JPS62119601A - Method of adjusting automatically control constant of pid controller - Google Patents

Method of adjusting automatically control constant of pid controller

Info

Publication number
JPS62119601A
JPS62119601A JP26015585A JP26015585A JPS62119601A JP S62119601 A JPS62119601 A JP S62119601A JP 26015585 A JP26015585 A JP 26015585A JP 26015585 A JP26015585 A JP 26015585A JP S62119601 A JPS62119601 A JP S62119601A
Authority
JP
Japan
Prior art keywords
step response
time
axis
axes
pid controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26015585A
Other languages
Japanese (ja)
Inventor
Masataka Iwasaki
昌隆 岩崎
Shiro Hozumi
穂積 史郎
Hozumi Yamada
山田 穂積
Koji Ebisu
戎 晃司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Ecology Systems Co Ltd
Panasonic Holdings Corp
Original Assignee
Matsushita Seiko Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Seiko Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Seiko Co Ltd
Priority to JP26015585A priority Critical patent/JPS62119601A/en
Publication of JPS62119601A publication Critical patent/JPS62119601A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To adjust automatically the control constant of a PID controller without intervention of the manual operation of the operator by using function approximation in response to a step response waveform of a process. CONSTITUTION:A new coordinate axes t', y' taking an inflection point of a step response waveform using a step response output as y-axis and time as t-axis as an origin are provided, a process gain K is given to approximate the step response waveform as a linear lag system on the (t'-y') axes, the approximation equation obtained by the approximation is subjected to coordinate conversion into (t-y) axes to estimate a linear lag time constant T and a dead time L thereby deciding the optimum value of a proportional gain Kp, an integration time Ti and a differentiation time Td being control constants of a PID controller. The step response of the process is an S-shaped curve and the step response of the process is approximated by (dead time system) + (linear lag system), and the (t'-y') axes taking the inflection point of the step response as the origin are provided resulting that the step response of the process on the (t'-y') axes is considered to be the step response of the linear lag system.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、PIE)制御における制御定数である比例ゲ
イン(Kp)、積分時間(Ti)、微分時間(Td)の
最適値を自動調整するPID調節器の制御定数自動調整
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is a PID control system that automatically adjusts the optimal values of control constants such as proportional gain (Kp), integral time (Ti), and derivative time (Td) in PIE control. The present invention relates to a method for automatically adjusting control constants of a device.

従来の技術 従来、PID調節器の制御定数は操作者の手によって試
行錯誤的”に決定されていた。一方、制御理論の方面か
ら、制御対象に最適な制御定数を算出する方法としては
、  Ziegler−Nicholg (ジークラ・
ニコルス)の方法、北森の方法など数多くの方法が提案
されている。
Conventional technology Conventionally, the control constants of PID regulators have been determined by the operator through trial and error.On the other hand, from the perspective of control theory, a method for calculating optimal control constants for a controlled object is the Ziegler method. -Nicholg
Many methods have been proposed, such as the method of Nichols) and the method of Kitamori.

発明が解決しようとする問題点 しかしながら、前記のような方法は、試行錯誤的方法で
は、パラメータの決定に多くの手間と時間を必要とした
。また制御理論の方面からのパラメータ決定法では演算
式が複雑であったり、計算3 ベー/ 量が膨大である等、実用化には問題があった。本発明は
、この問題点をjW決し、操作者の手をわずられせる必
要が々く1 しかも筒中な演算を行々うだけでよいPI
D調節器の制御定数自動調整方法を提供するものである
Problems to be Solved by the Invention However, the above method requires a lot of effort and time to determine the parameters using a trial and error method. In addition, parameter determination methods based on control theory have problems in practical application, such as complicated calculation formulas and enormous amounts of calculations. The present invention solves this problem and eliminates the need for the operator's intervention.
This invention provides a method for automatically adjusting control constants of a D regulator.

問題点を解決するだめの手段 この目的を達成するために、本発明のPID調節器の制
御定数自動調整方法は、プロセスのステップ応答波形に
対して、関数近似という方法を用いる。
Means for Solving the Problems In order to achieve this object, the method for automatically adjusting control constants for a PID controller of the present invention uses a method of function approximation for the step response waveform of the process.

作用 この方法によって、(むだ時間系)+(−次遅れ系)近
似したプロセスの一次おくれ時定数(T)。
Effect: By this method, the first-order lag time constant (T) of the process approximated (dead time system) + (-order lag system).

むだ時間CXJ)が数値計算によって求められ・PID
調節器の制御定数である比例ゲイン(Kp)、積分時間
(Ti)、微分時間(Td)の最適値が簡単な算術式に
よって求める事ができる。
Dead time CXJ) is determined by numerical calculation and PID
Optimal values of the proportional gain (Kp), integral time (Ti), and differential time (Td), which are control constants of the regulator, can be determined by simple arithmetic expressions.

実施例 以下本発明の実施例について図面を参照にしながら説明
する。
EXAMPLES Hereinafter, examples of the present invention will be described with reference to the drawings.

第1図は、プロセスのステップ応答を示す図でアリ、プ
ロセスのステップ応答はS字形の曲線となっている。こ
のプロセスのステップ応答を(むだ時間系)+(−次遅
れ系)で近似するために、第2図に示すようにステップ
応答の変曲点を原点とするt −y軸を設ける。t −
y軸上では、プロセスのステップ応答は、−次遅れ系の
ステップ応答と考えることができる。
FIG. 1 is a diagram showing the step response of the process, and the step response of the process is an S-shaped curve. In order to approximate the step response of this process as (dead time system) + (-order lag system), a t-y axis whose origin is the inflection point of the step response is provided as shown in FIG. t-
On the y-axis, the step response of the process can be considered as a step response of a -order lag system.

一次遅れ系の伝達関数は T、−次遅れ時定数 K:プロセスゲインと表わされる
The transfer function of the first-order lag system is expressed as T, -th order lag time constant, and K: process gain.

(1)式の単位ステップ応答は、初期値を0とすると α となる。If the initial value is 0, the unit step response of equation (1) is α becomes.

今、プロセスゲイン(K)の値をこちらが与えるとする
と(2)式は。
Now, assuming that we give the value of process gain (K), equation (2) is as follows.

6 ペーノ y(t)=K (1−e    )         
  ・・・・・・(3)となる。
6 Peno y(t)=K (1-e)
......(3).

今、サンプリング時間1=1..12・・・・・・tn
のときの応答を’l + + 72・・・・・・ynと
したときの観測データを(ti+’11)l=1.2・
・・・・・nとし、この観測データをt−y軸上で表現
したものを(1土。
Now, sampling time 1=1. .. 12...tn
When the response is 'l + + 72...yn, the observed data is (ti+'11)l=1.2・
....n, and this observation data expressed on the t-y axis is (1 Sat.

yl)、ti>O、x<n とする。またプロセスケイ
ン(K)をt −y軸上で表現したものをkとする。
yl), ti>O, and x<n. Further, let k be the process key (K) expressed on the t-y axis.

問題は観測データ(’it”Ii)’−1,2・・・・
・・n。
The problem is observational data ('it'Ii)'-1, 2...
・・n.

11〉0.K<nおよびKから未知数αを最適に推定す
ることである。
11〉0. The objective is to optimally estimate the unknown α from K<n and K.

(3)式を変形して Y(t)      −at □−1−−e           ・・・・・・(4
)さらに両辺の自然対数をとって Y (t) =αt            ・川・・
(6)6ベーゾ となり、−次式となる。
Transforming equation (3), Y(t) −at □−1−−e ・・・・・・(4
) Furthermore, taking the natural logarithm of both sides, we get Y (t) = αt ・River...
(6) It becomes 6 beso, and becomes the following formula.

したがって、観測データ(τ141)i=1.2・・・
・・・n l tl、>O、K<nおよびKから未知数
αを最適に推定するという問題は、観測データム 定するという問題に置き換えることができる。
Therefore, observation data (τ141) i=1.2...
... n l tl, >O, K<n, and the problem of optimally estimating the unknown α from K can be replaced with the problem of determining the observation datum.

αの推定値αeとすると、最小二乗法により、αeは次
のように推定される。
Assuming that the estimated value of α is αe, αe is estimated as follows using the least squares method.

t −y軸上で 一αet y=K(1−e)       ・・・・・−(8)と
推定されたステップ応答をt−y軸上の原点がt、y軸
上で(tl、y、)と表わされるとして(8)式をt 
−y軸上で表現すると、 y=ム−Be−aet        ・・・・・・(
9)7へ/ 但し A=に+7.       ・・・・・・(10
)B−x + eae + i +     川・・(
11)となる。
The step response estimated as 1αet y=K(1-e)...-(8) on the t-y axis is expressed as follows: the origin on the t-y axis is t, and the origin on the y-axis is (tl, y , ), equation (8) is expressed as t
- Expressed on the y-axis, y=Mu-Be-aet ・・・・・・(
9) To 7/ However, A=+7.・・・・・・(10
)B-x + eae + i + river...(
11).

(9)式の示すグラフは第3図のようになりむだ時間の
推定値Leは+7=Oとなる時刻として求まシ、 Le−□       ・川・・(12)αe また、−次おくれ時定数の推定値Toは次のように々る
The graph shown by equation (9) is as shown in Figure 3, and the estimated value Le of the dead time is found as the time when +7=O. The estimated value To of the constant is as follows.

’l’el=−・・印・(13) αe 以上のことより前記T、LがそれぞれTe 、Leと推
定されてたので前記PID調節計の制御定数Kp、Ti
、Tdは、ジーグラ・ニコルスの方法によれば表1のよ
うに決定される。
'l'el=-...mark (13) αe From the above, since the above T and L were estimated to be Te and Le, respectively, the control constants Kp and Ti of the PID controller
, Td are determined according to the Ziegler-Nichols method as shown in Table 1.

表1 発明の効果 以上のように本発明は、プロセスのステップ応答観測デ
ータを与えることによって操作者の手をわずられせるこ
となしにPID調節器の制御定数を自動調整することが
でき、その効果は犬なるものがある。
Table 1 Effects of the Invention As described above, the present invention can automatically adjust the control constant of a PID regulator without requiring the operator's intervention by providing step response observation data of the process. The effect is like a dog.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のPID調節器の制御定数自動調整方法
説明のだめのプロセスのステップ応答ヲ示すグラフ、第
2図はt −y軸の選定を示すグラフ、第3図はむだ時
間の推定を示すグラフである。
Fig. 1 is a graph showing the step response of the process for explaining the automatic control constant adjustment method of the PID controller of the present invention, Fig. 2 is a graph showing the selection of the t-y axis, and Fig. 3 is the graph showing the estimation of the dead time. This is a graph showing.

Claims (1)

【特許請求の範囲】[Claims] 制御対象となるプロセスを一次おくれ系とむだ時間系か
らなる被制御系とみなし、前記プロセスのステップ応答
から、演算により前記プロセスの一次おくれ時定数(T
)とむだ時間(L)を求め、前記TとLからPID調節
器の制御定数である比例ゲイン(Kp)、積分時間(T
i)、微分時間(Td)の最適値を決定するPID調節
器の制御定数自動調整方法であって、ステップ応答出力
をy軸時間をt軸とするステップ応答波形の変曲点を原
点とする新しい座標軸@t@−@y@軸を設け、プロセ
スゲイン(K)を与え前記ステップ応答波形を前記@t
@−@y@軸上で一次おくれ系に近似し、前記近似によ
って求められた近似式をt−y軸に座標変換することに
よって一次おくれ時定数(T)とむだ時間(L)を推定
し、PID調節器の制御定数である比例ゲイン(Kp)
、積分時間(Ti)、微分時間(Td)の最適値を決定
することを特徴とするPID調節器の制御定数自動調整
方法。
Regarding the process to be controlled as a controlled system consisting of a first-order lag system and a dead time system, the first-order lag time constant (T
) and the dead time (L), and from the T and L, the proportional gain (Kp), which is the control constant of the PID controller, and the integral time (T
i) A control constant automatic adjustment method for a PID controller that determines the optimal value of the differential time (Td), in which the origin is the inflection point of a step response waveform with the step response output as the y-axis and time as the t-axis. A new coordinate axis @t@-@y@ axis is provided, a process gain (K) is provided, and the step response waveform is changed to the @t
The linear lag time constant (T) and dead time (L) are estimated by approximating a linear lag system on the @-@y@ axis and converting the coordinates of the approximation formula obtained by the above approximation to the ty axis. , the proportional gain (Kp) which is the control constant of the PID regulator
, an integral time (Ti), and a differential time (Td).
JP26015585A 1985-11-20 1985-11-20 Method of adjusting automatically control constant of pid controller Pending JPS62119601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26015585A JPS62119601A (en) 1985-11-20 1985-11-20 Method of adjusting automatically control constant of pid controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26015585A JPS62119601A (en) 1985-11-20 1985-11-20 Method of adjusting automatically control constant of pid controller

Publications (1)

Publication Number Publication Date
JPS62119601A true JPS62119601A (en) 1987-05-30

Family

ID=17344075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26015585A Pending JPS62119601A (en) 1985-11-20 1985-11-20 Method of adjusting automatically control constant of pid controller

Country Status (1)

Country Link
JP (1) JPS62119601A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0370614A2 (en) * 1988-11-23 1990-05-30 International Control Automation Finance S.A. Process control systems
JP2003308101A (en) * 2002-04-16 2003-10-31 Yokogawa Electric Corp Off-line diagnostic system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0370614A2 (en) * 1988-11-23 1990-05-30 International Control Automation Finance S.A. Process control systems
JP2003308101A (en) * 2002-04-16 2003-10-31 Yokogawa Electric Corp Off-line diagnostic system

Similar Documents

Publication Publication Date Title
US5057992A (en) Method and apparatus for controlling or processing operations of varying characteristics
JPH11509345A (en) Optimal Controller Design Method for Multivariable Predictive Control Using Range Control
CA2315637C (en) Method of predicting overshoot in a control system response
Al-Dhaifallah et al. Fuzzy fractional-order PID controller for fractional model of pneumatic pressure system
CN110764417B (en) Linear quadratic optimal dynamic feedforward-feedback PID control system based on closed-loop identification model and control method thereof
JP2001249705A (en) Process simulator application non-linear controller and method for the same
US5191272A (en) Method of adjusting gain for motor control
JPH0883104A (en) Plant controller
JPS62119601A (en) Method of adjusting automatically control constant of pid controller
US20200301376A1 (en) Machine learning device, control system, and machine learning
JPH0822306A (en) Automatic adjusting device for arithmetic control parameter
Rodrigues et al. A tuned approach of the predictive–adaptive GPC controller applied to a fed-batch bioreactor using complete factorial design
CN106950835B (en) Simple and robust two-degree-of-freedom proportional-integral control method
JP2585294B2 (en) PID controller
CN115993778A (en) Fuzzy control method and device for temperature control system of high-low temperature test chamber
CN112682392B (en) Hydraulic control method and device
JPH03259301A (en) Two degree freedom adjusting device
US6847851B1 (en) Apparatus for improved general-purpose PID and non-PID controllers
JPH09146610A (en) Multivariable nonlinear process controller
JP3224941B2 (en) Digital PID controller
JPH0272404A (en) Deciding method for membership function
JP3870767B2 (en) Predictive control method
CN108646559A (en) Export feedback-type prediction function controller design method
JPH08129420A (en) Direction and position controller for tunnel robot and constitution method for n-dimensional linear discrete time system probability model
JP2771236B2 (en) Adjustment method of PID controller