JPS62119476A - Position measuring system - Google Patents

Position measuring system

Info

Publication number
JPS62119476A
JPS62119476A JP26085785A JP26085785A JPS62119476A JP S62119476 A JPS62119476 A JP S62119476A JP 26085785 A JP26085785 A JP 26085785A JP 26085785 A JP26085785 A JP 26085785A JP S62119476 A JPS62119476 A JP S62119476A
Authority
JP
Japan
Prior art keywords
station
code
radio wave
measurement
waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26085785A
Other languages
Japanese (ja)
Inventor
Kenichi Yoshikawa
吉川 謙一
Nobukimi Yubashi
湯橋 信公
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meisei Electric Co Ltd
Original Assignee
Meisei Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meisei Electric Co Ltd filed Critical Meisei Electric Co Ltd
Priority to JP26085785A priority Critical patent/JPS62119476A/en
Publication of JPS62119476A publication Critical patent/JPS62119476A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a position to be accurately measured without such a complex processing as a lane discrimination or the like by using pseudo noise signs (PN signs) composed of digital codes as a medium for measuring the arrival time of waves. CONSTITUTION:Waves modulated by pseudo noise signs are transmitted from a master station M to slave stations S1-Sn, receiving the waves, produce pseudo noise signs synchronizing those in the received waves at least at an initial stage and transmit the waves modulated by the pseudo noise signs to the measuring station O. The measuring station O obtains the differences in the arrival time of the waves from the master station M from the pseudo noise signals involved in the respective waves and, based thereon, calculates the position of the measuring station O by a hyperbolic system.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は位置測定方式に関し、特に測定媒体として擬似
雑音信号でKv@した電波を使用する方式%式% (発明の背景) 変動地点から複数9・固定地点(3ケ所以上)までの距
離を測定し、2ケ所の固定地点までの距離の差から上記
変動地点の位置を測定することができる。すなわち、2
点までの距離の差が一定である点の軌跡は周知のように
双曲線となるので、第6図に示すように、被測定変動地
点Xから固定地点A、B及びCまでの距離を測定し、固
定地点A。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a position measurement method, and in particular, a method using a radio wave Kv@ with a pseudo-noise signal as a measurement medium. 9. The distance to fixed points (three or more) can be measured, and the position of the variable point can be determined from the difference in distance to two fixed points. That is, 2
As is well known, the locus of a point with a constant difference in distance is a hyperbola, so as shown in Figure 6, the distances from the measurement point X to the fixed points A, B, and C are measured. , fixed point A.

Btでの距離の差が一定(そのときの被測定変動地点X
の位置で定まる一定値)である点が描く双曲lIMB)
と固定地点A、Cまでの距離の差が一足(そのときの被
測定変動地点Xの位置で定まる一定値)である点の描く
双曲線(ロ)との交点が被測定変動地点Xの位置となる
。このようにして被測定変動地点の位置を演算する方式
は双曲線方式として知られている。
The difference in distance at Bt is constant (at that time, the measured fluctuation point
A point drawn by a point with a constant value determined by the position of lIMB)
The intersection point between the hyperbola (b) drawn by the point where the difference in distance between the fixed points A and C is one foot (a constant value determined by the position of the measured fluctuation point X at that time) is the position of the measured fluctuation point X. Become. The method of calculating the position of the measured fluctuation point in this manner is known as the hyperbolic method.

(従来の技術) 上記双曲線方式による位置測定システム(以下、測位シ
ステムという。尚、以下“位置測定”を1側位”と表現
する。)としては、設置個所が既知である複数の地点(
前記固定地点に相当する。)にそれぞれ設置した主局及
び従局(主局t−1局とし、従局を2局以上とする。)
と、被測定点(前記変動地点に相当する。)に設置した
測定局との間で電波の授受を行ない、電波の伝播時間か
ら主局及び谷従局と測定局との間の距離を算出すること
によって上記被測定点の測位を行なうシステムが公知で
ある。
(Prior Art) The position measurement system using the above hyperbolic method (hereinafter referred to as a positioning system. Hereinafter, "position measurement" is expressed as "one position") has a plurality of known installation points (
This corresponds to the fixed point. ) and a slave station (the master station is the t-1 station and there are two or more slave stations).
and the measurement station installed at the measured point (corresponding to the fluctuation point), and the distance between the main station, valley slave station, and measurement station is calculated from the propagation time of the radio wave. A system for positioning the above-mentioned point to be measured is known.

この測位システムに於いては、測定媒体にノ譬ルス信号
を使用してパルス信号の送信時から受信時までの時間差
を求めて距離を演算するパルス時間差方式、及び測定媒
体に正弦波信号を使用して送信信号と受信信号の位相差
から距離を演算する正弦波位相差方式が公知である。
This positioning system uses a pulse time difference method that uses a nollus signal as the measurement medium and calculates the distance by determining the time difference between the transmission and reception of the pulse signal, and a sine wave signal as the measurement medium. A sine wave phase difference method is well known in which the distance is calculated from the phase difference between the transmitted signal and the received signal.

(発明が解決しようとする問題点) 上記従来の方式に於いて、ノ臂ルス時間差方式では電波
伝播上からパルス信号に波形歪が生ずるため測定精度を
あまり高めることができず、また測定精度を高めるため
に従局数を多くした場合にはそれぞれの従局に対して異
り九・クルス送出周期を必要とすることから計測周期が
長くなり、例えば時時刻刻変化する位置の測定には極め
て不都合である。
(Problems to be Solved by the Invention) In the above-mentioned conventional method, the arm-to-shoulder time difference method cannot significantly improve measurement accuracy because waveform distortion occurs in the pulse signal due to radio wave propagation. If the number of slave stations is increased in order to increase the speed, the measurement cycle becomes longer because each slave station requires a different 9-cycle transmission cycle, which is extremely inconvenient for measuring positions that change over time, for example. be.

また、正弦波位相差方式では、測定範囲を広くする場合
には正弦波信号の周期を長く設定する必要がl59(送
信波と受信波の同位相点は正弦波信号の1周期毎に現わ
れるため、後述のレーン識別を行なわないで測定できる
範囲は正弦波信号の1周期に相当する範囲である。)、
ま九正弦波信号の周期を長くすると測定積置が低くなる
。従って測定精度を高度に保って測定するには、正弦波
信号の周期を短くするとともに送信波と受信波の時間差
が当該正弦波信号の1周期を越えたときの測定のために
周期の長い正弦波信号によるレーン識別処理が必要とな
シ、かつ側足に使用する信号も2株類以上必要となって
測定レンジの切換制御等を必要とし、処理が極めて′4
1雑となる。
In addition, in the sine wave phase difference method, when widening the measurement range, it is necessary to set the period of the sine wave signal to be long (because the same phase point of the transmitted wave and the received wave appears every period of the sine wave signal). , the range that can be measured without performing lane identification, which will be described later, is the range equivalent to one cycle of the sine wave signal.)
Increasing the period of the sine wave signal lowers the measured product. Therefore, in order to maintain a high degree of measurement accuracy, it is necessary to shorten the period of the sine wave signal and to use a sine wave signal with a long period for measurement when the time difference between the transmitted wave and the received wave exceeds one period of the sine wave signal. Lane identification processing using wave signals is required, and two or more types of signals are required for the side legs, making it necessary to control switching of measurement ranges, etc., making processing extremely difficult.
1.It becomes miscellaneous.

(発明の目的) 本発明は、以上に述べた従来の問題点を解決すべく提案
するもので、測定精度を高度に保つことができ、かつレ
ーン識別が不必要である位置測定方式を得ることを目的
とする。
(Objective of the Invention) The present invention is proposed to solve the above-mentioned conventional problems, and is to provide a position measurement method that can maintain a high level of measurement accuracy and that does not require lane identification. With the goal.

(発明の概要) 上記目的のため、本発明は、固定地点に設置した主局と
、該主局の設置地点との間の位置関係が既知である複数
の固定地点にそれぞれ設置した従局と、被測位点(変動
地点)に設置した測定局とでシステムを構成し、主局か
ら従局及び測定局に擬似雑音符号で変調した電波を送信
し、従局では上記電波を受信して、受信電波中の擬似雑
音符号に少くとも始期が同期した擬似雑音符号を生成し
て当該符号で変調した電波を測定局に送信し、測定局で
は上記主局からの電波と上記それぞれの従局からの電波
の到達時間差をそれぞれの電波に含まれる擬似雑音イぎ
号によシ求め、これに基いて前記双曲線方式によって上
記測定局の位置を演算するようにしたものである。
(Summary of the Invention) For the above purpose, the present invention provides a main station installed at a fixed point, a slave station installed at each of a plurality of fixed points where the positional relationship between the main station and the installation point is known, A system is configured with a measurement station installed at a measured point (variation point), and the main station transmits radio waves modulated with pseudo noise codes to the slave station and the measurement station, and the slave station receives the radio waves and transmits them into the received radio wave. Generates a pseudo-noise code that is synchronized at least in its starting period with the pseudo-noise code of The time difference is determined based on the pseudo noise signal contained in each radio wave, and based on this, the position of the measuring station is calculated using the hyperbolic method.

(実施例の構成) 第1図〜第4図はいずれも本発明の実施例の構成を説明
する図で、第1図はシステム構成図、第2図は主局のプ
ロ、り図、°第3図は従局のブロック図、第4図Fi側
足局のプロ、り図である。
(Configuration of the embodiment) Figures 1 to 4 are diagrams explaining the configuration of the embodiment of the present invention. Figure 1 is a system configuration diagram, and Figure 2 is a main station professional diagram. FIG. 3 is a block diagram of the slave station, and FIG. 4 is a professional diagram of the Fi side foot station.

第1図に示すように、本発明の実施例に係る測位システ
ムは、1つの主局Mと複数の従局S、〜Sと1つの測定
局Oとで構成され、主局M及び従局S、〜Snは既知の
固定地点に設置され、測定局Oは測定しよ−うとする変
動地点(測位点)に設置される。尚、測位点が複数の場
合に於いては、各側位点に置かれた測定局で主局M及び
従局S、〜Snを共用することができる。また、測定局
oFi受信専用局であるため、その設置数には制限がな
く、例えば港湾を航行する不特定多数の船舶に測定局0
を設ければ、それぞれの船舶に於いて自己に対する測位
が可能となる・ 主局Mは、第2図に示すように、ディジタル符号構成の
擬似雑音符号(以下、PN符号という。)を生成するP
N符号発生器11、搬送波を生成する搬送波発生器12
、上記PN符号発生器11からのPN符号と上記搬送波
発生器12からの搬送波とを乗算してPN符号で変調し
た高周波信号を生成する乗算器13、この乗算器13か
らの高周波信号を電力増幅する電力増幅器14、この電
力増幅器14からの高周波信号を′電波として空中に送
出する空中線15で構成される。
As shown in FIG. 1, the positioning system according to the embodiment of the present invention is composed of one main station M, a plurality of slave stations S, ~S, and one measurement station O. ~Sn is installed at a known fixed point, and measurement station O is installed at a variable point (positioning point) to be measured. In addition, in the case where there are a plurality of positioning points, the main station M and the slave stations S, to Sn can be shared by the measuring stations placed at each side position. In addition, since it is a measurement station oFi reception-only station, there is no limit to the number of measurement stations that can be installed.
If a PN code is provided, each ship will be able to perform self-positioning. The main station M generates a pseudo-noise code (hereinafter referred to as a PN code) with a digital code structure, as shown in Figure 2. P
N code generator 11, carrier wave generator 12 that generates a carrier wave
, a multiplier 13 that multiplies the PN code from the PN code generator 11 and the carrier wave from the carrier wave generator 12 to generate a high frequency signal modulated by the PN code, and the high frequency signal from the multiplier 13 is power amplified. The antenna 15 transmits a high frequency signal from the power amplifier 14 into the air as a radio wave.

従局S(従局相互を区別して説明する必要のないときは
添字1〜nを省略する。)は、第3図に示すように、主
局Mからの電波を受け、かつ自局からの電波を空中に送
出する空中線21、送出電波と入射電波の伝送経路の分
岐を行なうサーキュレータ22、主局Mの送出電波の周
波数帯の通過域を有し、雑音を排除して主局Mからの入
射電波のみを伝達する帯域通過フィルタ23、局部発振
器24、主局Mからの入射電波と上記局部発振器24か
らの信号とを混合して主局MからのPN符号を受信する
混合器25、この混合器25で受信したPN符号と同期
したPN符号を生成するためのDLL(Delay L
ock Loop)回路26、搬送波発生器27、上記
DLL回路26で生成したPN符号と上記搬送波発生器
27からの搬送波とを乗算して上記PN符号で変調した
高周波信号を生成する乗算器28、この乗算器28から
の高周波信号を電力増幅して電波を生成する電力増幅器
29で構成される。
As shown in Fig. 3, slave station S (subscripts 1 to n are omitted when there is no need to distinguish between slave stations) receives radio waves from master station M, and also receives radio waves from its own station. An antenna 21 that sends out into the air, a circulator 22 that branches the transmission path of the outgoing radio waves and the incoming radio waves, and has a passband of the frequency band of the outgoing radio waves of the main station M, and eliminates noise and transmits the incoming radio waves from the main station M. a bandpass filter 23 that only transmits the signal, a local oscillator 24, a mixer 25 that mixes the incident radio wave from the main station M with the signal from the local oscillator 24 and receives the PN code from the main station M, and this mixer DLL (Delay L) for generating a PN code synchronized with the PN code received at 25.
ock Loop) circuit 26, a carrier wave generator 27, a multiplier 28 that multiplies the PN code generated by the DLL circuit 26 and the carrier wave from the carrier wave generator 27 to generate a high frequency signal modulated by the PN code; It is composed of a power amplifier 29 that amplifies the power of the high frequency signal from the multiplier 28 to generate radio waves.

上記DLL回路26は、主局M内で生成したPN符号と
同じノ臂ターン(必ずしも同じパターンである必要はな
いが、しばらくは同じであるものとして説明する。)の
PN符号を生成するPN符号発生器261、このPN符
号発生器261からのPN符号と前記混合器25からの
PN符号とを乗算する乗算器262、乗算器262から
の信号を公知の相関同期方式によりて処理し、PN符号
発生器261でのPN符号の生成動作を制御して当該P
N符号発生器261からのPN符号を前記混合器25か
らのPN符号と同期させるPN符号同期器263とでな
る。
The DLL circuit 26 generates a PN code that has the same arm turn as the PN code generated in the main station M (although it does not necessarily have to be the same pattern, it will be explained as being the same for a while). A generator 261, a multiplier 262 that multiplies the PN code from the PN code generator 261 by the PN code from the mixer 25, and processes the signal from the multiplier 262 by a known correlation synchronization method to generate a PN code. The generation operation of the PN code in the generator 261 is controlled to generate the corresponding P
A PN code synchronizer 263 synchronizes the PN code from the N code generator 261 with the PN code from the mixer 25.

側足局Oは、第4図に示すように、主局Mからの信号を
受信する主局受信部皿と、従局S、〜Snからの信号を
それぞれ受信する従局受信部SR,〜SRnとに区分さ
れ、主局M及び谷従局S、〜礼からの電波を受ける空中
線31及び各受信部風。
As shown in FIG. 4, the side station O includes a main station receiver plate that receives signals from the main station M, and slave station receivers SR and ~SRn that receive signals from slave stations S and ~Sn, respectively. The antenna 31 and each receiving section receive the radio waves from the main station M and the substation S, respectively.

SR1〜SRnからの出力情報(後述の時間差計測器5
1〜5nの出力データ)を演算処理する演算器32とが
各受信部MR、SR,〜SRnに共通に設けられている
。尚、従局受信部SR(従局受信部相互を区別して説明
する必要のないときは、添字1− nを省略する。)は
全て同一に構成されており、第4図では従局受信部SR
1について、その内部構成を示している。
Output information from SR1 to SRn (time difference measuring device 5 described later)
A computing unit 32 for processing the output data (output data 1 to 5n) is provided in common to each of the receiving units MR, SR, to SRn. Note that the slave station receivers SR (subscripts 1-n are omitted when there is no need to distinguish between the slave station receivers) have the same configuration, and in FIG. 4, the slave station receivers SR
1, its internal configuration is shown.

主局受信部皿及び従局受信部SRの構成は、それぞれ帯
域通過フィルタ33.43、局部発振器34.44、混
合器35.45及びDLL回路36゜46 (PN符号
発生器361 、461、乗算器362゜462、PN
符号同期器363 、463 )でなり、各部分の機能
は前記従局Sの受信部(帯域通過フィルタ23、局部発
振器24、混合器25及びDLL回路26 (PN符号
発生器261、乗算器262、PN符号同期器263)
でなる部分)の各構成部分と同様である。但し、帯域通
過フィルタ33.43の通過周波数帯域及び局部発振器
34.44の発掘周波数は、それぞれ主局M及び従局S
からの信号(′α波)の周波数に対応して設定されてい
る。
The main station receiving section and the slave station receiving section SR each have a bandpass filter 33.43, a local oscillator 34.44, a mixer 35.45, and a DLL circuit 36.46 (PN code generators 361, 461, multiplier 362°462, PN
code synchronizers 363, 463), and the functions of each part are the reception section of the slave station S (bandpass filter 23, local oscillator 24, mixer 25, and DLL circuit 26 (PN code generator 261, multiplier 262, PN code synchronizer 261, multiplier 262, code synchronizer 263)
It is the same as each constituent part of (the part consisting of). However, the pass frequency band of the band pass filter 33.43 and the excavation frequency of the local oscillator 34.44 are the main station M and the slave station S, respectively.
It is set corresponding to the frequency of the signal ('α wave) from the

上記構成の他には、時間差計測器51〜5nが各従局受
信部SR4〜SRnに対応して設けられており、当該時
間差計測器51〜5nは、主局受信部皿のDLL回路3
6の出力線と谷従局受信部SR1〜SRnのDLL回路
46の各出力線との間に接続されていて主局Mからの信
号の到達時刻と各従局S、〜Snからの信号の到達時刻
との間の時間差を算出する。
In addition to the above configuration, time difference measuring devices 51 to 5n are provided corresponding to each slave station receiving section SR4 to SRn.
It is connected between the output line of 6 and each output line of the DLL circuit 46 of the valley slave station receivers SR1 to SRn, and is connected between the output line of the DLL circuit 46 of the valley slave station receiving units SR1 to SRn. Calculate the time difference between

(実施例の作用) 第5図は本発明の実施例に於ける信号授受の時間関係を
示すタイムチャートである。以下、この第5図を参照し
、前記構成の実施例の動作を説明する。
(Operation of the embodiment) FIG. 5 is a time chart showing the time relationship of signal transmission and reception in the embodiment of the present invention. The operation of the embodiment having the above configuration will be described below with reference to FIG.

前記第2図に示す主局Mに於いて、PN符号発生器11
はディジタル符号の構成によるPN符号を生成している
。このPN符号は前記従来例の正弦波信号と異なシ、そ
の周期T(第5図)は例えば1100k程度に極めて長
い時間とすることができる(これに対して正弦波信号で
は、せいぜい1kfn)。
In the main station M shown in FIG. 2, a PN code generator 11
generates a PN code with a digital code structure. This PN code is different from the conventional sine wave signal, and its period T (FIG. 5) can be extremely long, for example, about 1100 k (on the contrary, in the case of a sine wave signal, it is at most 1 kfn).

PN符号発生器11から送出されたPN符号は、乗算器
13に於いて搬送波発生器12からの搬送波信号(周波
数fm )を変調し、このようにして生成された高周波
信号は電力増幅器14で電力増幅されたのち、全中線1
5から電波として放射される。
The PN code sent out from the PN code generator 11 modulates the carrier wave signal (frequency fm) from the carrier wave generator 12 in the multiplier 13, and the high frequency signal thus generated is powered by the power amplifier 14. After being amplified, all median lines 1
5 is emitted as radio waves.

すなわち、主局Mから送出される電波は、上記PN符号
で変調された周波数fmの高周波信号である。
That is, the radio wave sent out from the main station M is a high frequency signal of frequency fm modulated with the above-mentioned PN code.

このようにして主局Mから送出された上記電波は、従局
S1〜Sn及び測定局Oで受信される。
The radio waves transmitted from the master station M in this manner are received by the slave stations S1 to Sn and the measurement station O.

前記第3図に示す従局Sに於いて、空中線21に入射し
た電波はサーキュレータ22によって帯域通過フィルタ
23の方向に分岐され、当該帯域通過フィルタ23によ
りて主局Mからの電波(周波数fm )のみが選択され
る。このようにして帯域通過フィルタ25を通過した主
局Mからの電波(高周波−信号)と局部発振器24から
の信号とが混合器25で混合され、当該混合器25は上
記2つの信号の差の周波数の信号をDLL回路26に送
出する。この差の周波数の信号には、当然ながら主局M
内で生成されたPN符号が含まれている。
In the slave station S shown in FIG. 3, the radio waves incident on the antenna 21 are branched by the circulator 22 in the direction of the band-pass filter 23, and the band-pass filter 23 splits only the radio waves (frequency fm) from the main station M. is selected. The radio wave (high frequency signal) from the main station M that has passed through the bandpass filter 25 in this way and the signal from the local oscillator 24 are mixed in the mixer 25, and the mixer 25 is configured to handle the difference between the two signals. The frequency signal is sent to the DLL circuit 26. Of course, the signal with this difference in frequency is
Contains the PN code generated within.

DLL回路26では、PN符号発生器261が主局Mの
PN符号発生器11と同じビット配列(必ずしも同じで
ある必要はないが、当分の間、同じであるものとして説
明する。)のPN符号を発生しており、このPN符号と
上記混合器25からの信号とを乗算器262によりて乗
算し、その結果によってPN符号同期器263で相関を
とり、その相関関係によりてPN符号発生器261での
PN符号生成動作を制御する(相関同期方式)ことによ
シ当該DLL回路26は混合器25が出力する信号中の
PN符号と同期したPN符号を出力する。
In the DLL circuit 26, the PN code generator 261 generates a PN code with the same bit arrangement as the PN code generator 11 of the main station M (although it does not necessarily have to be the same, for the time being it will be explained as being the same). This PN code and the signal from the mixer 25 are multiplied by a multiplier 262, and the result is correlated by a PN code synchronizer 263. Based on the correlation, the PN code generator 261 By controlling the PN code generation operation (correlation synchronization method), the DLL circuit 26 outputs a PN code synchronized with the PN code in the signal output from the mixer 25.

DLL回路26から出力されたPN符号は乗算器28に
於いて搬送波発生器27からの搬送波信号(周波数fm
 )を変調し、このようにして生成された高周波信号は
電力増幅器29で電力増幅されたのち、サーキュレータ
22で空中Iw21の方向に分岐され、当該全中線21
から電波として放射される。尚、従局Sからの電波の周
波数は、谷従局S −8について互に異った値(f81
. fs2 、・・・・・・    n 、?”、n)に設定する(必ずしも異った値にする必要
はないが、当分の間、互に異っているものとして説明す
る。) 以上のようにして各従局S、〜八から送出されたそれぞ
れの電波は測定局Oで受信される。
The PN code output from the DLL circuit 26 is sent to a multiplier 28 as a carrier wave signal (frequency fm
), and the high frequency signal generated in this way is power amplified by a power amplifier 29, and then branched by a circulator 22 in the direction of the air Iw 21.
is emitted as radio waves. Note that the frequency of the radio waves from the slave station S has different values (f81
.. fs2,...n,? ”, n) (It is not necessarily necessary to set different values, but for the time being, we will explain that they are different from each other.) As described above, the values are sent from each slave station S, ~8. Each radio wave is received at measurement station O.

前記第4図に示す測定局0に於いて、空中線31に入射
した主局M及び各従局S、〜Snからの電波は、それぞ
れ1局受信部飄及び各従局受信部SR4〜SRnで受信
され、当該主局受信部風及び各従局受信部SR,〜SR
nは、それぞれの受信電波に含まれるPN符号と同期し
たPN符号を出力する。主局受信部進及び各従局受信部
SR,〜SRnのPN符号出力動作は、前記従局Sの動
作に於けるDLL回路26のPN符号出力動作と同様で
ある。
At the measurement station 0 shown in FIG. 4, the radio waves from the main station M and the slave stations S, ~Sn, which are incident on the antenna 31, are received by the single station receiving section and the slave station receiving sections SR4 to SRn, respectively. , the main station receiving section and each slave station receiving section SR, ~SR
n outputs a PN code synchronized with the PN code included in each received radio wave. The PN code output operation of the main station receiving section forward and each of the slave station receiving sections SR, -SRn is similar to the PN code output operation of the DLL circuit 26 in the operation of the slave station S.

上記主局受信部MRと各従局受信部SR1〜SRnでの
電波の受信時間は、主局M及び各従局S1〜Snと測定
局0との間の距離を互に異にすることから互に異った時
間となり、この時間の異なシを各電波に含まれるPN符
号に基いて時間差計測器51〜5nによって主局Mから
の電波到達時間と各従局S、〜Snからの電波の到達時
間の差で把握する。時間差計測器51〜5nで得られた
電波の各到達時間差情報は、演算器32に入力され、こ
れらの情報に基いて測定局0の位置、すなわち被測位変
動地点の位置が演算される。
The radio wave reception times at the master station receiving section MR and each slave station receiving section SR1 to SRn are different from each other because the distances between the main station M and each slave station S1 to Sn and the measurement station 0 are different. Based on the PN code included in each radio wave, the time difference measuring devices 51 to 5n measure the arrival time of the radio wave from the master station M and the arrival time of the radio waves from each slave station S, ~Sn. Understand by the difference between The arrival time difference information of each radio wave obtained by the time difference measuring devices 51 to 5n is input to the calculator 32, and based on this information, the position of the measuring station 0, that is, the position of the positioning fluctuation point is calculated.

主局Mから電波を送出し、各従局S1〜Snで当該電波
が受信されてから当該各従局S、〜Snカラ電波を送出
し、主局M及び各従局S、〜Snからの′電波を測定局
0で受信するまでの時間関係は上記説明から明らかなよ
うに、各電波に含まれるPN符号による同期作用によっ
て同一の基準点(主局Mからの電波送出時)を持つ。
The master station M sends out a radio wave, and after each slave station S1 to Sn receives the radio wave, each slave station S, ~Sn sends out a radio wave, and receives the 'radio wave from the master station M and each slave station S, ~Sn. As is clear from the above explanation, the time relationship until the measurement station 0 receives the signals has the same reference point (at the time of transmitting the radio waves from the main station M) due to the synchronization effect of the PN code included in each radio wave.

いま、第1図に示すように、主局Mが送出した電波が測
定局0に達するまでの時間をtm1主局Mが送出した電
波が谷従局S、〜Snに達するまでの時間をt、〜L 
n s各従局S、〜八が送出した電波が測定局Oに達す
るまでの時間をt81〜t8nとすると、主局Mが電波
を送出してから測定局0が従局S、〜Sからの′1波を
受信するまでの時間tm81〜tmsnは第5図から明
らかなように(但し、第5図は2局の従局81 * 8
2についてのみ示しである。)%次の通シとなる。
Now, as shown in FIG. 1, the time taken for the radio waves sent by the master station M to reach the measuring station 0 is tm1 The time taken for the radio waves sent from the master station M to reach the valley slave stations S, ~Sn is t, ~L
n sAssuming that the time taken for the radio waves sent by each slave station S, ~8 to reach the measurement station O is t81~t8n, after the master station M sends out the radio wave, the measurement station 0 receives the signals from the slave stations S, ~S. The time tm81 to tmsn until receiving one wave is clear from FIG. 5 (however, in FIG. 5, two slave stations 81 * 8
Only 2 is shown. )% The following is the standard.

tma1== t1+t111 tm82:t2+ts2 tman”稲+tsn すなわち、測定局0に於いて、主局受信部風がPN符号
を出力するのは主局MがPN符号を送出してから時間t
mののちであり、各従局受信部SR,〜SRがPN符号
を出力するのは主局MがPN符号を送出してからそれぞ
れ時間tm8.〜tffllInののちである。
tma1== t1+t111 tm82:t2+ts2 tman''+tsn In other words, at measurement station 0, the main station receiving section outputs the PN code at time t after the main station M sends out the PN code.
tm8.m after the master station M sends out the PN code, and each slave station receiving section SR, to SR outputs the PN code at a time tm8. After ~tffllIn.

時間差計測器51〜5nは上記主局受信部風でのPN符
号受信時間と、上記各従局受信部SR,〜SRnでのP
N符号受信時間との差を演算するので、それぞれの出力
Δ、〜Δ1は Δ1 ” tmlll−tm=(tm1− tm ) 
” t1Δ2 ”” tmll□−1m=(1,2−1
m)+12Δ1=tman−tm=(tlln−trn
)+tnとなる。
The time difference measuring devices 51 to 5n measure the PN code reception time at the main station receiving section and the P at each of the slave station receiving sections SR, -SRn.
Since the difference with the N code reception time is calculated, each output Δ, ~Δ1 is Δ1” tmllll-tm=(tm1-tm)
"t1Δ2""tmll□-1m=(1,2-1
m)+12Δ1=tman-tm=(tlln-trn
)+tn.

ところで、主局M、!:各従局S、〜Snとの位置関係
は固定的であるので、上記時間t、〜tnの値は既知で
ある。従りて演算器32に於いて、各時間差計測器51
〜5nの出力Δ、〜Δ。からそれぞれ上記各時間t、〜
tnを引(ことによって測定局0では主局Mからの電波
到達時間と各従局S1〜Snからの電波到達時間の差を
求めることができ、この電波到達時間差に光速(約3 
X 10 m/see )を掛けることによって測定局
0からみた主局Mと各従局S、〜Snとの間の距離の差
が演算できる。従って前記双曲線方式による測位が可能
となる。
By the way, the main station M! : Since the positional relationship with each slave station S, ~Sn is fixed, the values of the above-mentioned times t, ~tn are known. Therefore, in the computing unit 32, each time difference measuring device 51
~5n output Δ, ~Δ. From each above-mentioned time t, ~
By subtracting tn (by subtracting tn, the difference between the radio wave arrival time from the main station M and the radio wave arrival time from each slave station S1 to Sn at measuring station 0 can be obtained, and this radio wave arrival time difference is calculated by adding the speed of light (approximately 3
By multiplying by X 10 m/see ), the difference in distance between the main station M and each slave station S, ~Sn as seen from the measurement station 0 can be calculated. Therefore, positioning using the hyperbolic method described above becomes possible.

すなわち、前記第6図にあてはめて考えると、固定地点
A、B及びCにそれぞれ主局M、従局S、及びS2を設
置し、被測定変動地点Xに測定局Oを設置する(但し、
従局が2局の場合)と、0)は(tsl  tm)xc
を示すライン、←)は(t82− tm)×Cを示すラ
イン(但し、Cは光速)となる。
That is, when applied to FIG. 6, the main station M, slave station S, and S2 are installed at the fixed points A, B, and C, respectively, and the measuring station O is installed at the measuring point X (however,
When there are two slave stations) and 0) are (tsl tm) xc
The line ←) indicates (t82-tm)×C (where C is the speed of light).

上記ライン(イ)及び(ロ)は、実際には測定偏差によ
る巾をもっていて、その交点X(被測定点)は測定偏差
に基ずく面積を有することとなる。測位精度を上げるに
は上記面積を小さくすればよいが、このためには従局S
の設置数を多くして多くの双曲線関数に基いて演算をす
るようにすればよい。
The lines (a) and (b) actually have a width depending on the measurement deviation, and their intersection point X (point to be measured) has an area based on the measurement deviation. In order to improve the positioning accuracy, it is possible to reduce the above area, but for this purpose, the slave station S
The number of units installed may be increased to perform calculations based on a large number of hyperbolic functions.

以上の実施例では、主局Mからの送出電波に含まれるP
N符号と従局S1〜Snからの送出電波に含まれる各P
N符号は、全て同一ノヤターン、すなわちビット構成が
同じであるとしたが、第5図から明らかなように各PN
符号はその始期が互に同一時間基準に基いておればよく
、従って、少くとも各PN符号はその始期に於いて同期
していればよく、必ずしもビット構成を同一にする必要
はない。
In the above embodiment, P included in the radio waves transmitted from the main station M
N code and each P included in the transmitted radio waves from slave stations S1 to Sn
It is assumed that all N codes have the same number of turns, that is, the same bit configuration, but as is clear from FIG.
The codes only need to have their starting times based on the same time reference. Therefore, it is sufficient for each PN code to be synchronized at least at its starting point, and the bit configurations do not necessarily have to be the same.

また、実施例では各従局S、〜Snの送出電波の周波数
は互に異なるものとしたが、上記のように各PN符号の
ビット構成を互に異ならしめた場合、測定局0ではPN
符号のビット構成から受信電波の発信従局を判別するこ
とができるため、各従局S、〜Sの送出電波の周波数と
同一に設定することもできる。
In addition, in the embodiment, the frequencies of the radio waves transmitted by the slave stations S and ~Sn are different from each other, but if the bit configuration of each PN code is made different from each other as described above, the measurement station 0 has a PN
Since the transmitting slave station of the received radio wave can be determined from the bit structure of the code, it is also possible to set the frequency to be the same as the frequency of the transmitting radio wave of each slave station S, ~S.

(発明の効果) 以上、詳細に説明したように、本発明では′電波の到達
時間を測定する媒体としてPN符号を使用するようにし
たものであり、PN符号はピット数を多くすることによ
って、ビット長さを短く保ったままその周期を極めて長
く設定できることから、レーン識別等の煩雑な処理をし
なくても高精度の測位が可能であること、(従来の正弦
波位相差方式に比べて)、PN符号の符号速度を上げる
ことによって高精度の測位ができること、PN符号の使
用によって相関同期方式が採用できるので、雑音(外米
電波等)等の妨害に対して高い信頼性を維持できること
、測位精度を上げるために従局数を多くしても計測周期
が長くならないこと(従来のパルス時間差方式に比べて
)、等の長所を有し、本発明は極めて顕著な効果を奏す
るものである。
(Effects of the Invention) As explained in detail above, in the present invention, a PN code is used as a medium for measuring the arrival time of radio waves, and the PN code has a large number of pits. Since the cycle can be set extremely long while keeping the bit length short, highly accurate positioning is possible without complicated processing such as lane identification (compared to the conventional sine wave phase difference method). ), high-precision positioning can be achieved by increasing the code speed of the PN code, and since the correlation synchronization method can be adopted by using the PN code, high reliability can be maintained against interference such as noise (foreign radio waves, etc.) , the measurement cycle does not become longer even if the number of slave stations is increased in order to improve positioning accuracy (compared to the conventional pulse time difference method), and the present invention has extremely remarkable effects. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図は本発明の詳細な説明するもので、第1
図はシステム構成図、第2図は主局のブロック図、第3
図は従局のブロック図、第4図は測定局のブロック図、
第5図は信号授受の時間関係を示すタイムチャートであ
シ、第6゛図は双曲線方式の測位方法の原理を示す図で
ある。 (主な記号) M・・・主局、      5(81〜Sn)・・・従
局、0・・・測定局、     皿・・・主局受信部、
SR1〜SRn・・・従局受信部、 11 、261 、361 、461・・・PN符号発
生器、15.21.31・・・空中線、  26.36
.46・・・DI、L回路、263 、363 、46
3・・・PN符号同期器、51〜5n・・・時間差計測
器。 第2図
1 to 5 are detailed explanations of the present invention.
The figure is a system configuration diagram, Figure 2 is a block diagram of the main station, and Figure 3 is a block diagram of the main station.
The figure is a block diagram of the slave station, Figure 4 is a block diagram of the measuring station,
FIG. 5 is a time chart showing the time relationship of signal transmission and reception, and FIG. 6 is a diagram showing the principle of the hyperbolic positioning method. (Main symbols) M...Main station, 5 (81~Sn)...Slave station, 0...Measuring station, Dish...Main station receiving section,
SR1 to SRn...Slave station receiving unit, 11, 261, 361, 461...PN code generator, 15.21.31...Antenna, 26.36
.. 46...DI, L circuit, 263, 363, 46
3... PN code synchronizer, 51-5n... time difference measuring device. Figure 2

Claims (1)

【特許請求の範囲】[Claims] 固定地点に設置した主局と、該主局の設置地点との間の
位置関係が既知である複数の固定地点にそれぞれ設置し
た従局と、位置測定を行おうとする変動地点に設置した
測定局でなり、上記主局から擬似雑音符号で変調した電
波を送信し、上記それぞれの従局では、上記主局からの
電波を受信して、受信電波中の擬似雑音符号に少くとも
始期が同期した擬似雑音符号を生成して当該擬似雑音符
号で変調した電波を送信し、上記測定局では、上記主局
からの電波と上記それぞれの従局からの電波の到達時間
差を、それぞれの電波に含まれている擬似雑音符号に基
いて算出し、当該到達時間差に基いて上記測定局の位置
を検出するようにした位置測定方式。
A master station installed at a fixed point, slave stations installed at multiple fixed points where the positional relationship between the master station and the installation point is known, and a measurement station installed at a variable point where position measurement is to be performed. The master station transmits a radio wave modulated with a pseudo-noise code, and each of the slave stations receives the radio wave from the master station and generates a pseudo-noise whose start period is at least synchronized with the pseudo-noise code in the received radio wave. A code is generated and a radio wave modulated with the pseudo noise code is transmitted, and the measuring station calculates the arrival time difference between the radio wave from the master station and the radio waves from each of the slave stations using the pseudo noise code included in each radio wave. A position measurement method in which the position of the measurement station is calculated based on the noise code and the arrival time difference is detected.
JP26085785A 1985-11-20 1985-11-20 Position measuring system Pending JPS62119476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26085785A JPS62119476A (en) 1985-11-20 1985-11-20 Position measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26085785A JPS62119476A (en) 1985-11-20 1985-11-20 Position measuring system

Publications (1)

Publication Number Publication Date
JPS62119476A true JPS62119476A (en) 1987-05-30

Family

ID=17353714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26085785A Pending JPS62119476A (en) 1985-11-20 1985-11-20 Position measuring system

Country Status (1)

Country Link
JP (1) JPS62119476A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02184783A (en) * 1989-01-11 1990-07-19 Mitsubishi Electric Corp Position measuring method using artificial satellite
JPH02213785A (en) * 1989-02-14 1990-08-24 Mitsubishi Electric Corp Position measuring method using artificial satellite
JPH02504673A (en) * 1987-08-10 1990-12-27 ケンブリッジ・ポジショニング・システムズ・リミテッド Navigation and tracking system
JP2001141801A (en) * 1999-11-15 2001-05-25 Hitachi Kokusai Electric Inc Position measuring system and position calculating method for communication system of moving object
US7024331B2 (en) 2000-11-15 2006-04-04 Scientific Generics Limited Tag tracking
US7228228B2 (en) 2000-11-15 2007-06-05 Sagentia Limited Tag tracking
JP2007218868A (en) * 2006-02-20 2007-08-30 Mitsubishi Electric Corp Position detection method of mobile station, and mobile station, position-detecting device thereof, and base station

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512549A (en) * 1978-07-10 1980-01-29 Matsushita Electric Ind Co Ltd Manufacture for magnetic recording media
JPS59212787A (en) * 1983-05-19 1984-12-01 Unyusho Daiyon Kowan Kensetsu Kyokucho Position measuring system using spectrum diffusion radio wave
JPS6044628A (en) * 1983-07-28 1985-03-09 パ−フエクシヨン・スプリング・アンド・スタンピング・コ−ポレイシヨン Internal nut for adjusting tension of coil spring

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512549A (en) * 1978-07-10 1980-01-29 Matsushita Electric Ind Co Ltd Manufacture for magnetic recording media
JPS59212787A (en) * 1983-05-19 1984-12-01 Unyusho Daiyon Kowan Kensetsu Kyokucho Position measuring system using spectrum diffusion radio wave
JPS6044628A (en) * 1983-07-28 1985-03-09 パ−フエクシヨン・スプリング・アンド・スタンピング・コ−ポレイシヨン Internal nut for adjusting tension of coil spring

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02504673A (en) * 1987-08-10 1990-12-27 ケンブリッジ・ポジショニング・システムズ・リミテッド Navigation and tracking system
US5045861A (en) * 1987-08-10 1991-09-03 The Lynxvale - Cril Partnership Navigation and tracking system
JPH02184783A (en) * 1989-01-11 1990-07-19 Mitsubishi Electric Corp Position measuring method using artificial satellite
JPH02213785A (en) * 1989-02-14 1990-08-24 Mitsubishi Electric Corp Position measuring method using artificial satellite
JP2001141801A (en) * 1999-11-15 2001-05-25 Hitachi Kokusai Electric Inc Position measuring system and position calculating method for communication system of moving object
US7024331B2 (en) 2000-11-15 2006-04-04 Scientific Generics Limited Tag tracking
US7228228B2 (en) 2000-11-15 2007-06-05 Sagentia Limited Tag tracking
JP2007218868A (en) * 2006-02-20 2007-08-30 Mitsubishi Electric Corp Position detection method of mobile station, and mobile station, position-detecting device thereof, and base station

Similar Documents

Publication Publication Date Title
US4443801A (en) Direction finding and frequency identification method and apparatus
US3812493A (en) Bistatic passive radar
US3943514A (en) Dual base line interferometer antenna
US4978963A (en) RF signal direction finding apparatus
JP2007192575A (en) Target positioning apparatus
JPS62119476A (en) Position measuring system
JPH08146110A (en) Location measuring unit
US3806937A (en) Automatic direction finding system utilizing digital techniques
CN105578588A (en) Base station synchronizing and positioning method and equipment
GB765573A (en) Improvements in or relating to radio navigation systems
JP2593704B2 (en) Radar equipment
US20170115375A1 (en) Wireless device, distance estimation system, position estimation system, distance estimation method, position estimation method, distance-estimation-program recording medium, and position-estimation-program recording medium
KR101355536B1 (en) Rf proximity fuze sensor for direction finding and method for finding direction thereof
RU2146833C1 (en) Method for synchronization of time scales
JP2984122B2 (en) Position measurement system
CN211293246U (en) Micro-deformation remote measuring system based on wireless synchronization technology
JP2009174971A (en) Radio-frequency tag and distance measuring apparatus of same
JP2001183447A (en) Range finding method and device
JPH03205579A (en) System for measuring transmitter position and transmitter
RU94032128A (en) Multichannel radar
EP0367487B1 (en) RF signal direction finding apparatus
JPH05264729A (en) Range finder
JPH0560854A (en) Transmitter position measuring system, transmission method, and reception method
RU87252U1 (en) LINEAR MOVEMENT METER
GB582085A (en) Improvements relating to arrangements for determining distance and bearing by electromagnetic waves