and the supernatant liq. can be discharged without being mixed with solid components.

Description

【発明の詳細な説明】 A、産業上の利用分』 本発明は、排水中の有機物を微生物処理により分解する
ための排水処理方法及びその装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION A. Industrial Applications The present invention relates to a wastewater treatment method and apparatus for decomposing organic matter in wastewater by microbial treatment.

B発明の概要 本発明方法は、有機性の排水を活性汚泥を用いた回分方
式によシ処理する方法において、先ず好気処理を行い、
次いで嫌気性優性下にて水素供与体としての有機物を排
水中に供給して嫌気処理を行い、その後再び好気処理を
行うことによって1 、高い脱窒効果を得るようにしたものである。
B. Summary of the Invention The method of the present invention is a method for treating organic wastewater in a batch method using activated sludge, in which aerobic treatment is first performed;
Next, anaerobic treatment is performed by supplying organic matter as a hydrogen donor into the wastewater under anaerobic conditions, and then aerobic treatment is performed again to obtain a high denitrification effect.

本発明装置は、本発明方法を実施するための装置におい
て、 浮力体とフレキシブルパイプとを組み合わせた排出機構
を用いることによって、 回分方式に適した処理水の排出が行えるようにしたもの
でおる。
The device of the present invention is a device for carrying out the method of the present invention, which uses a discharge mechanism that combines a floating body and a flexible pipe to discharge treated water suitable for a batch method.

C0従来の技術及び発明が解決しようとする問題点最近
において、小規模の排水処理施設を中心に回分式活性汚
泥法が注目されつつある。この方法は、処理槽内の活性
汚泥の混合液中に排水を流入し、ここで曝気、固液分離
及び上澄水排出を行う方法であり、■バルキングが発生
しない、■省エネルギー的である、■高度な運転技術を
要しない等の利点がある。また通常の連続運転と比較し
て、曝気、沈殿を繰シ返すことから脱窒、脱リン効果も
高いといわれている。
C0 Prior Art and Problems to be Solved by the Invention Recently, the batch activated sludge method has been attracting attention mainly in small-scale wastewater treatment facilities. This method is a method in which wastewater flows into a mixed solution of activated sludge in a treatment tank, where aeration, solid-liquid separation, and supernatant water discharge are performed. ■ No bulking occurs. ■ Energy saving. ■ It has the advantage of not requiring advanced driving skills. Furthermore, compared to normal continuous operation, it is said that the denitrification and dephosphorization effects are higher because aeration and precipitation are repeated.

しかしながら回分式活性汚泥法において、脱窒効果が高
いといってもそれは経験的な実証からいわれていること
であって、実働させた場合常に良好な脱窒効果が得られ
るという保障には至っていない。ま九装置の構造につい
ては、上澄水を排出するためには通常の連続運転のよう
に越流方式を採用できないので、適切な機構が要求され
ている。
However, even though the batch activated sludge method has a high denitrification effect, this is based on empirical evidence, and there is no guarantee that a good denitrification effect will always be obtained when it is actually used. . Regarding the structure of the machine, an appropriate mechanism is required because it is not possible to use an overflow system like in normal continuous operation to discharge supernatant water.

本発明はこのような事情にもとづいてなされたものであ
り、従来の回分式の方法の利点を生かしながら、脱窒効
果の高い回分式の排水処理方法を提供することを目的と
するものである。
The present invention has been made based on these circumstances, and aims to provide a batch-type wastewater treatment method with high denitrification effects while taking advantage of the advantages of conventional batch-type methods. .

更に本発明は、そのような排水処理方法を好適に実施す
ることができ、高い脱窒効果が得られる上、処理後の上
澄液を固型分が混入することなく排出することのできる
排水処理装置を提供すること上目的とするものである。
Furthermore, the present invention provides a wastewater treatment method that allows such a wastewater treatment method to be carried out suitably, provides a high denitrification effect, and allows the supernatant liquid after treatment to be discharged without contamination with solid matter. The purpose is to provide a processing device.

D1問題点を解決するための手段及び作用本発明の詳細
な説明する前に、先ず第3図によって有機性窒素化合物
例えばタンパク質が硝化反応、脱窒反応t−経て分解さ
れていく様子を示す。
Means and operation for solving problem D1 Before explaining the present invention in detail, first, FIG. 3 shows how an organic nitrogen compound such as protein is decomposed through nitrification reaction and denitrification reaction.

同図においてワクで囲った細菌は従属栄養細菌であり、
他の細菌は独立栄養細菌である。また点線矢印に対応す
る反応は好気性条件で進行する硝化反応であり、鎖線矢
印に対応する反応は嫌気性条件で進行する脱室反応であ
る。脱窒反応を化学量論的に表わすと次式のようになる
The bacteria circled in the figure are heterotrophic bacteria,
Other bacteria are autotrophic. Further, the reaction corresponding to the dotted line arrow is a nitrification reaction that proceeds under aerobic conditions, and the reaction corresponding to the chain line arrow is a ventricular reaction that proceeds under anaerobic conditions. The denitrification reaction can be expressed stoichiometrically as shown in the following equation.

2NO2−+ 3(H2)→N2 +20H−+2H2
0・・・(1)2NO3’−+ 5(H2)→N2 +
 2011″−+4)120   ・・・(2)ただし
く11、(21式は夫々亜硝酸呼吸及び硝酸呼吸に相当
するものである。これらの反応の(H2)は細菌内の呼
吸酵素系を経由して水素供与体から与えられるが、脱窒
菌のほとんどは有機物を水素供与体としている。
2NO2-+ 3(H2)→N2 +20H-+2H2
0...(1)2NO3'-+ 5(H2)→N2+
2011″-+4) 120 ... (2) However, 11, (Equation 21 corresponds to nitrite respiration and nitrate respiration, respectively. (H2) of these reactions passes through the respiratory enzyme system in bacteria. However, most denitrifying bacteria use organic substances as hydrogen donors.

本願発明はこのような点に着目してなされたものでfり
シ、排水を処理槽内で好気性処理し、次いで有機物を含
む水素供与体液を処理槽内に導入して嫌気性処理を行い
、その後再び好気性処理を行うことによって、残存して
いる有機物を分解するよりにしたものである。
The present invention has been made with attention to these points, and involves aerobic treatment of wastewater in a treatment tank, and then anaerobic treatment by introducing a hydrogen donor liquid containing organic matter into the treatment tank. Then, by performing aerobic treatment again, the remaining organic matter is decomposed.

具体的には本発明方法は、処理槽内の活性汚泥の混合液
中べ排水を流入する流入工程と、この流入工程の後前記
処理槽内金曝気する第1の曝気工程と、次いで曝気を停
止した後、汚泥の脱窒菌の呼吸により上澄液中の窒素を
除去するために、有機物を含む水素供与体液を汚泥及び
上澄液と混合する混合工程と、この混合工程にニジ混合
された混合液km気する第2の曝気工程と、その後曝気
を停止して固液分離を行う沈殿工程と、この沈殿工程に
より沈殿した汚泥を引き抜く汚泥引き抜き工程と、前記
沈殿工程によシ分離された上fjLi全Li水として排
出する排出工程とから成るものである。
Specifically, the method of the present invention includes an inflow step of flowing wastewater into a mixed solution of activated sludge in a treatment tank, a first aeration step of aerating the inside of the treatment tank after this inflow step, and then aeration. After stopping, there is a mixing process in which a hydrogen donor liquid containing organic matter is mixed with the sludge and supernatant liquid in order to remove nitrogen in the supernatant liquid through the respiration of denitrifying bacteria in the sludge. a second aeration step in which the mixed liquid is aerated, a precipitation step in which the aeration is stopped and solid-liquid separation is performed, a sludge drawing step in which the sludge precipitated in this precipitation step is drawn out, and sludge separated in the precipitation step. and a discharge step of discharging the upper fjLi as total Li water.

また本発明装置は、活性汚泥の混合液が貯留される処理
槽と、この処理槽により排水を供給する排水供給部と、
前記処理槽に各々設けられた曝気手段及び撹拌手段と、
前記処理槽に有機物金倉む水素供与体液を供給する水素
供与体液供給部と、前記処理槽の沈殿汚泥を引き抜く引
き抜きポンプと、前記処理槽における処理水を排出する
排出機構とを備え、 前記排出機構は、前記処理槽の液面に浮かべた浮力体と
、吸水口を備えた一端側が前記浮力体に取り付けられた
フレキシブルパイプと、固型分全除去するよりに前記吸
水口に設けられたフイルター部と、前記フレキシブルパ
イプの他端側に各々連結された吸水ポンプ及び排水バル
ブとから成るものである。
The apparatus of the present invention also includes a treatment tank in which a mixed solution of activated sludge is stored, and a wastewater supply section that supplies wastewater from the treatment tank.
an aeration means and a stirring means each provided in the treatment tank;
A hydrogen donor fluid supply unit that supplies a hydrogen donor fluid containing organic matter to the treatment tank, a withdrawal pump that pulls out settled sludge from the treatment tank, and a discharge mechanism that discharges treated water in the treatment tank, the discharge mechanism consists of a buoyant body floating on the liquid surface of the treatment tank, a flexible pipe with one end provided with a water suction port attached to the buoyant body, and a filter section provided at the water suction port to remove all solid matter. and a water suction pump and a drainage valve connected to the other end of the flexible pipe.

E、実施例 以下本発明方法の実施例を、その方法を実施する装置と
共に説明する。第1図は実施例の装置金示す縦断面図、
第2図は実施例の方法を示す工程図である。第1図中1
は処理槽、2は排水供給部、Bはブロワ、3は散気手段
、4は撹拌手段、Mはモータであり、処理槽1内には予
め活性汚泥の混合液がベース水位B、W、Lまで収容さ
れている。実施例においては、例えば畜舎排水等の高磯
度有機性排水(以下「原水」という。)を予め希釈おる
いは嫌気処理した排水を、先ず処理槽1内の所定の水位
レベルまで流入させ、撹拌手段4により撹拌し、これに
工υ排水と活性汚泥とを十分混合する。なお流入工程に
工って十分混合する場合には撹拌工程は不要である。次
にブロワB全駆動して散気手段3より空気を放出し、こ
れにより処理漕1内を所定時間曝気する。なおこの例で
はブロワB及び散気手段3により曝気手段が構成される
E. Examples Examples of the method of the present invention will now be described together with an apparatus for carrying out the method. FIG. 1 is a longitudinal sectional view showing the device of the embodiment;
FIG. 2 is a process diagram showing the method of the example. 1 in Figure 1
is a treatment tank, 2 is a wastewater supply unit, B is a blower, 3 is an aeration means, 4 is a stirring means, and M is a motor. In the treatment tank 1, a mixed solution of activated sludge is preliminarily set at base water levels B, W, It accommodates up to L. In the embodiment, first, high-strength organic wastewater (hereinafter referred to as "raw water"), such as livestock barn wastewater, which has been previously diluted or anaerobically treated is allowed to flow into the treatment tank 1 to a predetermined water level, Stirring is carried out by the stirring means 4 to thoroughly mix the industrial wastewater and activated sludge. Note that the stirring step is not necessary if sufficient mixing is performed during the inflow step. Next, the blower B is fully driven to discharge air from the aeration means 3, thereby aerating the inside of the processing tank 1 for a predetermined period of time. In this example, the blower B and the aeration means 3 constitute an aeration means.

この曝気工程によって、活性汚泥中の好気性菌群による
好気処理が行われ、排水中の有機物が分解し、硝化反応
が進行する。そして十分に曝気した後部ち有機物が十分
除去され、硝化が十分性われた後、曝気を停止し、汚泥
?沈殿させる。この沈殿工程によって沈殿汚泥が嫌気条
件下になってから、水素供り体沿供給部5から例えば原
水を適量間欠的に処理槽1内に流入し、混合工程例えば
撹拌手段4で撹拌する工程によって原水中の有機物と汚
泥分と上澄液と全混合する。ここで原水を流入させるの
は次に述べる水素供与体としての有機物を補充するため
である。そして汚泥中の脱窒菌は、撹拌工程中に呼吸酵
素糸を経由して有機物から水素を取り出し、この水素と
前記曝気工程で生成された硝酸及び亜硝酸中の窒素とを
反応させて当該’RXを窒素ガスに還元して除去する。
Through this aeration process, aerobic treatment is performed by aerobic bacteria in the activated sludge, organic matter in the wastewater is decomposed, and the nitrification reaction progresses. After sufficient aeration, organic matter has been sufficiently removed and nitrification has been sufficiently achieved, aeration is stopped and sludge is removed. Precipitate. After the settled sludge is brought under anaerobic conditions through this settling step, an appropriate amount of raw water, for example, is intermittently flowed into the treatment tank 1 from the hydrogen supply unit 5, and a mixing step is performed, for example, a step of stirring with the stirring means 4. The organic matter in the raw water, sludge, and supernatant liquid are completely mixed. The reason why raw water is introduced here is to replenish organic matter as a hydrogen donor, which will be described next. The denitrifying bacteria in the sludge extract hydrogen from the organic matter via the respiratory enzyme thread during the stirring process, and react this hydrogen with the nitrogen in the nitric acid and nitrous acid produced in the aeration process. is reduced to nitrogen gas and removed.

その後再び曝気を行い、好気性菌群によって、残存して
いる有機物を除去すると共にアンモニア成分を硝化し、
次いで曝気を停止して汚泥分を沈殿させる。
After that, aeration is performed again, and the remaining organic matter is removed by the aerobic bacteria group, and the ammonia component is nitrified.
Next, aeration is stopped and the sludge is allowed to settle.

第1図においてPlは汚泥引き抜き手段としての引き抜
きポンプであり、処理槽1の底部から外部へ伸びる汚泥
引き抜きパイプに設けられている。この引き抜きポンプ
P1によって、2度目の曝気の後に沈殿した汚泥を余剰
汚泥として引き抜き、絖いて次に述べる排出機構によっ
て上触水を排出する。
In FIG. 1, Pl is a drawing pump as a sludge drawing means, and is installed in a sludge drawing pipe extending from the bottom of the treatment tank 1 to the outside. This drawing pump P1 draws out the sludge that has settled after the second aeration as surplus sludge, and then the supernatant water is discharged by the discharge mechanism described below.

なお汚泥の引き抜きについては、汚泥滞留時間(SRT
)が30〜50日程度になるように引き抜くことが適切
である。
Regarding sludge removal, the sludge retention time (SRT)
) is approximately 30 to 50 days.

前記排出機構は第4図に示すように処理槽1の液面に浮
かべた浮力体6と、この浮力体6に取り付けられ、下部
が開口している円筒状のフイルター部としてのカバ一部
と、吸水口を備えた一端側が前記カバ一部6】内に挿入
され、外径が前記カバ一部61の内径よりも若干小さい
フレキシブルパイプ7と、このフレキシブルパイプ7を
前G己カバ一部61に固定する固定金具62と、前記吸
水口より処理水を吸い込むよう、前記フレキシブルパイ
プ7の他端側に排出パイプ71を介して連結された排水
ポンプP2と、この排水ポンプP2の前後に夫々設けら
れた排出バルブとしての手動バルブ8及び電動バルブ9
とより成る。このような排出機構においては、排出工程
時以外ではフレキシブルパイプ7内に常に処理水が満九
されており、排出工程時には排水ポンプP2を駆動する
ことによって、上澄水がカバ一部61の開口部から吸い
上げられ、フレキシブルパイプ7の吸水口から吸水され
て外部に処理水として排出される。図示のような排出機
構を用いれば、液面レベルよりも下がった位置にて上澄
液が吸い込1れるから、液面に浮遊するスカムが入り込
むことがないし、またカバ一部61とフレキシブルパイ
プ7との間の隙間から吸水されるので汚泥等の固型分が
除去され、従って配管の目詰ま9會起こすことがないと
いう第1j点がある。また上澄水の排出速度については
、バルブ8,9によシ調整することができる。図中H,
W、Lは上限水位である。
As shown in FIG. 4, the discharge mechanism includes a buoyant body 6 floating on the liquid surface of the processing tank 1, and a part of a cover that is attached to the buoyant body 6 and serves as a cylindrical filter portion that is open at the bottom. , a flexible pipe 7 whose one end with a water inlet is inserted into the cover part 6 and whose outer diameter is slightly smaller than the inner diameter of the cover part 61; A drainage pump P2 connected to the other end of the flexible pipe 7 via a discharge pipe 71 so as to suck treated water from the water intake port, and a drainage pump P2 provided before and after the drainage pump P2, respectively. Manual valve 8 and electric valve 9 as discharge valves
It consists of In such a discharge mechanism, the flexible pipe 7 is always filled with treated water except during the discharge process, and by driving the drain pump P2 during the discharge process, supernatant water flows through the opening of the cover part 61. The water is sucked up from the flexible pipe 7 through the water intake port and is discharged to the outside as treated water. If the discharge mechanism shown in the figure is used, the supernatant liquid will be sucked in at a position lower than the liquid level, so scum floating on the liquid level will not get in, and the cover part 61 and flexible pipe There is a point 1j in which solid matter such as sludge is removed because water is absorbed through the gap between the pipes 9 and 7, and therefore no clogging of pipes 9 occurs. Further, the discharge speed of supernatant water can be adjusted by valves 8 and 9. H in the figure,
W and L are upper limit water levels.

以上において、前記水素供与体としてはメタノール、酢
酸あるいはエタノール等の有機物を用いてもよいが、こ
れらはランニングコストがかかるため、最も安価である
という点から原水を用いることが望ましい。原水を用い
る場合には原水の組成に応じて適宜選定する必要がある
。また原水の供給量は次のようにして決定すればよい。
In the above, organic substances such as methanol, acetic acid, or ethanol may be used as the hydrogen donor, but since these require running costs, it is preferable to use raw water because it is the cheapest. When using raw water, it is necessary to select it appropriately according to the composition of the raw water. Moreover, the amount of raw water supplied may be determined as follows.

卯ち、硝酸呼吸において5 (H2)の水素供与体に対
応する理論的酸素要求量(Thop)は化学量論的に5
(0)であるので、Th、ODの12.5チが理論供与
水素iとして計算できる。Th0DキBOD5と考える
と、No5−NIKyk脱窒するのにBOD52.86
 K9が必要である。したがって、原水、処理状態から
この供給量を決定することができる。
In nitric acid respiration, the theoretical oxygen demand (Thop) corresponding to 5 (H2) hydrogen donors is stoichiometrically 5.
(0), 12.5 of Th and OD can be calculated as the theoretically donated hydrogen i. Considering Th0D Ki BOD5, BOD52.86 is required for No5-NIKyk denitrification.
K9 is required. Therefore, the supply amount can be determined from the raw water and treatment status.

本発明では、第2図に示す各工程の制御については、予
め時間を定めたシルケンス制御を行ってもよいが、酸化
還元電位(ORP)やpH等の水質指標の指標値にもと
づいて各工程のタイミングを定める制御を用いてもよく
、後者の方法によればより効果的な処理が期待できる。
In the present invention, although the control of each process shown in FIG. 2 may be performed using Silkens control with a predetermined time, each process may be controlled based on index values of water quality indicators such as oxidation-reduction potential (ORP) and pH. It is also possible to use control that determines the timing of , and more effective processing can be expected with the latter method.

F1本発明の適用例 本発明は、生活雑排水をも含む比較的低濃度の有機性排
水については、直接適用しても好適に処理できるが、畜
舎排水等に代表される高濃度の有機性排水については対
処できにぐい面がある。このため本発明を適用する前に
排水を嫌気処理あるいは好気処理しておくことが望まし
く、このような生物学的2段処理システムの一例金第5
図に示す。同図のシステムについて簡単に述べると、畜
舎1o z +)の高濃度の有機性排水(flK水)を
振動ふるい11にかけてその中の夾雑物を除去してがら
原水貯留槽12に貯留する。原水貯留槽12よりの原水
は、計量槽13を介して一定流量で送られるがまた・は
オーバーフローにより原水貯留槽12の流入量に応じた
流量で送られるかして嫌気槽14に供給される。この嫌
気槽14にて、種汚泥培養槽15よpの汚泥によって嫌
気処理が行われ、更にメタン菌によりメタン発酵処理が
行われてガスホルダー16にメタンガスが回収される。
F1 Application example of the present invention Although the present invention can be applied directly to relatively low-concentration organic wastewater, including domestic gray water, it can be appropriately treated. There are some aspects that are difficult to deal with regarding drainage. For this reason, it is desirable to subject wastewater to anaerobic or aerobic treatment before applying the present invention.
As shown in the figure. To briefly describe the system shown in the figure, highly concentrated organic waste water (flK water) from a livestock barn (1 oz +) is passed through a vibrating sieve 11 to remove impurities therein, and then stored in a raw water storage tank 12. The raw water from the raw water storage tank 12 is sent to the anaerobic tank 14 via the metering tank 13 at a constant flow rate, or by overflow at a flow rate depending on the amount of inflow into the raw water storage tank 12. . In this anaerobic tank 14, anaerobic treatment is performed using the sludge from the seed sludge culture tank 15, and methane fermentation treatment is performed using methane bacteria, and methane gas is recovered in the gas holder 16.

18は本発明の排水処理装置に和尚する好気槽であり、
嫌気槽14よりの排水がバイパスを通って連続的に、あ
るいは調整槽17を通って間欠的に送られる。好気槽1
8で用いられる水素供与体液としては原水が利用される
。好気槽18で沈殿した汚泥は引き抜かれて、余剰汚泥
として廃棄されると共に、種汚泥として種汚泥培養槽1
5に送られる。この種汚泥培養槽15の培養液としては
原水が用いられる。また好気槽18よりの処理水の一部
は、脱窒効果を高めるために嫌気槽14に戻される。
18 is an aerobic tank adapted to the wastewater treatment device of the present invention,
The waste water from the anaerobic tank 14 is sent continuously through the bypass or intermittently through the adjustment tank 17. Aerobic tank 1
Raw water is used as the hydrogen donor liquid used in step 8. The sludge settled in the aerobic tank 18 is pulled out and disposed of as surplus sludge, and is also transferred to the seed sludge culture tank 1 as seed sludge.
Sent to 5. Raw water is used as the culture solution for this type of sludge culture tank 15. Further, a portion of the treated water from the aerobic tank 18 is returned to the anaerobic tank 14 in order to enhance the denitrification effect.

G0発明の効果 以上のように本発明によれば、先ず好気処理を行い、次
いで嫌気性条件下にて水素供与体としての有機物を排水
中に供給して嫌気処理全行い、その後再び好気処理全行
うようにしたいわば2段回分法を採用しているため、好
気処理により生成した硝酸や亜硝酸中の窒素が嫌気処理
によって十分に除去されると共に、嫌気処理後に残存し
ている有機物は次段の好気処理にて分解されるので、良
好な排水処理を行うことができる。このため嫌気処理の
際の水素供与体液として原水を用いることができるから
、そうすることによってランニングコストを抑えること
ができる。更に本発明装置によれば、本発明方法を好適
に実施できる上、浮力体とフレキシブルパイプを組み合
わせた排出機構を用いていることから、簡単な機構にし
て常に液面レベル付近から吸水できる。このため上澄水
のみを取り出すことができると共に、吸水圧が液面レベ
ルとは無関係に一定であることから、好気槽よりの処理
水を円滑に °   ”−(奔出することかでき、しか
もフイルター部の目詰りが4ない。
G0 Effects of the Invention As described above, according to the present invention, aerobic treatment is first performed, then organic matter as a hydrogen donor is supplied to the wastewater under anaerobic conditions to perform the entire anaerobic treatment, and then aerobic treatment is performed again. Since we use a two-stage batch method that performs all treatments, the nitrogen in nitric acid and nitrite generated by aerobic treatment is sufficiently removed by anaerobic treatment, and the organic matter remaining after anaerobic treatment is removed. Since it is decomposed in the next step of aerobic treatment, it is possible to perform good wastewater treatment. Therefore, raw water can be used as the hydrogen donor fluid during anaerobic treatment, thereby reducing running costs. Further, according to the device of the present invention, the method of the present invention can be carried out suitably, and since a discharge mechanism that combines a buoyant body and a flexible pipe is used, water can always be absorbed from near the liquid level with a simple mechanism. Therefore, only the supernatant water can be taken out, and since the water suction pressure is constant regardless of the liquid level, the treated water from the aerobic tank can be smoothly discharged. There is no clogging in the filter section.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の実施例を示す縦断面図、第2図は
本発明方法の実施例を示す工程図、第3図は硝化・脱窒
反応の模式図、第4図は排出機掴の一部を示す縦断面図
、第5図は本発明の適用夕の構成図である。 1・・・処理槽、2・・・排水供給部、3・・・散気手
段、B・・・プロワ、4・・・撹拌手段、5・・・水素
供与体液伊給部、6・・・浮力体、7・・・フレキシブ
ルパイプ、P;・・・排水ポンプ。 第 1 図 実ヵ乞3.。2.つい、、rいい1・・・
・Xユ理4I          5−水素イ六与イ杉
俣イたI含粁2°”−JJk水イ水含9合合   6・
・・・71勾体3°°°・尤1気Jf段       
7・・・フしキシブルオ、−ス計°・フ′ロア    
   P2・・・・j非ノに庄ζレプ4・・・才覚j値
手浬
Fig. 1 is a longitudinal sectional view showing an embodiment of the apparatus of the present invention, Fig. 2 is a process diagram showing an embodiment of the method of the invention, Fig. 3 is a schematic diagram of the nitrification/denitrification reaction, and Fig. 4 is a discharge machine. FIG. 5 is a vertical sectional view showing a part of the grip, and is a configuration diagram of an application of the present invention. DESCRIPTION OF SYMBOLS 1... Treatment tank, 2... Wastewater supply part, 3... Aeration means, B... Blower, 4... Stirring means, 5... Hydrogen donor body fluid supply part, 6...・Floating body, 7...Flexible pipe, P;...Drainage pump. Figure 1 Real money begging 3. . 2. Just... r good 1...
-
...71 slope 3°°°・Yi 1 Ki Jf Dan
7... Fushikishi Blue, -S Total °・Flore
P2...j non-sho ζ rep 4...talent j value handshake

Claims (1)

【特許請求の範囲】 1)処理槽内の活性汚泥の混合液中に排水を流入する流
入工程と、この流入工程の後前記処理槽内を曝気する第
1の曝気工程と、次いで曝気を停止した後汚泥中の脱窒
菌の呼吸により上澄液中の窒素を除去するために、有機
物を含む水素供与体液を汚泥及び上澄液と混合する混合
工程と、この混合工程により混合された混合液を曝気す
る第2の曝気工程と、その後曝気を停止して固液分離を
行う沈殿工程と、この沈殿工程により沈殿した汚泥を引
き抜く汚泥引き抜き工程と、前記沈殿工程により分離さ
れた上澄液を処理水として排出する排出工程とから成る
ことを特徴とする排水処理方法。 2)活性汚泥の混合液が貯留される処理槽と、この処理
槽に排水を供給する排水供給部と、前記処理槽に設けら
れた曝気手段及び撹拌手段と、前記処理槽に有機物を含
む水素供与体液を供給する水素供与体液供給部と、前記
処理槽の沈殿汚泥を引き抜く引き抜きポンプと、前記処
理槽における処理水を排出する排出機構とを備え、 前記排出機構は、前記処理槽の液面に浮かべた浮力体と
、吸水口を備えた一端側が前記浮力体に取り付けられた
フレキシブルパイプと、固型分を除去するよりに前記吸
水口に設けられたフイルター部と、前記フレキシブルパ
イプの他端側に各々連結された排水ポンプ及び排水バル
ブとから成ることを特徴とする排水処理装置。
[Claims] 1) An inflow step of flowing wastewater into the activated sludge mixture in the treatment tank, a first aeration step of aerating the inside of the treatment tank after this inflow step, and then stopping the aeration. A mixing process in which a hydrogen donor liquid containing organic matter is mixed with the sludge and supernatant liquid in order to remove nitrogen in the supernatant liquid through the respiration of denitrifying bacteria in the sludge, and a mixed liquid mixed by this mixing process. a second aeration step in which the aeration is aerated; a precipitation step in which the aeration is then stopped and solid-liquid separation is carried out; a sludge drawing step in which the sludge precipitated by this precipitation step is drawn out; and a supernatant liquid separated in the precipitation step. A wastewater treatment method characterized by comprising a discharge step of discharging as treated water. 2) A treatment tank in which a mixed solution of activated sludge is stored, a wastewater supply section that supplies wastewater to this treatment tank, an aeration means and a stirring means provided in the treatment tank, and hydrogen containing organic matter in the treatment tank. A hydrogen donor fluid supply unit that supplies a donor fluid, a withdrawal pump that withdraws settled sludge from the treatment tank, and a discharge mechanism that discharges treated water in the treatment tank, the discharge mechanism being configured to lower the liquid level of the treatment tank. a buoyant body floating on the buoyant body; a flexible pipe with one end provided with a water intake port attached to the buoyant body; a filter portion provided at the water intake port for removing solid matter; and the other end of the flexible pipe. A wastewater treatment device comprising a drain pump and a drain valve connected to each other.
JP60272987A 1985-12-04 1985-12-04 Method and device for treating waste water Pending JPS62132597A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP60272987A JPS62132597A (en) 1985-12-04 1985-12-04 Method and device for treating waste water
US06/889,754 US4824563A (en) 1985-12-04 1986-07-28 Equipment for treating waste water
DE8686110426T DE3677163D1 (en) 1985-12-04 1986-07-29 METHOD AND DEVICE FOR WATER TREATMENT.
AU60729/86A AU599324B2 (en) 1985-12-04 1986-07-29 Method of treating waste water and equipment therefor
EP86110426A EP0225965B1 (en) 1985-12-04 1986-07-29 Method of treating waste water and equipment therefor
CN86105710A CN1032527C (en) 1985-12-04 1986-07-30 Method of treating waste water and equipment therefor
ZA865683A ZA865683B (en) 1985-12-04 1986-07-30 Method of treating waste water and equipment therefor
CA000514996A CA1307059C (en) 1985-12-04 1986-07-30 Method of treating waste water and equipment therefor
KR1019860006260A KR940000563B1 (en) 1985-12-04 1986-07-30 Waste water treating method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60272987A JPS62132597A (en) 1985-12-04 1985-12-04 Method and device for treating waste water

Publications (1)

Publication Number Publication Date
JPS62132597A true JPS62132597A (en) 1987-06-15

Family

ID=17521564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60272987A Pending JPS62132597A (en) 1985-12-04 1985-12-04 Method and device for treating waste water

Country Status (2)

Country Link
JP (1) JPS62132597A (en)
ZA (1) ZA865683B (en)

Also Published As

Publication number Publication date
ZA865683B (en) 1987-04-29

Similar Documents

Publication Publication Date Title
CA1307059C (en) Method of treating waste water and equipment therefor
CN104944689B (en) Device for treating high ammonia-nitrogen wastewater and method thereof
NO162337B (en) PROCEDURE FOR NITROGEN REMOVAL AND WASTE PHOSPHORUS.
CN108585189A (en) The apparatus and method of segmentation water outlet denitrification dephosphorization-short distance nitration biological film coupling Anammox processing city domestic sewage
CN111018132B (en) Water treatment device for nitrogen and phosphorus removal and treatment method thereof
CN108949569A (en) A method of culture anaerobic ammonia oxidizing bacteria
KR100527172B1 (en) A method and apparatus for nitrogenous waste water of nitrogen and sewage
JP2001009498A (en) Treatment of waste water and treating device therefor
CN109879428A (en) A method of municipal sewage short-cut denitrification process is realized using delay anaerobism/low-carbon anoxic SBR
JPS62132597A (en) Method and device for treating waste water
KR100566320B1 (en) Submerged membrane coupled advanced wastewater treatment method and its system
JPH07328692A (en) Biological nitrogen removing device
JPH0760274A (en) Water treatment equipment
JPS58146495A (en) Treatment of organic waste liquid
JP4564204B2 (en) Wastewater treatment method for wastewater treatment equipment
KR101303820B1 (en) Water treatmen apparatus for removing nitrogen and phosphorus using upflow and downflow complete mixing chain reaction
CN109205785A (en) City domestic sewage denitrification dephosphorization system and method are strengthened in excess sludge reduction processing
JPS62132598A (en) Treatment of waste water
JP2673488B2 (en) Method and apparatus for treating organic wastewater
CN111547852B (en) Control method of integrated shortcut nitrification-anaerobic ammonia oxidation denitrification process
KR100471046B1 (en) Biological Nitrogen Removal Device
JPS607832Y2 (en) Sewage treatment equipment
KR100720008B1 (en) Advanced treatment system of wastewater and its method
KR20160140553A (en) Method for treating wastewater
JPH07116691A (en) Treatment of drainage