JPS62105961A - Aluminum nitride sintered body and manufacture - Google Patents

Aluminum nitride sintered body and manufacture

Info

Publication number
JPS62105961A
JPS62105961A JP60242988A JP24298885A JPS62105961A JP S62105961 A JPS62105961 A JP S62105961A JP 60242988 A JP60242988 A JP 60242988A JP 24298885 A JP24298885 A JP 24298885A JP S62105961 A JPS62105961 A JP S62105961A
Authority
JP
Japan
Prior art keywords
sintered body
aln
sintering
aluminum nitride
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60242988A
Other languages
Japanese (ja)
Inventor
正彦 田近
福田 隆生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Shin Nihon Kagaku Kogyo KK
Original Assignee
Asahi Chemical Industry Co Ltd
Shin Nihon Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Shin Nihon Kagaku Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP60242988A priority Critical patent/JPS62105961A/en
Publication of JPS62105961A publication Critical patent/JPS62105961A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、窒化アルミニウム焼結体およびその製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an aluminum nitride sintered body and a method for manufacturing the same.

(従来の技術) 窒化アルミニウム(A4N )は理論的に500W /
 m 、 K以上と酸化べIJ IJウム(BeO)に
匹敵する高い熱伝導率を有し、絶縁性、誘電性などの電
気的性質にすぐれ、ま友、熱膨張率がシリコン単結晶の
値に近く、機械的強度も高いことから、近年、集積下、
高出力化が進んでいる大規模集積回路等の絶縁放熱基板
として応用されようとしている。
(Prior art) Aluminum nitride (A4N) theoretically has a power of 500W/
It has a high thermal conductivity comparable to that of BeO (BeO), and has excellent electrical properties such as insulation and dielectricity, and its coefficient of thermal expansion is comparable to that of single crystal silicon. Due to its close proximity and high mechanical strength, in recent years it has been
It is about to be applied as an insulating heat dissipation substrate for large-scale integrated circuits, which are becoming increasingly high-output.

一万、AlN焼結体はAlN粉末を成形、焼成して得る
が、AlNは難焼結性物質であり、緻密な焼結体を得る
ことが困難である。そのため、焼結の際に焼結助剤全添
加することや、焼結?熱間加圧法で行なうことによって
、緻密な焼結体金得ようとしている。特開昭54−10
04i0によれば、AlN粉末に酸化カルシウム(Ca
O)、酸化バリウム(BaO) 酸化ストロンチウム(
SrO) 等に焼結助剤として添加するAlN焼結体の
製造方法が示されている。この方法によって得られる焼
結体の熱伝導率は60W/m、に程度である。tfc、
特開昭60−151280によれば、焼結助剤とし2て
Ca、SξBa、 Na、 K、 Rb、 Cs、 C
u、Ag、 Mg、 Cd、 IIg。
Although AlN sintered bodies are obtained by molding and firing AlN powder, AlN is a difficult-to-sinter substance, and it is difficult to obtain dense sintered bodies. Therefore, it is necessary to add all the sintering aids during sintering, and to avoid sintering. We are trying to obtain a dense sintered metal by hot pressing. Japanese Patent Publication No. 54-10
According to 04i0, calcium oxide (Ca
O), barium oxide (BaO), strontium oxide (
A method for producing an AlN sintered body is shown in which SrO) is added as a sintering aid. The thermal conductivity of the sintered body obtained by this method is approximately 60 W/m. tfc,
According to JP-A No. 60-151280, sintering aids include Ca, SξBa, Na, K, Rb, Cs, and C.
u, Ag, Mg, Cd, IIg.

Zn、 AへCeのアセチリド化合物金少なくとも1種
以上添加1−て、焼結体の熱伝導率が60〜160W/
m、にのものを得ている。特開昭54−100410に
よって得られる焼結体の熱伝導率は、AlNの理論憧に
比べるとかなり低い値である。一方、特開昭6O−i5
12130に示されてl/−ふる製造方法では、かなシ
烏す熱伝導率のものが得られているが、添加剤に用I/
)るアセチリド化合物は、非常に酸素、水分等と反16
し2やすく、中には爆発性のものもあり、添加剤の混合
の際の溶媒の選択あるいは乾燥方法に注意が必要であり
、、支足1−= fc生産に不向きである。
By adding at least one type of acetylide compound gold of Ce to Zn, A, the thermal conductivity of the sintered body is 60 to 160 W/
I'm getting something from m. The thermal conductivity of the sintered body obtained by JP-A-54-100410 is considerably lower than the theoretical value of AlN. On the other hand, JP-A-6O-i5
12130, a material with a low thermal conductivity is obtained, but the additives used in
), acetylide compounds are highly resistant to oxygen, moisture, etc.
Some of them are explosive, and care must be taken in selecting the solvent when mixing additives or in the drying method, making them unsuitable for fc production.

(発明が解決しようとする問題点) 本発明が解決しようとする点は、AlN焼結体の熱伝導
率?:従来のものよりも高くすることであり、その製造
方法におりては、化学的に安定な焼結助剤全開いて、高
い熱伝導率のAlN焼結体を得ることである。
(Problems to be Solved by the Invention) The problems to be solved by the present invention are: What is the thermal conductivity of the AlN sintered body? : The aim is to make the heat conductivity higher than that of conventional products, and in the production method, a chemically stable sintering aid is fully used to obtain an AlN sintered body with high thermal conductivity.

(間、、Q点を解決−f 、、?)fi−めの丁二段)
本発明は、Mg、 Ca、、 S F、 Ba、 Ti
a、、Y、、Ce、、Srn、。Nd。
(Pause,, solve point Q-f,,?)fi-me no 2nd stage)
The present invention includes Mg, Ca, SF, Ba, Ti
a,,Y,,Ce,,Srn,. Nd.

A711′のホウ化物の中から少なくとも1種以上全音
イjさせたA7N廃結焼結Cあり、イーのA、5.Nm
5結体の製造方法(d 、 A 1.、N粉末&’i:
 Mg、 Ca、 SF、 Ha、 La、 Y。
There is A7N waste sintering C that has at least one kind of A711' boride with a whole tone of Ij, A of E, and 5. Nm
5. Manufacturing method of solids (d, A1., N powder&'i:
Mg, Ca, SF, Ha, La, Y.

(光、5IT1.、Nd1、Ar、のホウ化物の中から
少なくとも1種型j−10・計でロ、02−=8重景チ
添加し、非酸化性雰囲気下で16110〜2000Uで
焼結することからなる3、」ユ下、本発明について具体
的に説明する。
(Light, 5IT1., Nd1, Ar, at least one type j-10 from among the borides, 02-=8 in total was added, and sintered at 16110~2000U in a non-oxidizing atmosphere. The present invention will be specifically explained below.

本発明に用いるA4N粉末は、縄/aと1.、て高if
;Jll IBiのもの特に酸素急有門の少ないものが
好ましく。
The A4N powder used in the present invention includes rope/a and 1. , if high
; Jll IBi, especially those with low oxygen content are preferred.

酸素背向”量が5゜O3j址チ以下、さら圧好−ま1〜
くば1.5重址チ以下のものがよく、他の不純物として
は、Al′fj:ぬく全編不純物が0.05重麓チ以下
、さらに好ましくは0.02玉檻チ以上のものがよい。
The amount of oxygen in the opposite direction is 5°O3j or less, and the pressure is 1~
It is preferable that the weight is 1.5 cm or less, and other impurities include Al'fj: whole impurities of 0.05 weight or less, more preferably 0.02 weight or more.

まfc、AlN粉末の平均粒子径は5μn]以Fのもの
がよく、さらに好ましく一5μm以下のものがよ込。
The average particle diameter of the AlN powder is preferably 5 μm or less, more preferably 15 μm or less.

本発明における添加剤であるMg、 Ca、 Sr、 
Ha、La、 Y、 Ce、Sm、 Nd、 Alのホ
ウ化物の添加量は0.02〜8重量%でなければならな
い。その範囲をはずれる添加量では、充分に高い熱伝導
率を有するAlN焼結体が得られない。また、添加剤は
2種以上全問時に添加してもかまわないが、その添加量
合計は0.02〜8重量%の範囲でなければならない。
Mg, Ca, Sr, which are additives in the present invention,
The amount of borides of Ha, La, Y, Ce, Sm, Nd, and Al should be 0.02 to 8% by weight. If the amount added is outside this range, an AlN sintered body with sufficiently high thermal conductivity cannot be obtained. Further, two or more types of additives may be added at all times, but the total amount added must be in the range of 0.02 to 8% by weight.

添加するホウ化物の粉末は、焼結体に均一に作用させる
ため、微粒なものが望ましく、平均粒子径が10μm以
下のものがよく、さらには3μIn以下が好ましい。
The boride powder to be added is preferably fine-grained in order to act uniformly on the sintered body, and preferably has an average particle diameter of 10 μm or less, more preferably 3 μIn or less.

本発明における添加剤とAlN粉末の混合は、乾式混合
、湿式混合のどちらでもかまわない。湿式混合の際に用
いる溶媒は、水やメチルアルコール、エチルアルコール
等のアルコール類、あるいはアセトン、ベンゼン、ヘキ
サン等の有機溶媒’i用いることができる。添加剤を混
合したAlN成形体は、常圧焼結法で充分に緻密に焼結
し、得られたAlN焼結体は、すぐれた特性を発揮する
が、もちろん熱間加圧焼結法あるいは熱間等方加圧焼結
法によって行なってもよい。tfC,、焼結は、窒素(
N、 ) 。
The additive and AlN powder in the present invention may be mixed by either dry mixing or wet mixing. The solvent used in wet mixing may be water, alcohols such as methyl alcohol, ethyl alcohol, or organic solvents such as acetone, benzene, hexane, etc. The AlN compact mixed with additives is sufficiently densely sintered by the pressureless sintering method, and the obtained AlN sintered compact exhibits excellent properties, but of course, the hot pressure sintering method or The hot isostatic pressure sintering method may also be used. tfC, sintering is performed using nitrogen (
N, ).

アルゴン(Ar)、水素(Hl)あZ)いはN、と−酸
化炭素(CO)等の非酸化性雰囲気で行なわなければな
らない。ま几、焼結温度はfil(00〜2000Cで
行なうが、さらに好ましくは170 (1〜t9001
:で行なう。16007:全下回る温度では、焼結が充
分進まず、緻密な焼結体が得られない。2 Ol’l 
O7:’を越λ、る温度では、結晶粒の粒成長が著しく
大きくなり、得られたAlN・焼結体の機械的強度が低
下する。
It must be carried out in a non-oxidizing atmosphere such as argon (Ar), hydrogen (Hl) or N, and carbon oxide (CO). The sintering temperature is fil (00 to 2000C, but more preferably 170C (1 to 9001C).
: Do it. 16007: At temperatures lower than 100%, sintering does not proceed sufficiently and a dense sintered body cannot be obtained. 2 Ol'l
At temperatures exceeding O7:' by λ, the grain growth of crystal grains increases significantly, and the mechanical strength of the obtained AlN sintered body decreases.

なお、本発明においては、添加しグヒポウ化物は、その
一部が分解し、窒化物、酸化物などになってAlN焼結
体中に存在している場合も、ちる。
In addition, in the present invention, the added guhyporide is also destroyed if a part thereof decomposes and becomes a nitride, oxide, etc. and exists in the AlN sintered body.

(実kWAJ) 次に、実施例九よって4−:発明全具体的に説明する。(Actual KWAJ) Next, based on Example 9, 4-: The entire invention will be specifically explained.

本発明ンこお&JるAlN粉末の酸素含−〇毎゛は、堀
楊製作所製螢槁中酸素分析装置t EMGA−2200
で分析L7、AlN粉末中の釜騙不純物J有虚は、日本
ジャーレル・アッシュ(a)製シーケン′シャルマルチ
高同波プラズマ発光分光分析装置ICAP−575MA
RKIで分析し、た。AlN粉末の平均粒子径およびホ
ウ化物の平均粒子径は、セイシン企業社N粒度分布ミク
ロンフォトサイザー5KA−soool用い、溶媒にイ
ノブチルアルコールを用いて、遠心沈降法により測定1
.、.50重量%径全平均粒子径とした。A!、N焼結
体のかさ密度は、溶媒にケロシン音用Iへてアルキメデ
ス法延よって求め、AlN焼結体の熱伝導率は、真空理
工社製レーザ・フラツシコ、法^定数611J定装置T
C−5000型により測定り、ff。AlN焼結体の機
械的強度(曲げ強度)は、hh津製作所製島津オートグ
ラフを用いfc3点曲げ法に1って測定し、AlN焼結
体の比抵抗は直流2端子広により411j定した。
The oxygen content of the AlN powder according to the present invention was measured using a firefly oxygen analyzer t EMGA-2200 manufactured by Horiyo Seisakusho.
The analysis L7, the presence of pot impurity J in the AlN powder, was performed using a sequential multi-high frequency plasma emission spectrometer ICAP-575MA made by Japan Jarrell Ash (a).
Analyzed with RKI. The average particle diameter of the AlN powder and the average particle diameter of the boride were measured by centrifugal sedimentation using Seishin Enterprise Co., Ltd.'s N Particle Size Distribution Micron Photosizer 5KA-soool and inobutyl alcohol as a solvent.
.. ,.. The total average particle diameter was set at 50% by weight. A! , the bulk density of the N sintered body was determined by applying the Archimedean method to a solvent using kerosene.
Measured by C-5000 model, ff. The mechanical strength (bending strength) of the AlN sintered body was measured using the fc three-point bending method using a Shimadzu Autograph manufactured by hhtsu Seisakusho, and the specific resistance of the AlN sintered body was determined by 411j using a DC two-terminal wide angle. .

実施例1〜15 平均粒子径が2.0μ■】、酸素含有量が1.1重量%
、かつ金属不純物の含有量がo、o s lに量91C
あるAlN粉末に、衣1に示す攬々のホウ化物を合計で
1.5重量チ添加し、エタノール中で混合し、乾燥した
。次いで、この混合粉末22t/dで50M1lX30
”XS”の成形体(で成形した。この成形体を・焼結炉
において、Nt気気流91註0焼結してA/−N焼結体
4得/ヒ5,得られ几Al4’−N・焼結体の熱伝導率
全表1に示t″。
Examples 1 to 15 Average particle diameter is 2.0μ■], oxygen content is 1.1% by weight
, and the content of metal impurities is o, o s l in amount 91C
To a certain AlN powder, a total of 1.5 weight of the various borides shown in Example 1 was added, mixed in ethanol, and dried. Next, this mixed powder was 50M11X30 at 22t/d.
"XS" compact was molded. This compact was sintered in a sintering furnace with a Nt air flow of 9100 to obtain an A/-N sintered body of 4/5, resulting in an Al4'- The thermal conductivity of the N sintered body is shown in Table 1.

×流側16・〜19 イ・均粒子径が2.11μl1ul 、酸素含有量か1
,1瓜敬チ、か゛り金属不純物の含令蓋が1)、D 5
重量SてわるAlN粉末に、CaB, 1r:0,0 
5 、 0,5 、 5 、 6 重址チーf:力,ぞ
れ添加し,エタノ−・ル中で混合し、乾燥した。次すて
、この混合粉末i2i/dで50”X50  XS  
の成形体に成形し瓦。?−1の成形体ft卵粕炉ζ〆C
おLy −(: 、N, 2流中1aootづ、5時間
焼結してA7N焼結体を1が瓦、。イ4ら九之AIN焼
,漬体の熱ム導率ケ表2に示す。
x Stream side 16-19 A. Average particle size is 2.11μl1ul, oxygen content is 1
, 1) The amount of metal impurities contained is 1), D 5
CaB, 1r:0,0 to AlN powder with weight S
5, 0,5, 5, and 6 weights were added, mixed in ethanol, and dried. Next, use this mixed powder i2i/d to 50"X50XS
Tile molded into a molded body. ? -1 molded body ft egg cake furnace ζ〆C
The thermal conductivity of the A7N sintered body was sintered for 5 hours at 100°C in 2 streams. .

実施例20〜25 平均粒子1Lが2,【]μ[11、酸素含有量が1。1
車量%、かつ全編不純物の含,5゛飯か(j。03爪誓
鉛であるAlN扮末ICYB, i 0,Ll 5 、
 [J.5 、 3 、 6 ii%ぞfLぞれ添加し
、エタノール中で混合し、乾燥し几.次い−ご、この混
合粉末を21/cTIテ50  X3011I″′×5
14″の成形体に成形し几。この成形体を焼結炉にお込
て、N□気流中18001:l’% 6時間焼結してA
lNm結体を得九。得られ711−AlN焼結体の熱伝
導率全表2に示す。
Examples 20 to 25 Average particle size 1L is 2, []μ[11, oxygen content is 1.1
Vehicle volume%, and the entire volume contains impurities, 5゛meal (j. 03 AlN dressing ICYB, i 0, Ll 5,
[J. 5, 3, and 6 ii% fL were added, mixed in ethanol, dried, and evaporated. Next, add this mixed powder to 21/cTI 50 x 3011I'' x 5
Molded into a 14" molded body. This molded body was placed in a sintering furnace and sintered for 6 hours at 18001:l'% in a N□ air flow.
1Nm aggregates were obtained. The thermal conductivity of the obtained 711-AlN sintered body is shown in Table 2.

比較例1〜5 平均粒子径が2.0μm.酸素含有量が1.1重量%。Comparative examples 1 to 5 The average particle diameter is 2.0 μm. Oxygen content is 1.1% by weight.

金属不純物の含有量が0。055重量%あるAlN粉末
に、CaB,1(zO 、 0,0 1 、 1ON量
% ツレーt’tL添加し、エタノール中で混合し、乾
燥した。次いで、コノ混合粉末i2 t/cT1.で5
 0”XS 0”XS”の成形体に成形した。この成形
体を焼結炉において、N,気流中1800U.3時間焼
結してAlN焼結体金得た。得られたAlN焼結体の熱
伝導率を表2に示す。
CaB,1(zO, 0,01, 1ON amount%) was added to AlN powder containing 0.055% by weight of metal impurities, mixed in ethanol, and dried. Powder i2 t/cT1.5
0" The thermal conductivity of is shown in Table 2.

表  1 表  2 以上、実施例圧おいては、牢常に緻密な焼結体が得られ
、その焼結体の熱伝導率は高い値金示(〜た。また、実
施例で得らtL7tl焼結体の比抵抗は、すベテ2 X
 1013Ωm以上であり、 曲げ強度においても40
 kg / mi+1以上の高い1h、金示した。
Table 1 Table 2 As described above, at the example pressure, a dense sintered body was obtained, and the thermal conductivity of the sintered body showed a high value (~. The specific resistance of the solid is 2
1013 Ωm or more, and the bending strength is also 40
kg/mi+1 or more showed high 1h, gold.

(発明の効果) 以上説明したように、本発明におけるAlN焼結体は、
熱的、電気的および機械的性質においてすぐれた特性を
示し、今後、放熱性全要求される絶縁放熱基板等の電子
材料として、半導体工業における非常に有望な材料とな
った。
(Effects of the invention) As explained above, the AlN sintered body of the present invention has
It exhibits excellent thermal, electrical, and mechanical properties, and has become a very promising material in the semiconductor industry as an electronic material such as insulated heat dissipating substrates that will require high heat dissipation properties.

Claims (2)

【特許請求の範囲】[Claims] (1)Mg、Ca、Sr、Ba、La、Y、Ce、Sm
、Nd、Alのホウ化物のうち少なくとも1種以上を含
有することを特徴とする窒化アルミニウム焼結体。
(1) Mg, Ca, Sr, Ba, La, Y, Ce, Sm
, Nd, and Al borides.
(2)Mg、Ca、Sr、Ba、La、Y、Ce、Sm
、Nd、Alのホウ化物のうち少なくとも1種以上を含
有する窒化アルミニウム焼結体を製造する方法において
、窒化アルミニウム粉末に、Mg、Ca、Sr、Ba、
La、Y、Ce、Sm、Nd、Alのホウ化物のうち少
なくとも1種以上を合計で0.02〜8重量%添加し、
非酸化性雰囲気下で1600〜2000℃で焼結するこ
とを特徴とする窒化アルミニウム焼結体の製造方法。
(2) Mg, Ca, Sr, Ba, La, Y, Ce, Sm
In a method for producing an aluminum nitride sintered body containing at least one of borides such as , Nd, and Al, Mg, Ca, Sr, Ba,
Adding a total of 0.02 to 8% by weight of at least one of La, Y, Ce, Sm, Nd, and Al borides,
A method for producing an aluminum nitride sintered body, which comprises sintering at 1600 to 2000°C in a non-oxidizing atmosphere.
JP60242988A 1985-10-31 1985-10-31 Aluminum nitride sintered body and manufacture Pending JPS62105961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60242988A JPS62105961A (en) 1985-10-31 1985-10-31 Aluminum nitride sintered body and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60242988A JPS62105961A (en) 1985-10-31 1985-10-31 Aluminum nitride sintered body and manufacture

Publications (1)

Publication Number Publication Date
JPS62105961A true JPS62105961A (en) 1987-05-16

Family

ID=17097224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60242988A Pending JPS62105961A (en) 1985-10-31 1985-10-31 Aluminum nitride sintered body and manufacture

Country Status (1)

Country Link
JP (1) JPS62105961A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123072A (en) * 1985-11-21 1987-06-04 京セラ株式会社 Aluminum nitride sintered body
US5077245A (en) * 1987-01-30 1991-12-31 Kyocera Corporation Aluminum nitride-based sintered body and process for the production thereof
JPH0685707A (en) * 1991-10-28 1994-03-25 Miyazaki Densen Kogyo Kk Catv converter with electronic tuner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123072A (en) * 1985-11-21 1987-06-04 京セラ株式会社 Aluminum nitride sintered body
US5077245A (en) * 1987-01-30 1991-12-31 Kyocera Corporation Aluminum nitride-based sintered body and process for the production thereof
JPH0685707A (en) * 1991-10-28 1994-03-25 Miyazaki Densen Kogyo Kk Catv converter with electronic tuner

Similar Documents

Publication Publication Date Title
CN107365155B (en) Low-temperature sintering aid system of aluminum nitride ceramic
JPS5849510B2 (en) Chitsuka Aluminum Shouketsutaino
JPS62105961A (en) Aluminum nitride sintered body and manufacture
JPH0717453B2 (en) Aluminum nitride sintered body and method for manufacturing the same
EP0267623A2 (en) Black sintered body of aluminum nitride and process for producing the same
EP0064264B1 (en) Silicon carbide powder mixture and process for producing sintered bodies therefrom
JP2934278B2 (en) Silicon carbide conductive ceramics
JPS5950077A (en) High heat conductivity aluminum nitride sintered body
JPS61286267A (en) Manufacture of aluminum nitride base sintered body
JPS6330372A (en) Manufacture of aluminum nitride sintered body
JP2661113B2 (en) Manufacturing method of aluminum nitride sintered body
KR940002198A (en) Manufacturing method of aluminum nitride substrate
JPH0466803B2 (en)
JPS6355109A (en) Production of aluminum nitride powder
JPH02279568A (en) Aluminum nitride-based sintered body and its production
JP2515527B2 (en) Method for manufacturing SiC refractory
JPH02120280A (en) Sintered aluminum nitride and production thereof
JP2890543B2 (en) Aluminum nitride substrate composition
JPH01111776A (en) Aluminum nitride sintered body and production thereof
JPS63222074A (en) Manufacture of aluminum nitride sintered body
JPS6374966A (en) Manufacture of aluminum nitride sintered body
JPS6126566A (en) Method of sintering sic composite body
JPH0678195B2 (en) Aluminum nitride sintered body
JP2704194B2 (en) Black aluminum nitride sintered body
JPH02180762A (en) Production of aluminum nitride sintered body