JPS6210495B2 - - Google Patents

Info

Publication number
JPS6210495B2
JPS6210495B2 JP56018997A JP1899781A JPS6210495B2 JP S6210495 B2 JPS6210495 B2 JP S6210495B2 JP 56018997 A JP56018997 A JP 56018997A JP 1899781 A JP1899781 A JP 1899781A JP S6210495 B2 JPS6210495 B2 JP S6210495B2
Authority
JP
Japan
Prior art keywords
molybdenum
iron
methylal
catalyst
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56018997A
Other languages
Japanese (ja)
Other versions
JPS57134432A (en
Inventor
Hiroshi Ishida
Masazumi Chono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP56018997A priority Critical patent/JPS57134432A/en
Publication of JPS57134432A publication Critical patent/JPS57134432A/en
Publication of JPS6210495B2 publication Critical patent/JPS6210495B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は、メチラール酸化反応によりホルムア
ルデヒドを製造する方法に関するものである。 さらに詳しくは、メチラールを、気相において
酸素を含有するガスによつて、触媒の存在下に酸
化する事によつてホルムアルデヒドを得る方法に
関するものである。 従来、ホルムアルデヒドの製造は、銀又は、鉄
−モリブデン触媒の存在下にメタノールを酸化す
る事によつて行なわれている。しかし、この方法
で得られるホルマリンの濃度は、量論的に反応し
たとしても63wt%である。それに対して、上記
のメチラールの酸化反応によつて得られるホルマ
リンの濃度は量論的には、83wt%であり、メタ
ノールの酸化にくらべて生成ガス中の水の量が非
常に少ないという特徴を有する。メチラールの酸
化反応に有効な触媒としてこれまでに知られてい
るのは、銀、酸化銅及びモリブデンを基本とし
て、それに鉄、マンガン、マグネシウム、カドミ
ウム、カルシウム等を加えた触媒である。しかし
ながら、これらの触媒では、一酸化炭素、ジメチ
ルエーテル、及びギ酸メチルの副生が多く、高選
択性でホルムアルデヒドを得る事は困難であつ
た。 本発明者らは、このような副生物の少ない、選
択性良好な触媒を開発すべく鋭意研究を重ねた結
果、鉄及びモリブデンに加えアルカリ金属元素、
アンチモン、ビスマス、クロム、タングステン、
コバルト及びニツケルの群から選ばれた1種又は
それ以上の金属元素を有効成分とする触媒が、上
記の副生物が少なく高選択性を有する事を見い出
した。 すなわち、本発明は、上記の触媒を用いたメチ
ラールの酸化によるホルムアルデヒドの製造に関
するものである。 これらの触媒を用いた場合、メチラールからの
ホルムアルデヒドの収率は90%以上であり、選択
率は95%以上であつた。又、一酸化炭素、ジメチ
ルエーテル、ギ酸メチルの生成は、非常に少なか
つた。 本発明に使用される触媒の例としては、鉄及び
モリブデンにクロムを加えたもの、更に、これに
ナトリウム、カリウム、ルビジウム、セシウムな
どのアルカリ金属元素を加えたもの、或は、鉄及
びモリブデンに、アンチモン、ビスマス、タング
ステン、コバルト、ニツケルを加えたものが挙げ
られる。 これらの元素の組成比率は、原子比でモリブデ
ンに対して鉄が0.05〜1.0、アルカリ金属元素、
アンチモン、ビスマス、クロム、タングステン、
コバルト、ニツケルの各元素の合計が0.01〜0.5
の範囲である。又、本発明における触媒の調製
は、通常、含浸法、共沈法等で行なわれるが、そ
の他の方法で行つても構わない。又、触媒の形態
も金属状、酸化物、塩化物、硝酸塩、水酸化物、
酢酸塩等、どの様な形でも構わない。なぜなら、
反応中、酸素雰囲気下では、最初どの様な形態で
あつても、酸化物と成るからである。 本発明の実施に際し、用いられる反応温度は、
通常は200ないし500℃の範囲である。200℃以下
では、ホルムアルデヒドの収率が低く、実際的で
なく500℃以上では、一酸化炭素の副生が激しく
ホルムアルデヒドの収率、選択率が低下するので
好ましくない。 本発明の実施に際し供給するメチラール:酸素
の組成比は、1:0.5〜1:3が好ましく、爆発
範囲をさけるために、窒素等の不活性ガスを共存
させることが好ましい。 又、供給ガスの空間速度(SV)は、2000ない
し50000hr-1の範囲が好ましい。 本反応は、常圧、加圧、減圧いずれによつても
良い。 次に、本発明を実施例によりさらに詳細に説明
する。 実施例 1 (NH43Mo750gを水500mlにとかした溶液と
FeCl3・6H2O20gを水500mlにとかした溶液と
CrCl36H2O5gを水100mlにとかした溶液を混合し
強撹拌した後、沈澱物を濾過洗浄する。その後、
110℃で2時間、400℃で4時間空気中で焼成して
生成物を得た。この生成物の、モリブデン:鉄:
クロムの原子比は、5:1:0.2であつた。この
生成物を錠剤成型して触媒として使用した。 メチラールの酸化反応は、メチラール:N2
O2モル比:2:30:3の混合ガスを石英ガラス
製反応管中の触媒層にSV=10000hr-1、反応温度
=330℃で通過せしめて行つた。 その結果、メチラールの転化率は98%、ホルム
アルデヒドへの選択率は98%であつた。その際、
一酸化炭素1%、ジメチルエーテル1%が副生し
た。 比較例 (NH4)Mo7O2450gを水500mlにとかした溶液
とFeCl3・6H2O20gを水500mlにとかした溶液を
用いて実施例1と同様に調製して触媒を得た。こ
の触媒中のモリブデン:鉄の原子比は、4.5:1
であつた。 この触媒を用いて実施例1と同じ条件でメチラ
ールの酸化反応を行つた。その結果、メチラール
の転化率は100%、ホルムアルデヒドへの選択率
は、89.5%で、一酸化炭素7%、ジメチルエーテ
ル3%、ギ酸ムチル0.5%が副生した。 実施例 2 実施例1で得られたモリブデン、鉄、クロムを
含む生成物10gを、0.5規定水酸化カリウム水溶
液20c.c.に10分間浸漬した後、濾過洗浄して400℃
で2時間窒素中で焼成した。この生成物中のモリ
ブデン:鉄:クロム:カリウムの原子比は、5:
1:0.2:0.1であつた。 この触媒を用いて、実施例1と同じ条件で反応
を行つた。その結果、メチラールの転化率100
%、選択率98%でホルムアルデヒドを得た。その
際、一酸化炭素1%、ジメチルエーテル1%が副
生した。 以下、種々の触媒を用いて実施例1と同じ条件
で反応を行つた場合の各種触媒の成績を表1に示
す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing formaldehyde by a methylal oxidation reaction. More specifically, it relates to a method for obtaining formaldehyde by oxidizing methylal in the gas phase with an oxygen-containing gas in the presence of a catalyst. Traditionally, formaldehyde is produced by oxidizing methanol in the presence of silver or iron-molybdenum catalysts. However, the concentration of formalin obtained by this method is 63 wt% even if the reaction is stoichiometric. On the other hand, the concentration of formalin obtained by the above-mentioned oxidation reaction of methylal is stoichiometrically 83wt%, which is characterized by the fact that the amount of water in the produced gas is extremely small compared to the oxidation of methanol. have Catalysts known so far as effective for the oxidation reaction of methylal are catalysts based on silver, copper oxide, and molybdenum, to which iron, manganese, magnesium, cadmium, calcium, etc. are added. However, these catalysts produce many by-products of carbon monoxide, dimethyl ether, and methyl formate, making it difficult to obtain formaldehyde with high selectivity. The present inventors have conducted intensive research to develop a catalyst with good selectivity and fewer by-products, and have found that, in addition to iron and molybdenum, alkali metal elements,
antimony, bismuth, chromium, tungsten,
It has been found that a catalyst containing one or more metal elements selected from the group of cobalt and nickel as an active ingredient has high selectivity with less of the above-mentioned by-products. That is, the present invention relates to the production of formaldehyde by oxidation of methylal using the above catalyst. When these catalysts were used, the yield of formaldehyde from methylal was 90% or more, and the selectivity was 95% or more. Furthermore, the production of carbon monoxide, dimethyl ether, and methyl formate was extremely small. Examples of catalysts used in the present invention include those in which chromium is added to iron and molybdenum, those in which alkali metal elements such as sodium, potassium, rubidium, and cesium are added to these, or those in which iron and molybdenum are further added. , antimony, bismuth, tungsten, cobalt, and nickel. The composition ratio of these elements is iron to molybdenum in atomic ratio of 0.05 to 1.0, alkali metal elements,
antimony, bismuth, chromium, tungsten,
The total of each element of cobalt and nickel is 0.01 to 0.5
is within the range of Further, the catalyst in the present invention is usually prepared by an impregnation method, a coprecipitation method, etc., but other methods may also be used. In addition, the form of the catalyst is metallic, oxide, chloride, nitrate, hydroxide,
It may be in any form such as acetate. because,
This is because during the reaction, in an oxygen atmosphere, whatever form it is initially in, it becomes an oxide. In carrying out the present invention, the reaction temperature used is:
Usually in the range of 200 to 500°C. Below 200°C, the yield of formaldehyde is low and impractical, and above 500°C, carbon monoxide is produced as a by-product, resulting in a decrease in formaldehyde yield and selectivity, which is not preferred. The composition ratio of methylal:oxygen supplied when carrying out the present invention is preferably 1:0.5 to 1:3, and in order to avoid an explosive range, it is preferable to coexist with an inert gas such as nitrogen. Further, the space velocity (SV) of the supplied gas is preferably in the range of 2000 to 50000 hr -1 . This reaction may be carried out under normal pressure, increased pressure, or reduced pressure. Next, the present invention will be explained in more detail with reference to Examples. Example 1 A solution of 50 g of (NH 4 ) 3 Mo 7 dissolved in 500 ml of water
A solution of 20g of FeCl 3 6H 2 O dissolved in 500ml of water
A solution of 5 g of CrCl 3 6H 2 O dissolved in 100 ml of water is mixed and stirred vigorously, and the precipitate is filtered and washed. after that,
The product was calcined in air at 110°C for 2 hours and at 400°C for 4 hours. This product, molybdenum: iron:
The chromium atomic ratio was 5:1:0.2. This product was tableted and used as a catalyst. The oxidation reaction of methylal is methylal: N2 :
A mixed gas having an O 2 molar ratio of 2:30:3 was passed through a catalyst layer in a quartz glass reaction tube at a SV of 10,000 hr -1 and a reaction temperature of 330°C. As a result, the conversion rate of methylal was 98% and the selectivity to formaldehyde was 98%. that time,
1% of carbon monoxide and 1% of dimethyl ether were produced as by-products. Comparative Example A catalyst was prepared in the same manner as in Example 1 using a solution of 50 g of (NH 4 )Mo 7 O 24 dissolved in 500 ml of water and a solution of 20 g of FeCl 3 .6H 2 O dissolved in 500 ml of water. The molybdenum:iron atomic ratio in this catalyst is 4.5:1
It was hot. Using this catalyst, methylal oxidation reaction was carried out under the same conditions as in Example 1. As a result, the conversion rate of methylal was 100%, the selectivity to formaldehyde was 89.5%, and 7% carbon monoxide, 3% dimethyl ether, and 0.5% mutyl formate were produced as by-products. Example 2 10 g of the product containing molybdenum, iron, and chromium obtained in Example 1 was immersed in 20 c.c. of 0.5 N potassium hydroxide aqueous solution for 10 minutes, then filtered and washed and heated at 400°C.
The mixture was calcined for 2 hours in nitrogen. The atomic ratio of molybdenum:iron:chromium:potassium in this product is 5:
It was 1:0.2:0.1. Using this catalyst, a reaction was carried out under the same conditions as in Example 1. As a result, the conversion rate of methylal was 100
%, formaldehyde was obtained with a selectivity of 98%. At that time, 1% of carbon monoxide and 1% of dimethyl ether were produced as by-products. Table 1 below shows the results of various catalysts when reactions were carried out under the same conditions as in Example 1 using various catalysts. 【table】

Claims (1)

【特許請求の範囲】 1 メチラールの酸化反応によりホルムアルデヒ
ドを製造するに当り、鉄及びモリブデンに加えア
ルカリ金属元素、アンチモン、ビスマス、クロ
ム、タングステン、コバルト及びニツケルの群か
ら選ばれた1種又はそれ以上の金属元素を有効成
分とする触媒を用いることを特徴とするホルムア
ルデヒドの製造法。 2 触媒を構成する金属元素が、鉄、モリブデン
及びクロム或は鉄、モリブデン、クロム及びアル
カリ金属元素であることを特徴とする特許請求の
範囲第1項記載の方法。 3 200ないし500℃の温度範囲で反応を行うこと
を特徴とする特許請求の範囲第1項又は第2項記
載の方法。 4 空間温度2000〜50000hr-1の範囲で反応を行
う事を特徴とする特許請求の範囲第1項乃至第3
項記載の方法。
[Claims] 1. In producing formaldehyde by the oxidation reaction of methylal, in addition to iron and molybdenum, one or more selected from the group of alkali metal elements, antimony, bismuth, chromium, tungsten, cobalt, and nickel. A method for producing formaldehyde, characterized by using a catalyst containing a metal element as an active ingredient. 2. The method according to claim 1, wherein the metal elements constituting the catalyst are iron, molybdenum, and chromium, or iron, molybdenum, chromium, and an alkali metal element. 3. The method according to claim 1 or 2, characterized in that the reaction is carried out at a temperature range of 200 to 500°C. 4 Claims 1 to 3, characterized in that the reaction is carried out at a spatial temperature in the range of 2000 to 50000 hr -1
The method described in section.
JP56018997A 1981-02-13 1981-02-13 Production of formaldehyde Granted JPS57134432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56018997A JPS57134432A (en) 1981-02-13 1981-02-13 Production of formaldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56018997A JPS57134432A (en) 1981-02-13 1981-02-13 Production of formaldehyde

Publications (2)

Publication Number Publication Date
JPS57134432A JPS57134432A (en) 1982-08-19
JPS6210495B2 true JPS6210495B2 (en) 1987-03-06

Family

ID=11987193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56018997A Granted JPS57134432A (en) 1981-02-13 1981-02-13 Production of formaldehyde

Country Status (1)

Country Link
JP (1) JPS57134432A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251932A (en) * 1984-05-29 1985-12-12 Asahi Chem Ind Co Ltd Catalyst for preparing formaldehyde by oxidation of methylal
DE68914858T2 (en) * 1988-02-03 1994-08-11 Asahi Chemical Ind Process for the production of formaldehyde and its derivatives.

Also Published As

Publication number Publication date
JPS57134432A (en) 1982-08-19

Similar Documents

Publication Publication Date Title
US4118419A (en) Catalytic process for the preparation of an unsaturated carboxylic acid
JPH0550489B2 (en)
US4985592A (en) Process for the preparation of unsaturated carboxylic acids
JP2001520976A (en) Method for selective production of acetic acid by catalytic oxidation of ethane
EP0446644B1 (en) Process for preparing a catalyst, the catalyst and its use
JP2934222B2 (en) Method for producing acrolein from propylene by redox reaction and use of solid mixed oxide composition as redox system in the reaction
JPS63122642A (en) Production of methacrolein and methacrylic acid
JP3497558B2 (en) Ammoxidation catalyst composition and method for producing acrylonitrile or methacrylonitrile using the same
EP0420048B1 (en) Process for the obtention of methacrolein and methacrylic acid
US4258217A (en) Process for producing methacrolein
JP4081824B2 (en) Acrylic acid production method
JP2720215B2 (en) Preparation of catalyst for methacrylic acid production
KR840000985B1 (en) Bi-containing methacrolein oxidation catalyst
JPH10237011A (en) Production of acrylic acid from acrolein by redox reaction and use of solid oxide mixture composition as oxidation-reduction system for the reaction
JP3321300B2 (en) Process for producing oxide catalyst containing molybdenum, bismuth and iron
JPS6210495B2 (en)
US4374293A (en) Indene production from aromatic olefins
JPH0662463B2 (en) Method for producing methacrolein and methacrylic acid
JPH0376179B2 (en)
JPH0456015B2 (en)
US6268529B1 (en) Method for the manufacture of acrylic acid
JPH0459739A (en) Production of methacrolein and methacrylic acid
JP3221445B2 (en) Catalyst for producing phenol, method for producing the same, and method for producing phenol
KR790000805B1 (en) Process for producing acrylic acid
JP2747941B2 (en) Method for producing acrolein and acrylic acid