JPS62116205A - Ultrasonic sensor - Google Patents

Ultrasonic sensor

Info

Publication number
JPS62116205A
JPS62116205A JP25502085A JP25502085A JPS62116205A JP S62116205 A JPS62116205 A JP S62116205A JP 25502085 A JP25502085 A JP 25502085A JP 25502085 A JP25502085 A JP 25502085A JP S62116205 A JPS62116205 A JP S62116205A
Authority
JP
Japan
Prior art keywords
robot
ultrasonic
receiver
transmitter
obstruction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25502085A
Other languages
Japanese (ja)
Inventor
Norio Ishibashi
規男 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP25502085A priority Critical patent/JPS62116205A/en
Publication of JPS62116205A publication Critical patent/JPS62116205A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accurately detect the distance from a robot to an obstruction, by providing an ultrasonic transmitter and an ultrasonic receiver to he robot so that both of the are spaced apart from each other in a height direction and the sensitivity characteristic center line of the transmitter and the received cross that of the receiver. CONSTITUTION:An ultrasonic receiver 2 is arranged to the upper end part of the side surface of a self-supporting running robot 10 and an ultrasonic transmitter 13 is arranged to the lower end part of the side surface of said robot 10. The time from the point of time when an ultrasonic wave was emitted from the transmitter 13 to the point of time when the reflected wave thereof is received by the receiver is measured on the basis of a reference clock to be sent to the control part provided to the main body of the robot 10. The distance between the robot 10 and a obstruction is calculated on the basis of the calculated number of clock pulses. Herein, the transmitter 13 and the receiver 12 are set so that the center liens (l), (m) of receiving sensitivity characteristics respectively cross the straight line (n) connecting the receiver 12 and the transmitter 13 in the vertical direction at predetermined angles theta1, theta2 obtained experimentally. By this method, the obstruction detecting error in the vertical direction along the side surface of the robot 10 is improved to a large extent. Therefore, the obstruction detectable region in the height direction of the robot 10 is widened in the vertical direction and the distance between the robot and the obstruction can be measured with high accuracy regardless of the shape and the higher of the obstruction.

Description

【発明の詳細な説明】 [発明の技術分野1 この発明は自立走行ロボットに於ける障害物検知用の超
音波センサ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention 1] The present invention relates to an ultrasonic sensor device for detecting obstacles in an autonomous robot.

[従来技術とその問題点] 従来、3次元の外形をなす筐体の自立走行ロボットには
、ロボットの目となる障害物検知用の超音波センサ装置
が設けられたものがある。この種のロボットにおいては
障害物を検知する方法として、(イ)−個の指向性の狭
い超音波センサ装置で2次元の水平面を全方向(360
°)にロボットの周りをスキャンする、(ロ)ロボット
の外周に多数の指向性の狭い超音波センサ装置を同一水
平面内に配設してロボットの周りをスキャンする、(ハ
)上記(イ)+(ロ)の方法例えば4方向(90°等角
度)に指向性の狭い超音波センサを配設し、各センサで
水平面90°内を夫々スキャンする、等がある。これら
の方法により同一水平面内の各方向に対して所望の障害
物検知能力が得られている。しかしながら3次元筐体で
あるロボットの垂直方向(高さ方向)の障害物検知能力
については従来殆ど配慮されていなかった。
[Prior Art and its Problems] Conventionally, some self-supporting robots with a three-dimensional external housing are equipped with an ultrasonic sensor device for detecting obstacles, which serves as the robot's eyes. In this type of robot, the method of detecting obstacles is as follows:
°) to scan around the robot; (b) to scan around the robot by arranging multiple ultrasonic sensor devices with narrow directivity around the robot in the same horizontal plane; (c) to scan around the robot in (b) above. Method + (b) For example, ultrasonic sensors with narrow directivity are arranged in four directions (equal angles of 90°), and each sensor scans within 90° of a horizontal plane. These methods provide the desired obstacle detection ability in each direction within the same horizontal plane. However, little consideration has been given to the ability of a three-dimensional robot to detect obstacles in the vertical direction (height direction).

即ち、従来の超音波センサ装置は第6図に示すように筐
体のロポッ)lの高さ中間部に超音波センサ装置2が配
設され、この超音波センサ装置2は接近した超音波送信
器3と超音波受信器4からなっていた。この超音波セン
サ装置2の検知可佳最小距+11LHINは超音波セン
ナ装置2の電気信号を処理する回路の処理スピードによ
り定まり、即ち、超音波の発射から反射音波の受信まで
の時間が極めて小さいと(障害物が極めてロボットに接
近していると)演算速度の遅い回路では追いつけないの
で検知不能となる。又検知可能最大距離L MAXは反
射波の強度により定まり、即ち、超音波のエネルギーは
障害までの距離に比例して減衰し又反射角度により大き
く減衰するため特に超音波送信器3の出力規格によって
定まっていた。そして更に、超音波送信器3と超音波受
信器4が極めて接近して(略同−位置に一体的に)配設
されているため、第7図に示すようにこのような超音波
センサ装置2の送信器3と受信器4からの等距離線(実
際は球面であるが屯直面」二では線として現す)は超音
波センサ装置2を中心とする等心円rl 、r2 、r
3・・・・・・の弧となり、これは略一点とみなされる
超音波センサ装&!t2からの各距離であるが、ロボッ
トlは筐体であるため、ロボットlの上端部Xや下端部
Wから障害物までの距離を正確に現わすものではなく、
従って今ロポッ)1の外面より距離5(=r+)に障害
物a、b、cが別体にあったとすると、超音波センサ装
置2と同一水平面内にある障害物aまでの距離r1は正
確に認識されるが、超音波センサ装置2の上方又は下方
に位置する障害物す、cとロボット1の外面とのキョリ
は距離rl より大きい値に認識されてしまうというこ
とがおこる。従って、ロボットlが移動した場合障害物
す、cとロボットlの上端部Xや下端部Wとが衝突する
恐れが生じる。このロポッ)1による認識誤差は障害物
がロボットlに近いほど大きく、距離・r2.r3・・
・・・・と遠のくにつれ小さくなる。したがって第6図
に示すような障害物検知可能領域5と障害物検知不可能
領域6とが現われていた。これをなくすためにはロボッ
トlの外面に上下方向に多数の超音波センサ装置2を設
けなければならず、それらに付随する制御回路も増加し
ロポッ)lが高価となる欠点があった。
That is, in the conventional ultrasonic sensor device, as shown in FIG. It consisted of a device 3 and an ultrasonic receiver 4. The minimum detectable distance +11LHIN of the ultrasonic sensor device 2 is determined by the processing speed of the circuit that processes the electrical signals of the ultrasonic sensor device 2, that is, the time from the emission of the ultrasonic wave to the reception of the reflected sound wave is extremely short. (If an obstacle is extremely close to the robot), circuits with slow calculation speeds will not be able to catch up, making it impossible to detect it. Also, the maximum detectable distance L MAX is determined by the intensity of the reflected wave, that is, the energy of the ultrasonic wave is attenuated in proportion to the distance to the obstacle, and is greatly attenuated depending on the angle of reflection, so it is determined particularly by the output standard of the ultrasonic transmitter 3. It was decided. Furthermore, since the ultrasonic transmitter 3 and the ultrasonic receiver 4 are disposed extremely close to each other (integrated at approximately the same position), such an ultrasonic sensor device as shown in FIG. The equidistant lines from the transmitter 3 and receiver 4 in 2 (actually a spherical surface, but shown as a line in 2) are equicentric circles rl, r2, r centered on the ultrasonic sensor device 2.
The arc of 3... is considered to be approximately one point, and the ultrasonic sensor device &! Each distance from t2 does not accurately represent the distance from the upper end X or lower end W of robot I to the obstacle because robot l is a housing.
Therefore, if obstacles a, b, and c are located separately at a distance 5 (=r+) from the outer surface of robot 1, the distance r1 to obstacle a in the same horizontal plane as ultrasonic sensor device 2 is accurate. However, the collision between the outer surface of the robot 1 and the obstacle S, c located above or below the ultrasonic sensor device 2 is recognized as a value larger than the distance rl. Therefore, when the robot l moves, there is a risk that the obstacles S and C will collide with the upper end X or the lower end W of the robot I. The recognition error due to this robot l becomes larger as the obstacle is closer to the robot l, and the recognition error due to the distance r2. r3...
...and it gets smaller as it gets further away. Therefore, an obstacle-detectable area 5 and an obstacle-undetectable area 6 as shown in FIG. 6 appeared. In order to eliminate this problem, it is necessary to provide a large number of ultrasonic sensor devices 2 in the vertical direction on the outer surface of the robot 1, which has the disadvantage that the control circuits associated with them also increase, making the robot 1 expensive.

[発明の目的1 この発明は上述した111情に鑑みてなされたもので、
その目的とするところは、少ない組数の超音波送信器・
受信器で、障害物の高さや形状にかかわらず、ロボット
から障害物までの距離を正確に検出することができ障害
物検知領域も広い超音波センサ装置を提供することであ
る。
[Objective of the invention 1 This invention was made in view of the above-mentioned circumstances,
The purpose is to use a small number of ultrasonic transmitters and
To provide an ultrasonic sensor device that can accurately detect the distance from a robot to an obstacle with a receiver regardless of the height and shape of the obstacle and has a wide obstacle detection area.

[発明の要点] この発明は上述した[1的を達成するために、ロボット
に超音波送信器と超音波受信器とを互いに高さ方向に離
隔して、かつこれらの感度特性中心線と受信器の感度特
性中心線とが交わるようにして設けたことを要旨として
いる。
[Summary of the Invention] In order to achieve the above-mentioned object, the present invention provides a robot with an ultrasonic transmitter and an ultrasonic receiver that are spaced apart from each other in the height direction, and whose sensitivity characteristic center line and receiver The gist is that the center line of the sensor's sensitivity characteristics is intersected with the center line of the sensor.

[実施例1 以下、この発明の第1実施例を第1図乃至第5図を参照
して説明する。第1図においてlOは筐形の自立走行ロ
ボットであり、自立走行ロボットlOの底面には移動用
の車輪等が設けられ、制御装置に制御されて床面上を自
由に移動できるようになっている。自立走行ロボットl
Oの側面上端部には超音波受信器12が、側面下端部に
は超音波送信器13が夫々配設されている。図では説明
を簡単にするため一組の超音波送受信器12.13即ち
超音波センサ装置を示したが、実際にはロポッ)lの外
周面には複数組の超音波送受信器12.13が互いに上
下端に隔離して配設されている。これら超音波センサ装
置の構成は第2図に示すような回路からなっている。図
において、タイミング発生回路14は送信開始時間とそ
の立上りタイミング及びタイマー15をスタートさせる
信号を発生する回路である。ドライブ回路16はトラン
ジスタやトランス等よりなり、アンドゲート17を介し
て発振回路18からの入力される40KH7信号を電圧
増幅し、その信号で複数の超音波送信器13を駆動し超
音波を発振させる。障害物により反射されて戻ってきた
超音波は超音波受信器12で受信され電気信号に変換さ
れて受信増幅回路19に入力され増幅される。この受信
増幅回路19はオペアンプ等より成り、その出力信号は
シュミットトリガ−回路等を含むオア回路2゜に与えら
れ、この出力信号はタイマー15のストップ信号として
入力される。タイマー15は基準クロックパルスφで駆
動されており(このφの周波数により検知可能最小圧+
11LMINが決められる)、超音波送信器13から超
音波が発射された時から超音波受信器12にその反射波
が受信された時までの時間が基準クロックパルスφによ
り計測されロボット10の本体に設けられた制御部に送
られる。そしてこの計測されたクロックパルスφの数で
ロボット10と障害物との距離が計算される。
[Embodiment 1] Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1 to 5. In Fig. 1, IO is a housing-shaped autonomous robot, and the bottom of the autonomous robot IO is equipped with wheels for movement, so that it can move freely on the floor under the control of a control device. There is. autonomous running robot l
An ultrasonic receiver 12 is disposed at the upper end of the side surface of O, and an ultrasonic transmitter 13 is disposed at the lower end of the side surface. In the figure, one set of ultrasonic transceivers 12.13, that is, an ultrasonic sensor device, is shown to simplify the explanation, but in reality, there are multiple sets of ultrasonic transceivers 12.13 on the outer circumferential surface of the robot. They are arranged separately at the upper and lower ends of each other. The configuration of these ultrasonic sensor devices consists of a circuit as shown in FIG. In the figure, a timing generation circuit 14 is a circuit that generates a transmission start time, its rising timing, and a signal for starting a timer 15. The drive circuit 16 is made up of transistors, transformers, etc., and voltage amplifies the 40KH7 signal input from the oscillation circuit 18 via the AND gate 17, and drives the plurality of ultrasonic transmitters 13 with the signal to oscillate ultrasonic waves. . The ultrasonic wave reflected by the obstacle and returned is received by the ultrasonic receiver 12, converted into an electrical signal, and input to the reception amplification circuit 19 where it is amplified. This receiving amplifier circuit 19 is made up of an operational amplifier, etc., and its output signal is given to an OR circuit 2° including a Schmitt trigger circuit, etc., and this output signal is inputted as a stop signal to the timer 15. The timer 15 is driven by a reference clock pulse φ (the minimum detectable pressure +
11LMIN is determined), the time from when the ultrasonic wave is emitted from the ultrasonic transmitter 13 to when the reflected wave is received by the ultrasonic receiver 12 is measured by the reference clock pulse φ, and the time is measured by the reference clock pulse φ. The information is sent to the provided control unit. Then, the distance between the robot 10 and the obstacle is calculated using the measured number of clock pulses φ.

ここで、検知可能最大比1111 L M^Xはドライ
ブ回路16の出力規格によって定まる。これは発射され
た超音波は障害物の表面から反射されて超音波受信器1
2に到達するまでに減衰するため、受信増幅回路19で
増幅してもオア回路20でS/N比が低いと障害物が判
別できないためである。
Here, the maximum detectable ratio 1111 L M^X is determined by the output standard of the drive circuit 16. This means that the emitted ultrasonic waves are reflected from the surface of the obstacle and are sent to the ultrasonic receiver 1.
This is because the signal is attenuated by the time it reaches 2, so even if it is amplified by the reception amplifier circuit 19, if the OR circuit 20 has a low S/N ratio, the obstacle cannot be identified.

第3図には本発明に係る超音波センサ装置に係る超音波
受信器12と超音波送信器13の配置構成が示されてお
り、これらの受信感度特性の中心縁立、mが超音波受信
器12と超音波送信器13とを上下に結ぶ直線n(この
直線nはロボット1の外面垂直面と略同−である)と0
1、θ2の角度で夫々交叉するようなしである。
FIG. 3 shows the arrangement of the ultrasonic receiver 12 and the ultrasonic transmitter 13 in the ultrasonic sensor device according to the present invention, and the center edge of their receiving sensitivity characteristics, m, is the ultrasonic receiving sensitivity. A straight line n vertically connecting the device 12 and the ultrasonic transmitter 13 (this straight line n is approximately the same as the vertical surface of the outer surface of the robot 1) and 0
They do not seem to intersect at angles of 1 and θ2, respectively.

図において、超音波受信器12の自立走行ロポッ)10
への取付位置をX、超音波送信器13の自立走行ロポッ
)10への取付位置をWとすると、受信器12と送信器
13からの等距離線はR1、R2、・・・・・・となる
(実際は楕円面であるが垂直面上では線として現わす。
In the figure, an autonomously running robot (10) of an ultrasonic receiver 12 is shown.
If the mounting position of the ultrasonic transmitter 13 on the autonomous robot 10 is W, then the equidistant lines from the receiver 12 and the transmitter 13 are R1, R2, . . . (It is actually an ellipsoid, but it appears as a line on the vertical plane.

)。).

今ロボットlの側面に沿った垂直方向の障害物検知誤差
について第4図に基づいて具体的に考察する。まず比較
のための従来の超音波センサ装置即ち、超音波送・受信
器が図中C点にある場合に上方のD点と水平方向のF点
での測定距離の差は超音波の往復路より、受信器と送信
器の距離をLl ロボットから障害物までの距離をL2
とすると、 2皿−2酊=2  (L+/ 2 ) 2 +L22−
2L2・・・・・・(1) となる、一方、実施例では送信器を下端のB点に、受信
器を上端のA点に配設しであるので、同り点と同F点で
の測定距離の差は (BD+OA) −(BF+FA) =(五7−〒L2
2  +L2)−2RT■万11万石10      
・・・・・・(2)となる、ここで例えばLl=15C
I、L2=90CIとすると。
Now, the error in detecting obstacles in the vertical direction along the side of the robot I will be specifically considered based on FIG. First, for comparison, when the conventional ultrasonic sensor device, that is, the ultrasonic transmitter/receiver is located at point C in the figure, the difference in measurement distance between the upper point D and the horizontal point F is the round trip path of the ultrasonic wave. Therefore, the distance between the receiver and transmitter is Ll, and the distance from the robot to the obstacle is L2.
Then, 2 plates - 2 drunkenness = 2 (L+/2) 2 +L22-
2L2...(1) On the other hand, in the example, the transmitter is placed at point B at the bottom end, and the receiver is placed at point A at the top end, so at the same point and the same point F. The difference in measurement distance is (BD+OA) - (BF+FA) = (57-〒L2
2 +L2)-2RT ■ 10,110,000 koku 10
...(2), where, for example, Ll=15C
Assuming I, L2=90CI.

従来の測定距離誤差は式(1)よりE14.9cm・・
・・・・(3) 本発明の測定距離差は式(2)より11.4cm・・・
・・・(4) となる、従って本発明によりロポッ)lの側面に沿う垂
直方向の障害物検知誤差は大幅に改善される。
The conventional measurement distance error is E14.9cm from formula (1).
...(3) The measurement distance difference of the present invention is 11.4 cm from formula (2)...
...(4) Therefore, according to the present invention, the error in detecting obstacles in the vertical direction along the sides of the robot is greatly improved.

ロボットlに超音波送信器13を取り付ける角θlとロ
ボット1に超音波受信器12を取り付ける角θ2は次の
ようにして決定する。第5図において障害物検知可能最
大距離をLM^×、同最小距りをLHIN 、上下方向
の超音波受信器12と超音波送信器13との距離をLl
とすると、今(LMAX−LMrN) XL+ の面領
域の中心(重心)Gに感度特性直線見、mの交点を持っ
てくるように仮定する、すると第5図から近似的にta
n  θo  =L+/2÷ (LMAX−LMIN)
/2が成り立ち、 一°−θo = tan−’  (Ll/ (LM^X
−LHIN))となる。
The angle θl at which the ultrasonic transmitter 13 is attached to the robot 1 and the angle θ2 at which the ultrasonic receiver 12 is attached to the robot 1 are determined as follows. In Fig. 5, the maximum distance at which an obstacle can be detected is LM^×, the minimum distance is LHIN, and the distance between the ultrasonic receiver 12 and the ultrasonic transmitter 13 in the vertical direction is Ll.
Now, if we look at the sensitivity characteristic line and assume that the intersection of m is brought to the center (center of gravity) G of the plane area of (LMAX-LMrN) XL+, then from Fig. 5, approximately ta can be obtained.
n θo = L+/2÷ (LMAX-LMIN)
/2 holds true, 1°-θo = tan-' (Ll/ (LM^X
-LHIN)).

例えばり、=90c1、LMAX = 150cm、L
HIN = 10cmならθo 令29.4度となる。
For example, =90c1, LMAX = 150cm, L
If HIN = 10 cm, θo is 29.4 degrees.

このθ0の値を基に距離LMINの近くで検知可能領域
を上下に広げるにはθ0を大きくすればよい。このよう
にして、ロポッ)lの操作に合せた最良の00を即ち超
音波受信器12、超音波送信器13のロボットlの取付
角θ1−90−00及びθ2=90−00を実験的に定
めることができる。
Based on the value of θ0, in order to expand the detectable region vertically near the distance LMIN, θ0 may be increased. In this way, we experimentally found the best 00 to suit the operation of the robot l, that is, the mounting angles θ1-90-00 and θ2=90-00 of the ultrasonic receiver 12 and the ultrasonic transmitter 13 of the robot l. can be determined.

[発明の効果1 この発明の超音波センサ装置は以」二詳細に説明したよ
うに、その送信器と受信器を高さ方向に離隔しかつ感度
特性中心線が交わるように夫々取り付けたため、ロボッ
トの高さ方向の障害物検知可能領域が上下に広がるとと
もに、障害物の形状。
[Effects of the Invention 1] As described in detail below, the ultrasonic sensor device of the present invention has its transmitter and receiver separated in the height direction and installed so that their center lines of sensitivity characteristics intersect. The area in which obstacles can be detected in the height direction expands vertically, and the shape of the obstacle increases.

上下位置にかかわらずその距離を高精度で測定すること
のできるという効果を奏する。
The effect is that the distance can be measured with high precision regardless of the vertical position.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例を示しロボットに取り付け
られたa′rf波センサの配置側面図、i2図は超音波
センサのブロック回路図、第3図は第2図の等距離線図
、第4図、第5図は本発明の詳細な説明するための図、
第6図、第7図は従来の超音波センサの配置側面図、及
びその特性曲線図である。 5・・・・・・障害物検知可能領域、8・・・・・・障
害物検知不可能領域、10・・・・・・自立走行ロボッ
ト、12・・・・・・超音波受信器、13・・・・・・
超音波送信器、立・・・・・・超音波受信器特性中心線
、m・・・・・・超音波送信器特性中心線、01・・・
・・・自立走行ロボットと文とのなす角、02・・・・
・・自立走行ロボットとmとのなす角。 特許出願人  カシオ計算機株式会社 第4図 第5図 第6図
Figure 1 shows the first embodiment of the present invention, and is a side view of the arrangement of the a'rf wave sensor attached to the robot, Figure i2 is a block circuit diagram of the ultrasonic sensor, and Figure 3 is the equidistant line of Figure 2. Figures 4 and 5 are diagrams for detailed explanation of the present invention,
FIG. 6 and FIG. 7 are a side view of the arrangement of a conventional ultrasonic sensor and a diagram of its characteristic curve. 5... Obstacle detectable area, 8... Obstacle non-detectable area, 10... Autonomous robot, 12... Ultrasonic receiver, 13...
Ultrasonic transmitter, vertical... Ultrasonic receiver characteristic center line, m... Ultrasonic transmitter characteristic center line, 01...
...Angle between an autonomous robot and text, 02...
...The angle between the autonomous robot and m. Patent applicant Casio Computer Co., Ltd. Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] ロボットに設けられる一対の超音波送信器と超音波受信
器とからなる超音波センサ装置において、前記超音波送
信器と超音波受信器とが前記ロボットの高さ方向に離隔
して設けられるとともに、これらの感度特性中心線が障
害物検知可能領域内で互いに交叉するように配設したこ
とを特徴とする超音波センサ装置。
In an ultrasonic sensor device including a pair of ultrasonic transmitter and ultrasonic receiver provided on a robot, the ultrasonic transmitter and the ultrasonic receiver are provided spaced apart in the height direction of the robot, An ultrasonic sensor device characterized in that these sensitivity characteristic center lines are arranged so as to intersect with each other within an obstacle detectable area.
JP25502085A 1985-11-15 1985-11-15 Ultrasonic sensor Pending JPS62116205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25502085A JPS62116205A (en) 1985-11-15 1985-11-15 Ultrasonic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25502085A JPS62116205A (en) 1985-11-15 1985-11-15 Ultrasonic sensor

Publications (1)

Publication Number Publication Date
JPS62116205A true JPS62116205A (en) 1987-05-27

Family

ID=17273072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25502085A Pending JPS62116205A (en) 1985-11-15 1985-11-15 Ultrasonic sensor

Country Status (1)

Country Link
JP (1) JPS62116205A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5896488A (en) * 1995-12-01 1999-04-20 Samsung Electronics Co., Ltd. Methods and apparatus for enabling a self-propelled robot to create a map of a work area

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5896488A (en) * 1995-12-01 1999-04-20 Samsung Electronics Co., Ltd. Methods and apparatus for enabling a self-propelled robot to create a map of a work area

Similar Documents

Publication Publication Date Title
Kuc Three-dimensional tracking using qualitative bionic sonar
US5165064A (en) Mobile robot guidance and navigation system
JPS60249076A (en) Detection of obstruction
JPH0431075B2 (en)
US7047132B2 (en) Mobile vehicle sensor array
US8842495B2 (en) Ultrasonic motion detection
JP2008039497A (en) Obstacle detector
WO2010146619A1 (en) Obstacle detection device and obstacle detection method
JP5282936B2 (en) Vehicle open / close control system
US20130286783A1 (en) Target detection and tracking with multiple ultrasonic transducers
JP2005069892A (en) System for computing self-position of moving object
JPS62116205A (en) Ultrasonic sensor
US5577006A (en) Adaptive acoustic signal target detection system
JPH0854926A (en) Guidance device for autonomous mobile robot
KR101080366B1 (en) Localization Method of Mobile Robots using Ultrasonic Sensors and Device Thereby
US20090095886A1 (en) Wafer presence detection
KR20180076450A (en) Apparatus and method for preventing collision of robot
CN109719736B (en) Self-moving robot and control method thereof
JPH05333148A (en) Obstacle detecting device
JPH05341031A (en) Position sensing device
Stancovici et al. Relative positioning system using inter-robot ultrasonic localization turret
KR20210152492A (en) Collision avoidance systems and methods
TW202011044A (en) An ultrasonic stereo directional wave guiding device and an ultrasonic transducer device
Llata et al. Three-dimensional robotic vision using ultrasonic sensors
Morris et al. An enhanced ultrasonic system for robot end effector tracking