JPS6213105A - Monolithic microwave fet oscillator - Google Patents

Monolithic microwave fet oscillator

Info

Publication number
JPS6213105A
JPS6213105A JP15321985A JP15321985A JPS6213105A JP S6213105 A JPS6213105 A JP S6213105A JP 15321985 A JP15321985 A JP 15321985A JP 15321985 A JP15321985 A JP 15321985A JP S6213105 A JPS6213105 A JP S6213105A
Authority
JP
Japan
Prior art keywords
microstrip line
oscillator
dielectric resonator
vco
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15321985A
Other languages
Japanese (ja)
Other versions
JPH0666584B2 (en
Inventor
Madeihian Mohamado
モハマド マデイヒアン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60153219A priority Critical patent/JPH0666584B2/en
Publication of JPS6213105A publication Critical patent/JPS6213105A/en
Publication of JPH0666584B2 publication Critical patent/JPH0666584B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To use the titled oscillator as both a VCO or a dielectric resonator frequency stabilizing oscillator without changing a circuit parameter by coupling a dielectric resonator to a specific location on a microstrip line of a 50OMEGA characteristic impedance provided in series with one end of the microstrip line. CONSTITUTION:The monolithic VCO consists of a FET 4, the 1st microstrip line 12, a source feedback microstrip line 22 and matching circuits 32a, 32b and is constituted in one semiconductor chip. On the other hand, the dielectric resonator circuit consists of a dielectric resonator 14, the 2nd 50OMEGA microstrip line 13 and a harmonic mode oscillation preventing 50OMEGA resistor 5 and is constituted on one ceramic base. The oscillator acts like a VCO by connecting the 1st microstrip line 12 to an earth 17 (point A) in terms of microwave. In connecting the line 12 to a point B, the oscillator keeps the operation at omega0.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はモノリシックマイクロ波IC構成のFET発振
器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a FET oscillator having a monolithic microwave IC configuration.

近年衛星放送、レーダ、マイクロ波通信等の技術の進展
によシミ圧制御発振器(以下VCO)および周波数安定
化マイクロ波発振器の需要が増大している。このために
、GaAs FgTを用いたモノリシックマイクロ波■
COおよび誘電体共振器安定化発振器の開発が各所で行
なわれている。
In recent years, with the advancement of technologies such as satellite broadcasting, radar, and microwave communication, the demand for stain pressure controlled oscillators (hereinafter referred to as VCOs) and frequency stabilized microwave oscillators has increased. For this purpose, a monolithic microwave using GaAs FgT
Developments of CO and dielectric resonator stabilized oscillators are underway everywhere.

(従来技術の問題点) モノリシックマイクロ波■COでは希望周波数帯で最大
電力を実現するためにFITのゲート端子とアース、お
よびソース端子とアースの間に設けられた回路のインピ
ーダンスが最適化されている。このような■COの周波
数安定化を計るために一般にゲート端子に誘電体共振器
回路を結合する方法が用いられる。ところが、従来の発
振器の構造では共振器回路を付加することにより前記ゲ
ート回路のインピーダンスtit変化し前記最適値を保
てなくなる。このため、従来はVCOの周波数安定化を
計るためには発掘器の各回路パラメータを大幅に手直し
する必要があり、IC全体の作り直しが必要であった。
(Problems with conventional technology) In monolithic microwave CO, the impedance of the circuit provided between the FIT gate terminal and ground, and between the source terminal and ground is optimized in order to achieve maximum power in the desired frequency band. There is. In order to stabilize the frequency of such CO, a method is generally used in which a dielectric resonator circuit is coupled to the gate terminal. However, in the conventional oscillator structure, adding a resonator circuit changes the impedance tit of the gate circuit, making it impossible to maintain the optimum value. For this reason, conventionally, in order to stabilize the frequency of the VCO, it was necessary to significantly modify each circuit parameter of the excavator, and it was necessary to rebuild the entire IC.

(発明の目的) 本発明の目的Fi、前記欠点を除去し、1つのモノリシ
ックマイクロ波)’ET発振器が回路パラメータを変更
することな(VCOとしても、 誘電体共振器周波数安
定化発振器としても使えることを可能にすることにある
(Objective of the Invention) The object of the invention is to eliminate the above-mentioned drawbacks and to create a monolithic microwave)'ET oscillator that can be used both as a VCO and as a dielectric resonator frequency-stabilized oscillator without changing the circuit parameters. It is about making things possible.

(発明の構成) 本発明によれば、FETのゲートに一端がマイクロ波的
に短絡される第1のマイクロストリップ線路を設えた直
列帰還型モノリシックマイクロ波FET発振器において
、 第1のマイクロスl−IJツブ線路の他の一端に第
2の500特性インピーダンスのマイクロス) IJツ
ブ線路を直列に設け、前記第1のマイクロストリップ線
路および前記第2のマイクロストリップ線路の接続点か
ら(2K+1)/4波長(ただしに二O,1,2,・・
・・)離れた前記第2のマイクロス) +7ツプ線路上
の場所に誘電体共振器を結合させたことを特徴とするモ
ノリシックマイクロ波FET発振器が得られる。
(Structure of the Invention) According to the present invention, in a series feedback monolithic microwave FET oscillator provided with a first microstrip line whose one end is microwave-shorted to the gate of the FET, the first microstrip line A second 500 characteristic impedance microstrip line is provided in series at the other end of the IJ tube line, and (2K+1)/4 is connected from the connection point of the first microstrip line and the second microstrip line. Wavelength (however, 2O, 1, 2,...
...) A monolithic microwave FET oscillator characterized in that a dielectric resonator is coupled to a location on the +7-pin line is obtained.

(発明の詳細な説明) 第4図に従来のマイクロ波FgT VCOおよび誘電体
共振器安定化発振器を示す。
(Detailed Description of the Invention) FIG. 4 shows a conventional microwave FgT VCO and dielectric resonator stabilized oscillator.

従来の方法では同図(a)のvCOを同図(b)のよう
に安定化するためにゲート回路のマイクロストリップ線
路1を誘電体共振器回路11と交換し、ソース帰還用線
路2、マッチィング回路3(a)、3(blもそれぞれ
21.3Ha)、 31向に再設計、再製作する必要が
あった。
In the conventional method, the microstrip line 1 of the gate circuit is replaced with a dielectric resonator circuit 11, and the source feedback line 2 and matching It was necessary to redesign and remanufacture circuits 3(a), 3 (bl is also 21.3 Ha each), and 31 directions.

第1図は本発明の再設計不要で周波数安定化可能のモノ
リシックマイクロ波vCOの構成を示す。
FIG. 1 shows the configuration of a monolithic microwave vCO that does not require redesign and can be frequency stabilized according to the present invention.

同図におhて、モノリシックVCOはFET4.第1の
マイクロストリップ線路12.ソース帰還用マイクロス
トリップ線路22、マツチインク回路32 (a)およ
び32(1))からなり1つの半導体チップ内に構成さ
れている。
In the figure h, the monolithic VCO is FET4. First microstrip line 12. It consists of a source feedback microstrip line 22 and match ink circuits 32 (a) and 32 (1)), and is constructed in one semiconductor chip.

一方誘電体共振器回路は誘電体共振器14、第2の50
Ωのマイクロストリップ線路13および高次モード発振
防止用の500抵抗5カ)らなり一枚のセラミック基板
上に構成されている。誘電体共振器回路の等価回路およ
び動作原理を第2図に示す。同図において、誘電体共振
器は基本共振角周波数ω。
On the other hand, the dielectric resonator circuit includes a dielectric resonator 14, a second 50
Ω microstrip line 13 and five 500 resistors for preventing high-order mode oscillation), and is constructed on a single ceramic substrate. FIG. 2 shows the equivalent circuit and operating principle of the dielectric resonator circuit. In the figure, the dielectric resonator has a fundamental resonance angular frequency ω.

で並列共振回路15として表わされる力)らω、では0
点から左を見たインピーダンスは無限大になる。
force expressed as a parallel resonant circuit 15) ω, then 0
The impedance looking to the left from the point is infinite.

この無限大のインピーダンス’2(2K+1)波長/4
の長さをもつマイクロストリップ線路16によって変換
すると、B点から左を見たインピーダンスZをマイクロ
波的にアース17(A点)に接続することKより発振器
はVCOとして動作する。その時のD点から左を見た回
路インピーダンスΦローカスZC(ω)と右を見たデバ
イス・ラインZdとの交点は発振動作点を表す。第3(
a)図のスミスチャートに示すように、V、を変えるこ
とによりZdはスミスチャート上を回転しZC(ω)と
の交点は移動する。これにより、発振周波数は変る。
This infinite impedance '2(2K+1)wavelength/4
When converted by the microstrip line 16 having a length of , the oscillator operates as a VCO by connecting the impedance Z seen to the left from point B to the ground 17 (point A) in a microwave manner. The intersection of the circuit impedance Φ locus ZC (ω) viewed to the left from point D at that time and the device line Zd viewed to the right represents the oscillation operating point. Third (
a) As shown in the Smith chart in the figure, by changing V, Zd rotates on the Smith chart and the intersection with ZC(ω) moves. This changes the oscillation frequency.

もし第1マイクロストリツプ紳路12をA点からはずし
、B点に接続すれば、前に述べたようにω。
If the first microstrip connector 12 is removed from point A and connected to point B, ω as described above.

でB点から見たインピーダンスZは零であるからZc(
ω、)は前値を維持する。 このため、発振器はω、で
の動作を保つ。そして誘電体共振器回路によってω、で
高Q(クォリティ・ファクター)になったZC(ω)は
第3(b)図のスミスチャート上にω、の近くにかなり
小さい周波数変化をもつ円になる。従ってデバイスライ
ンZdが回転しても。
Since the impedance Z seen from point B is zero, Zc(
ω, ) maintains its previous value. Therefore, the oscillator keeps operating at ω. ZC(ω), which has a high Q (quality factor) at ω due to the dielectric resonator circuit, becomes a circle with a fairly small frequency change near ω on the Smith chart in Figure 3(b). . Therefore, even if the device line Zd rotates.

ZC(ω)とZd  の交点の周波数はほとんど変わら
ない。これは発振器が発振周波数ω、で安定化されてい
ることを意味する。
The frequency at the intersection of ZC(ω) and Zd remains almost unchanged. This means that the oscillator is stabilized at the oscillation frequency ω.

(発明の効果) このような本発明においては、モノリシックマイクロ波
発振器のゲート回路をマイクロ波的にアースに接続すれ
ばVCOとして使用でき、 またゲート回路を誘電体共
振回路に接続すれば周波数安定化発振器きして使用でき
る。このため再設計を行なわすに、1つのモノリシック
マイクロ波発振器をVCOとしても、安定化発振器とし
ても使用でき、設計工数試作工数を大幅に低減できる。
(Effects of the Invention) According to the present invention, the monolithic microwave oscillator can be used as a VCO by connecting its gate circuit to the microwave ground, and frequency stabilization can be achieved by connecting the gate circuit to a dielectric resonant circuit. Can be used as an oscillator. Therefore, when redesigning, one monolithic microwave oscillator can be used both as a VCO and as a stabilizing oscillator, and the number of design steps and prototyping steps can be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の誘電体共振器安定化可能モソリシック
マイクロ波発揚器、第2図は誘電体共振器の等何回路、
第3図はvCOおよび安定化発振器のインピーダンスロ
ーカスおよびデバイスラインの説明、第4図は従来のV
COおよび安定化発振器。・ 図において、1,12はゲート回路マイクロストリップ
線路、  2.21.22けソース帰還用マイクロスト
!J y 7fmF11r、  3 fa)、31fa
)、 32(al、  3 (1))、31 (b)3
2(b)はマッチィング回路、4はFET、 II、 
13゜16は共振器回路のマイクロストリップ線路、1
4は誘電体共振器、15はその並列等価回路、5け高次
モード発振防止用50Ω抵抗、17はマイクロ波的なア
ース%18ハスミスチャート、19および20けそれぞ
しVCOのデバイスラインお、しびインピーダンスロー
カス%29け安定化発振器のインピーダンスロオ 2 
図 71−3  図 (b)
Figure 1 shows a dielectric resonator stabilized molithic microwave oscillator of the present invention, and Figure 2 shows a dielectric resonator circuit,
Fig. 3 is an explanation of the impedance locus and device line of vCO and stabilizing oscillator, and Fig. 4 is the conventional VCO
CO and stabilized oscillator.・ In the figure, 1 and 12 are gate circuit microstrip lines, and 2.21 and 22 are source feedback microstrip lines! J y 7fmF11r, 3fa), 31fa
), 32 (al, 3 (1)), 31 (b) 3
2(b) is a matching circuit, 4 is a FET, II,
13゜16 is the microstrip line of the resonator circuit, 1
4 is a dielectric resonator, 15 is its parallel equivalent circuit, 5 is a 50Ω resistor for preventing higher-order mode oscillation, 17 is a microwave earth %18 Hassmith chart, 19 and 20 are the VCO device line and , Impedance Locus %29 Stabilized Oscillator Impedance Locus 2
Figure 71-3 Figure (b)

Claims (1)

【特許請求の範囲】[Claims] FETのゲートに一端がマイクロ波的に短絡される第1
のマイクロストリップ線路を設えた直列帰還型モノリシ
ックマイクロ波FET発振器において、第1のマイクロ
ストリップ線路の他の一端に第2の50Ω特性インピー
ダンスのマイクロストリップ線路を直列に設け、前記第
1のマイクロストリップ線路および前記第2のマイクロ
ストリップ線路の接続点から(2K+1)/4波長(た
だしK=0、1、2……)離れた前記第2のマイクロス
トリップ線路上の場所に誘電体共振器を結合させたこと
を特徴とするモノリシックマイクロ波FET発振器。
The first one has one end microwave shorted to the gate of the FET.
In a series feedback monolithic microwave FET oscillator provided with a microstrip line, a second microstrip line with a characteristic impedance of 50Ω is provided in series at the other end of the first microstrip line, and and a dielectric resonator is coupled to a location on the second microstrip line that is (2K+1)/4 wavelengths (K=0, 1, 2...) away from the connection point of the second microstrip line. A monolithic microwave FET oscillator characterized by:
JP60153219A 1985-07-10 1985-07-10 Monolithic microwave FET oscillator Expired - Lifetime JPH0666584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60153219A JPH0666584B2 (en) 1985-07-10 1985-07-10 Monolithic microwave FET oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60153219A JPH0666584B2 (en) 1985-07-10 1985-07-10 Monolithic microwave FET oscillator

Publications (2)

Publication Number Publication Date
JPS6213105A true JPS6213105A (en) 1987-01-21
JPH0666584B2 JPH0666584B2 (en) 1994-08-24

Family

ID=15557654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60153219A Expired - Lifetime JPH0666584B2 (en) 1985-07-10 1985-07-10 Monolithic microwave FET oscillator

Country Status (1)

Country Link
JP (1) JPH0666584B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58699U (en) * 1981-06-25 1983-01-05 デンヨ−株式会社 Field control device for engine-driven welding generators
US5291153A (en) * 1991-04-26 1994-03-01 Sumitomo Electric Industries, Ltd. Oscillating MMIC circuit with dielectric resonator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5390850A (en) * 1977-01-21 1978-08-10 Sony Corp Integrated circuit microwave generator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5390850A (en) * 1977-01-21 1978-08-10 Sony Corp Integrated circuit microwave generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58699U (en) * 1981-06-25 1983-01-05 デンヨ−株式会社 Field control device for engine-driven welding generators
JPH034159Y2 (en) * 1981-06-25 1991-02-01
US5291153A (en) * 1991-04-26 1994-03-01 Sumitomo Electric Industries, Ltd. Oscillating MMIC circuit with dielectric resonator

Also Published As

Publication number Publication date
JPH0666584B2 (en) 1994-08-24

Similar Documents

Publication Publication Date Title
US6259332B1 (en) Microwave oscillator for obtaining the low phase noise characteristic
EP1096665A2 (en) Coaxial resonator and oscillation circuits featuring coaxial resonators
US5321374A (en) Transverse electromagnetic mode resonator
US4547750A (en) FET Oscillator exhibiting negative resistance due to high impedance at the source of an FET thereof
JP2646594B2 (en) Tuned oscillator
EP0090414B1 (en) Transistorized microwave oscillator of oscillation frequency multiplying type
EP1154560B1 (en) Voltage controlled oscillator for oscillating signals with high C/N ratio
JPS6213105A (en) Monolithic microwave fet oscillator
Smith et al. 25-42 GHz GaAs heterojunction bipolar transistor low phase noise push-push VCOs
JP3098195B2 (en) Active quadrature power divider
JP2008182681A (en) Multiplying oscillation circuit, and wireless device in which the same is installed
JP3498608B2 (en) PLL circuit, communication device using the same, and frequency adjustment method for PLL circuit
JP2002217727A (en) Injection synchronized oscillator, oscillator and high frequency communication unit using them
JP2650540B2 (en) Oscillator
US7119627B2 (en) Phase-locked loop circuit as well as a voltage-controlled oscillator as used in a phase-locked loop circuit
JP2002314340A (en) High frequency circuit and communication equipment using the same
EP1120905B1 (en) Output amplifier for a voltage controlled oscillator
JP2918477B2 (en) Balanced mixer
JPH11127034A (en) Single-balanced mixer
JPH118515A (en) Frequency conversion device
JP3220895B2 (en) Injection locked oscillator
JPS6024001Y2 (en) microwave integrated circuit
JP2001085942A (en) Oscillation circuit
JPH0336091Y2 (en)
JPH0786832A (en) Microwave oscillator