JPS62117316A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62117316A
JPS62117316A JP25724985A JP25724985A JPS62117316A JP S62117316 A JPS62117316 A JP S62117316A JP 25724985 A JP25724985 A JP 25724985A JP 25724985 A JP25724985 A JP 25724985A JP S62117316 A JPS62117316 A JP S62117316A
Authority
JP
Japan
Prior art keywords
layer
magnetic resonance
resonance absorption
additive
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25724985A
Other languages
Japanese (ja)
Inventor
Kazushi Sugawara
菅原 和士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP25724985A priority Critical patent/JPS62117316A/en
Publication of JPS62117316A publication Critical patent/JPS62117316A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To evaluate the crystallinity of a semiconductor during manufacture easily by forming one conduction type region, to which an additive of a predetermined kind is added selectively, and a reaction region to which another additive is added selectively in not less than concentration where magnetic resonance absorption is generated. CONSTITUTION:In a three-element circuit 21, N<+> type regions 23, 24 as one conduction type region are shaped into a substrate such as a P-type Si substrates 22, and an insulating layer 25 is formed selectively onto the surface of the substrate 22. Electrodes 28-30 are shaped, coating through-holes 26, 27 for the layer 25. An insulating layer 31 is formed onto the electrodes 28-30, a single crystal semiconductor layer in Si or Ge is shaped onto the insulating layer 31, and a P-type Si growth layer 22a is grown. Likewise, an Si growth layer 22b is shaped. An additive, such as P, AS, etc. capable of measuring magnetic resonance absorption is added to these growth layers 22a, 22b, thus forming reaction layers 35, 36. These additives are added previously to the Si substrate having excellent crystallizability, magnetic resonance absorption is measured beforehand, and the data of the measurement and the magnetic resonance absorption data of the Si growth layer are compared, thus evaluating the crystallinity of the Si growth layer.

Description

【発明の詳細な説明】 産業−1−の利用分野 本発明は、半導1本材料から成る基板などの半導体装置
に関し、詳[7くは半導体装置を構成する1″。
DETAILED DESCRIPTION OF THE INVENTION Field of Application of Industry-1- The present invention relates to a semiconductor device such as a substrate made of a single semiconductor material, and more particularly, to a semiconductor device such as a substrate made of a single semiconductor material.

導体材料の結晶+1を物PIi的に評価できる構成をa
する、その上うな半’ル”体装置に閃する。
The configuration in which the crystal +1 of the conductor material can be evaluated in physical PIi terms is a.
Then, on top of that, a half-sized body appeared.

従米技や[j 近年、枚数の半導体集積回路を更lこ積層した構造のい
わゆる三次元集積回路の研究開発が盛んである。第5図
は従来技術のシリコンS1系二次元集積回路 (fJ、
 ’l’、−ぞ次元回路と略称する)の構造例を示す断
面図である。三次上回路1においては、たとえばP型シ
リコン層2内にn′型領領域34を形成し、p yfI
Yシリコン層2の表面に絶縁層5を選択的に形成して、
透孔6,7を形成した。絶縁層5の透孔6,7などを被
覆して、電極))、9.inが形成される。この上)に
してF)型シリコン層2、n1型領域3.4、絶縁層5
および電i8.9.10が、電界効果型l・ランジスタ
 (以下Fト〕Tと略称する)を構成する。
In recent years, research and development of so-called three-dimensional integrated circuits, which have a structure in which several semiconductor integrated circuits are stacked, has been active. Figure 5 shows a conventional silicon S1-based two-dimensional integrated circuit (fJ,
1 is a cross-sectional view showing a structural example of a circuit (abbreviated as 'l'-dimensional circuit). In the tertiary upper circuit 1, for example, an n' type region 34 is formed in the P type silicon layer 2, and p yfI
selectively forming an insulating layer 5 on the surface of the Y silicon layer 2;
Through holes 6 and 7 were formed. The through holes 6, 7, etc. of the insulating layer 5 are covered to form electrodes), 9. in is formed. Above this) F) type silicon layer 2, n1 type region 3.4, insulating layer 5
and electric i8.9.10 constitute a field effect type transistor (hereinafter abbreviated as F).

また直記電極+1.9.1Qを被覆して、絶縁層11が
形成される。この絶縁M 111:にP型シリコン成艮
342 aを成長させる。以下同様にして成長ノ(42
l+、11°型領域、’(a、 4 a; 3 )it
 4 b、絶縁層5a、5b、透孔6 at 7 a;
 61i、 7 b、電極8 a、9 a、 10 a
;81+、9 b、 1 (l bおよび絶M7%11
aが、この順序で形成される。1なわち三次jt回路1
におけるシリコン成長層2a、2bに、ト” !’: 
Tなどの半導体装f−を形成しでいるので、!11結晶
シリコン成長1fJ 2 a + 211の結晶性が、
半導体素工の性能を微妙に左右する。したがって、二次
元回路1の量産化の段階においては、半導体素子製造の
歩留り改善のため、シリコン成長層21I、211の結
晶性を、素子製造工程中に、迅速に評価することが極め
て重要である。
Further, an insulating layer 11 is formed to cover the direct electrode +1.9.1Q. A P-type silicon layer 342a is grown on this insulation M111:. Similarly, growth (42)
l+, 11° type region, '(a, 4 a; 3)it
4 b, insulating layers 5 a, 5 b, through holes 6 at 7 a;
61i, 7b, electrodes 8a, 9a, 10a
;81+, 9 b, 1 (l b and absolute M7%11
a are formed in this order. 1, 3rd order jt circuit 1
To the silicon growth layers 2a and 2b in ``!'':
Since the semiconductor device f- such as T has been formed,! 11 crystalline silicon growth 1fJ 2 a + 211 crystallinity is
Subtly affects the performance of semiconductor materials. Therefore, at the stage of mass production of the two-dimensional circuit 1, it is extremely important to quickly evaluate the crystallinity of the silicon growth layers 21I and 211 during the device manufacturing process in order to improve the yield of semiconductor device manufacturing. .

特に、三次元回路が多数ノーになると、素子作製が完了
するまで、数週間などの長い期間を必要とする場合もあ
りうる。この場合、素子製造の途中に、結晶性評価を行
なうことは、量産性および歩留り改善の点で有効である
In particular, if a large number of three-dimensional circuits fail, it may take a long period of time, such as several weeks, to complete device fabrication. In this case, performing crystallinity evaluation during device manufacturing is effective in improving mass productivity and yield.

発明が解決しようとする問題、α 従来技術では、−1−述したような三次元回路1の内部
に存在する半導体層成長J(12a、2bの結晶性を評
価することは困九であった。
Problem to be solved by the invention, α In the prior art, it was difficult to evaluate the crystallinity of the semiconductor layer growth J (12a, 2b) existing inside the three-dimensional circuit 1 as described above. .

本発明の目的は、上述の問題、ヴを解決し、半導体装1
nの製造途中で、半導体装置に含まれる半導体層の結晶
性の評価を容易に行なうことができる半導体装置を提供
することである。
An object of the present invention is to solve the above-mentioned problems and
An object of the present invention is to provide a semiconductor device in which the crystallinity of a semiconductor layer included in the semiconductor device can be easily evaluated during the manufacturing process.

問題点を解決するための手段 本発明は、J% &上に形成された半導体層であって、 予め定めた種類の添加物が選択的に添加されて形成され
た Jj導電形式領域と、 前記添加物とは異なる種類の添加物を、電磁波による磁
気共鳴吸収が発生する程度以−Lの濃度で、選択的に添
加して成る反応領域とを有する、そのような半導体層を
含むことを特徴とする半導体装置である。
Means for Solving the Problems The present invention provides a semiconductor layer formed on J% &, a Jj conductivity type region formed by selectively adding a predetermined type of additive; It is characterized by including such a semiconductor layer having a reaction region in which an additive of a different type from the additive is selectively added at a concentration lower than the level at which magnetic resonance absorption due to electromagnetic waves occurs. This is a semiconductor device.

作  用 本発明の半導体装置は、基板上に形成された半導体層で
あって、予め定めた種類の添加物が選択的に添加されて
形成された一方導電形式領域と、前記添加物とは異なる
種類の添加物を、電磁波による磁気共鳴吸収が発生する
程度以上の濃度で、選択的に添加して成るJズ応領域と
を有する、そのような半導体層を含む。前記穴なる種類
の添加物の磁気共鳴吸収は、この添加物が含まれる半導
体層を構成する分子のイオンとの相互作用に基づいて変
化する。したがって前記穴なる種類の添加物−:(− を添加した段階で、電磁波による磁気共鳴吸収を観測す
ることによって、前記半導体層の結晶性の程度を検出す
ることができる。
The semiconductor device of the present invention is a semiconductor layer formed on a substrate, and a conductive type region formed by selectively adding a predetermined type of additive, and a semiconductor layer formed by selectively adding a predetermined type of additive, and a semiconductor layer formed by selectively adding a predetermined type of additive. The present invention includes such a semiconductor layer having a J-suppression region formed by selectively doping a type of additive at a concentration higher than that at which magnetic resonance absorption due to electromagnetic waves occurs. The magnetic resonance absorption of the hole type additive changes based on the interaction with the ions of the molecules constituting the semiconductor layer in which this additive is included. Therefore, the degree of crystallinity of the semiconductor layer can be detected by observing magnetic resonance absorption due to electromagnetic waves at the stage of adding the hole type additive -:(-.

実施例 本発明は磁気共鳴吸収(E S R)の技術を用いるた
め、以下、磁気共鳴吸収の概略を説明する。
Examples Since the present invention uses magnetic resonance absorption (ESR) technology, an outline of magnetic resonance absorption will be explained below.

本発明は、基本的には磁性イオンによるマイクロ波の共
鳴吸収の原理に基づき、第2図を用いて簡単に磁気共鳴
吸収について述べる。第2図(1)のライン71は吸収
量Y (II )の磁場■]への依存性を示し、第2図
(2)のラインノ2は吸収1Y(H)の第1微分である
tlY (II )/ dHを示す。磁気共鳴吸収は、
物質中のイオンまたは原子(以下これらを簡単のため磁
性イオンと呼ぶ)によるマイクロ波の吸収量Y (H)
を、磁場Hに対して測定する。吸収量Y(I()の磁場
1−1への依存性を簡単に示せば、第2図(1)のよう
になる。一般に、磁気共鳴吸収においては、感度上の観
点から吸収量Y(H)を直接に測定せず、吸収量Y (
H)の第1徽分であるdY()I)/dllを測定する
。磁気共鳴吸収において重要な泉は、第2図に示した共
鳴磁場I−1、と吸収#1幅ΔIIである。−11、共
鳴磁場II Oは、ランデのg〜一因子次の関係がある
The present invention is basically based on the principle of resonance absorption of microwaves by magnetic ions, and magnetic resonance absorption will be briefly described using FIG. 2. The line 71 in FIG. 2 (1) shows the dependence of the absorption amount Y (II ) on the magnetic field 2, and the line 2 in FIG. II)/dH. Magnetic resonance absorption is
Amount of microwave absorption Y (H) by ions or atoms in a substance (hereinafter referred to as magnetic ions for simplicity)
is measured against the magnetic field H. The dependence of the absorption amount Y(I() on the magnetic field 1-1 is simply shown in Figure 2 (1). Generally, in magnetic resonance absorption, from the viewpoint of sensitivity, the absorption amount Y(I() is Without directly measuring H), the absorption amount Y (
dY()I)/dll, which is the first computation of H), is measured. Important springs in magnetic resonance absorption are the resonance magnetic field I-1 and the absorption #1 width ΔII shown in FIG. -11, Resonant magnetic field II O has a Lande g~1 factor order relationship.

11;ブランクの定数 ν;使用するマイクロ波の振動数 β;ボーア磁子 である。11; Blank constant ν; Frequency of microwave used β; Bohr magneton It is.

一殻に、磁気共鳴吸収においては、共鳴磁場Ll。の測
定値から前記と一因子を求めることができる。
In one shell, in magnetic resonance absorption, the resonant magnetic field Ll. The above factor can be determined from the measured value of .

添加物として添加した磁性イオンは、まわりの母体イオ
ン(または原r)と相互作用を行なう、この相互作用は
、磁性イオンの磁気共鳴吸収で観測でトる。したがって
磁気共鳴吸収によって、ビー因子や吸収線幅ΔHを測定
することにより、母体の結晶性を評価することができる
。   −第1図は本発明の一実施例のシリコンSi系
三次元集積回路(以下、三次元回路と略称する)21の
構造例を示す断面図である。三次元回路21においては
、たとえばP型シリコン基板22内に−力導電形式領域
で・ある、、 l ll1l+領域2:(+24を形成
し、T’ll fllリシリコンリ根2:2の表面1″
′絶縁)+:j l) 5を選択的に形J& した4、
絶縁J「り25の透孔26.27などを被覆して、電極
28 +29.30が形成される。、−のようにL″C
Pべ11シリコンjlH&22 、 u”型領域2;う
、24、絶縁層25J9よび電(小28 H29,3O
が、電界効果型Fランンスタ(1りLl・、IパlΣT
と略称する)を構成する。
The magnetic ions added as additives interact with the surrounding host ions (or primitive r), and this interaction can be observed by magnetic resonance absorption of the magnetic ions. Therefore, by measuring the Be factor and absorption line width ΔH by magnetic resonance absorption, the crystallinity of the parent material can be evaluated. - FIG. 1 is a sectional view showing an example of the structure of a silicon Si-based three-dimensional integrated circuit (hereinafter abbreviated as three-dimensional circuit) 21 according to an embodiment of the present invention. In the three-dimensional circuit 21, for example, in the P-type silicon substrate 22, a negative conductive type region is formed.
'Insulation) +:j l) 5 selectively shaped J & 4,
The electrodes 28 +29.30 are formed by covering the through holes 26.27 of the insulation J25.
Pbe 11 silicon jlH&22, u” type region 2; U, 24, insulating layer 25J9 and electric (small 28
is a field-effect type F-run star (1Ll・, IP1ΣT
(abbreviated as).

また前記電極2 (1129,3(>を被覆し2て、絶
縁層31が形成される。、−の絶縁層311.にたとえ
ばシリコン−ゲルマニラ!、(S j 1− X G 
L! X : ()≦X≦1)の単結晶°1九導体層を
形成(−1P型ンリ:フン成長層22aを成1(させる
。シリコン成長層22社を形成する方法としでは、たと
えば絶縁11り11の1−にアモルファスシリコン84
まL−は多結晶シリコン層を、スパッタリングなどのJ
l法を用いて形成【7、その後に、レーザ光などを用い
てアニーリング4゛る。このアニーリングに上って、I
肖記アモル7Tスシリコン層また1、1を多結晶シリコ
ン)(41,t Q1県品化し、シリコン成長層22a
 を得ることができる。
In addition, an insulating layer 31 is formed by covering the electrode 2 (1129,3
L! X: ()≦X≦1) A single crystal conductor layer (-1P type) is formed (forms a silicon growth layer 22a). As a method for forming the silicon growth layer 22, for example, Amorphous silicon 84 on 1-1 of 11
Also, the polycrystalline silicon layer is processed by sputtering, etc.
Formation using the l method [7], followed by annealing using a laser beam or the like. On top of this annealing, I
Portion Amol 7T silicon layer 1, 1 is polycrystalline silicon) (41,t Q1 prefecture product, silicon growth layer 22a
can be obtained.

以下同様にして、成14.層221]、)1+望領域p
3a、24 a;23 +1,24 b、絶縁層2Sa
、25b、透孔2611+ 27 a;2 B !+、
 2711、電極28 a、29 a、3 +) a:
28 lJ、2911. :(il LjH上び絶縁層
11aが、二の舶序で形成される2、イζ発明ににいて
、前記P型゛に導体lに板22 t; J、びシリコン
成長層22a、221]がNべ゛(であっても実り1.
ぐき、このとき前記II”ヘリ領域23.24.;23
a、24a;2311.24+1を、I)+型とすれば
よい2、 本発明で1を第1図に示しf′二よ)に、シリコン成長
層22a+22Lに、磁気共鳴吸収の測定が可能ろ′添
加物を添加しで、反応層35.36を形成することを特
徴とする。これらの反応層35.36は、−1一記アモ
ル7Tλ土たは多結晶層の形成時に同時に形成し′(も
、1:い、、添加物としては、たとえばリン【ゝ、ひ素
As1スで81)、ビスマスBi1アルミーウノ、Aガ
、ガリウlい(1a1インジウムIn、マンガンM n
、 g F e、ニッケルNiなと各種の+f 料を用
いろことができる。
In the same manner, 14. layer 221],)1+desired area p
3a, 24 a; 23 +1, 24 b, insulating layer 2Sa
, 25b, through hole 2611+ 27 a; 2 B! +,
2711, electrodes 28 a, 29 a, 3 +) a:
28 lJ, 2911. :(il LjH and the insulating layer 11a are formed in the following order: 2, ζ In the invention, the P-type conductor 1 is plate 22t; J, and the silicon growth layers 22a, 221] But it is fruitful even if it is 1.
23.24.;23
a, 24a; 2311.24+1 may be of type I)+2. In the present invention, 1 is shown in FIG. 'The reaction layer 35, 36 is formed by adding an additive. These reaction layers 35 and 36 are formed simultaneously with the formation of the amorphous 7Tλ layer or the polycrystalline layer. 81), Bismuth Bi1 Aluminum Uno, Aga, Galiumi (1a1 Indium In, Manganese Mn
, g Fe, nickel Ni, and various +f materials can be used.

これらの添加物は、前記半導体周板22およびシリコン
成長/M22a、221+か、■)型土11 i土N7
−りである各場合I″:月応しで、適(りに選択士れば
J、い。
These additives are included in the semiconductor peripheral plate 22 and silicon growth/M22a, 221+, or ■) mold soil 11 i soil N7.
- In each case I'': Depending on the month, if the selector is J, I''.

いずれの場合でも、1.記添加物に1、コ有の磁−(共
1の吸収が観察される。f・め結晶性の良いシリコン基
板にこれらの添加物を添加し、それらJ)磁気共鳴吸収
を測定してj′;と1、−れらの磁気共鳴吸+1Vデー
タとシリコン成長層の磁気共鳴吸収データとの比較によ
り、シリコン成長層の結晶性を評価することができる。
In either case, 1. Magnetic resonance absorption of 1 and 1 is observed in the above additives. The crystallinity of the silicon grown layer can be evaluated by comparing the magnetic resonance absorption data of +1V and the magnetic resonance absorption data of the silicon growth layer.

tjS3図(1)および第3図(2)は、それそ゛れシ
リコン成長M22a、 22bの結晶性が良い場合、お
よび悪い場合の分子配置6を示t−tQ+である。第3
図(1)では、ナーとえばシリコン成長層22aのシリ
コン分子37は通常の結晶構造に従っておi)、添加物
分子38は、この結晶構造中の一シリコン分子37と置
換わっている。第3図(2)では、シリコンJ& It
層22aのシリコン分子37は通常の結晶構造から外れ
ており、添加物分子−38はシリコン分子37と不規則
な位j6関係にある。
tjS3 FIG. 3 (1) and FIG. 3 (2) show the molecular configuration 6 when the crystallinity of the silicon grown M22a, 22b is good and bad, respectively, t-tQ+. Third
In FIG. 1, for example, silicon molecules 37 in the silicon growth layer 22a follow a normal crystal structure (i), and an additive molecule 38 replaces one silicon molecule 37 in this crystal structure. In Figure 3 (2), silicon J & It
The silicon molecules 37 of the layer 22a deviate from the normal crystal structure, and the additive molecules -38 are in an irregular position j6 relationship with the silicon molecules 37.

結晶性ly?良いil、今の磁気共鳴吸収I:関12て
、第一=8− ・1図(1)ノア イン、(’ 3 テ示t 、1、う
な吸収量’l’(II)ノ徽分d Y、旧I If、f
f121”<](1)ノ54 >、e 1ノ、l:)な
−Jl:規分布曲線に近い曲線の微分となる1、すなわ
ち吸収線幅ΔIIが現11目的に変化する。結晶性が悪
い1.も合の磁′イ(共鳴吸収は、第4図(2)のライ
ン1417小されろように、不規則に吸収線幅Δ11が
変化し、まt−共鳴磁場I1..も変化11、第4図(
1)の共鳴磁場+1.、、と異なる共鳴磁場I1.I2
となる。1このように、一般1:1″J体の結晶性は、
添加物の磁気共鳴吸収の吸i!v線幅ΔIIやiq記6
−因子−を左イi士る。。
Crystalline? Good ill, current magnetic resonance absorption I: Seki 12, first = 8- ・1 Figure (1) Noah in, (' 3 te, 1, absorption amount 'l' (II) d Y, old I If, f
f121''<](1)ノ54>, e1ノ, l:)na-Jl: 1, which is the differential of a curve close to the normal distribution curve, that is, the absorption line width ΔII changes to the current 11 objective.Crystallinity Bad 1. The absorption line width Δ11 changes irregularly, as shown in the line 1417 in Fig. 4 (2), and the resonance magnetic field I1.. also changes. 11, Figure 4 (
1) resonant magnetic field +1. , , and a different resonant magnetic field I1. I2
becomes. 1 In this way, the crystallinity of the general 1:1″J body is
Magnetic resonance absorption of additives! v line width ΔII and iq 6
-Factor- is left on the left. .

次にシリコン成長層(−添加する添加物の選定に−)い
て以下述べる。シリコンゴ、次]1−回路21において
は、火−とえば第1図に示しr−、n+望(まj−は1
]1ffl+り領域23124 :23a?24a;2
3b、24b形成のfユめ、そtlぞれ11型添加物、
および1)望添加物を使用する1、シたがって添加物の
種類に、l <、>では、これらの添加物の磁気共鳴吸
収が観察できる場合もある9、第1図のシリコン成長層
22.ム、  221.iの反応層35 、 3 [’
iを形成争゛るL−めじ使用今る添加物は、結晶評価を
行なうためのものであり、上記添加物と異なる種類のも
のが望ましい。種類が異なる材料を選択すると、磁気共
鳴吸収の信号の!n複を防止できる。
Next, the silicon growth layer (-selection of additives to be added) will be described below. [Silicon Go, Next] 1- In the circuit 21, Fire - For example, as shown in FIG.
]1ffl+area 23124:23a? 24a;2
3b, 24b formation f Yume, sotl each type 11 additive,
and 1) Use of desired additives 1. Therefore, depending on the type of additives, l<,>, magnetic resonance absorption of these additives may be observed9. .. Mu, 221. i reaction layer 35, 3['
The additive used to form L-method is for crystal evaluation, and is preferably of a different type from the above-mentioned additives. By selecting different types of materials, magnetic resonance absorption of the signal! It is possible to prevent n-duplication.

さらに反応層35.36を形成するために使用する添加
物の種類も異なると、それらの磁気共鳴吸収信号は重複
しないので、シリコン成長RI22a、22bの結晶性
を同時に評価できる。前述の実施例において、三次元回
路21は電界効果トランジスタを構成したけれども、そ
の他、光を電気に変換する素子などを構成するよるにし
てもよい。
Furthermore, when the types of additives used to form the reaction layers 35 and 36 are different, their magnetic resonance absorption signals do not overlap, so that the crystallinity of the silicon grown RIs 22a and 22b can be evaluated simultaneously. In the above-described embodiment, the three-dimensional circuit 21 constitutes a field effect transistor, but it may also constitute an element that converts light into electricity.

効  果 磁気共鳴吸収の観測が可能な添加物を、半導体層に故意
に添加することにより、半導体層の結晶性評価が迅速に
なり、かつ製造工程の途中でも評価を行なうことができ
る。したがって量産工程での歩留りを、格段に向上する
ことができる。
Effects By intentionally adding an additive whose magnetic resonance absorption can be observed to the semiconductor layer, the crystallinity of the semiconductor layer can be evaluated quickly and can be evaluated even during the manufacturing process. Therefore, the yield in the mass production process can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の三次元回路21の断面図、
第2図は磁気共鳴吸収曲線を示すグラフ、第3図は二次
元回路21のシリコン成長層22aに添加物35を添加
したときの分子配置を示す図、第4図は磁気共鳴吸収曲
線の結晶性への依存性を説明する図、第5図は従来技術
の三次元回路1の断面図である。 21・・・三次元回路、22・・・P型シリコン層、2
3.24;23a、24a;23b、  24b−n+
型領領域25・・・絶縁層、22a、22b・・・シリ
コン成長層代理人  弁理士 画数 圭一部 第1 図 第2図
FIG. 1 is a cross-sectional view of a three-dimensional circuit 21 according to an embodiment of the present invention;
Fig. 2 is a graph showing a magnetic resonance absorption curve, Fig. 3 is a drawing showing the molecular arrangement when the additive 35 is added to the silicon growth layer 22a of the two-dimensional circuit 21, and Fig. 4 is a graph showing the magnetic resonance absorption curve of the crystal. FIG. 5, which is a diagram for explaining the dependence on gender, is a cross-sectional view of the three-dimensional circuit 1 of the prior art. 21... Three-dimensional circuit, 22... P-type silicon layer, 2
3.24; 23a, 24a; 23b, 24b-n+
Mold region 25...Insulating layer, 22a, 22b...Silicon growth layer Agent Patent attorney Number of strokes Keiichi 1st figure 2nd figure

Claims (1)

【特許請求の範囲】 基板上に形成された半導体層であって、 予め定めた種類の添加物が選択的に添加されて形成され
た一方導電形式領域と、 前記添加物とは異なる種類の添加物を、電磁波による磁
気共鳴吸収が発生する程度以上の濃度で、選択的に添加
して成る反応領域とを有する、そのような半導体層を含
むことを特徴とする半導体装置。
[Claims] A semiconductor layer formed on a substrate, comprising: a conductive type region formed by selectively adding a predetermined type of additive; and a semiconductor layer formed by selectively adding a predetermined type of additive; 1. A semiconductor device comprising such a semiconductor layer having a reaction region in which a substance is selectively added at a concentration higher than that which causes magnetic resonance absorption due to electromagnetic waves.
JP25724985A 1985-11-16 1985-11-16 Semiconductor device Pending JPS62117316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25724985A JPS62117316A (en) 1985-11-16 1985-11-16 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25724985A JPS62117316A (en) 1985-11-16 1985-11-16 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62117316A true JPS62117316A (en) 1987-05-28

Family

ID=17303760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25724985A Pending JPS62117316A (en) 1985-11-16 1985-11-16 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62117316A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5541126A (en) * 1991-12-04 1996-07-30 Mitsubishi Denki Kabushiki Kaisha Method of making semiconductor device having thin film transistor
WO2004059720A1 (en) * 2002-12-20 2004-07-15 International Business Machines Corporation Three-dimensional device fabrication method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5541126A (en) * 1991-12-04 1996-07-30 Mitsubishi Denki Kabushiki Kaisha Method of making semiconductor device having thin film transistor
US5670390A (en) * 1991-12-04 1997-09-23 Mitsubishi Denki Kabushiki Kaisha Method of making semiconductor device having thin film transistor
WO2004059720A1 (en) * 2002-12-20 2004-07-15 International Business Machines Corporation Three-dimensional device fabrication method

Similar Documents

Publication Publication Date Title
Yang et al. Enhanced performance love wave magnetic field sensors with temperature compensation
CN107238648A (en) The method of low temperature preparation two-dimension flexible ion sensing fet
US6046657A (en) Magnetostrictive surface acoustic wave device and microelectronic circuit including same
CN108227057A (en) A kind of SERS substrates based on grating resonance and preparation method thereof
JPS6149488A (en) Magnetic resistance converter
Lopes et al. Modulating the spin Seebeck effect in Co2FeAl Heusler alloy for sensor applications
Marques et al. High frequency magnetic behavior through the magnetoimpedance effect in CoFeB/(Ta, Ag, Cu) multilayered ferromagnetic thin films
JPS62117316A (en) Semiconductor device
Jung et al. Nanoampere‐Level Piezoelectric Energy Harvesting Performance of Lithography‐Free Centimeter‐Scale MoS2 Monolayer Film Generators
Sontheimer et al. Identification of intra‐grain and grain boundary defects in polycrystalline Si thin films by electron paramagnetic resonance
CN109540988A (en) Based on interdigital groove structure without reference electrode GaN base pH sensor and preparation method thereof
Matsunaga et al. Design trade-off between spatial resolution and power consumption in CMOS biosensor circuit based on millimeter-wave LC oscillator array
CN108183165A (en) Organic transistor, array substrate, display device and related manufacturing processes
Wang et al. Switchable Dielectric Phase Transition Triggered by Pendulum‐Like Motion in an Ionic Co‐crystal
CN113555496A (en) Strain-controlled reconfigurable spin wave channel and control method
JP2001221838A (en) Magnetic impedance effect element and production method thereof
CN208284503U (en) A kind of Hall element
Dai et al. High Performance Hall Sensors Built on Chemical Vapor Deposition-Grown Bilayer Graphene
JP2007178319A (en) Magnetic detection element and its manufacturing method
Romashev et al. Magnetic field sensors based on Fe/Cr superlattices
Frommberger et al. Processing and application of magnetoelastic thin films in high-frequency devices
De et al. Noise analysis of MoTe2-based dual-cavity MOSFET as a pH sensor
CN108735892A (en) A kind of Hall element and preparation method thereof
TW204412B (en)
Castro-Lopes et al. Energy competition and the contribution of Cu layer to the anisotropy field in Ni nanowires