JPS618342A - Printed circuit substrate with flexible resistance layer - Google Patents

Printed circuit substrate with flexible resistance layer

Info

Publication number
JPS618342A
JPS618342A JP59127628A JP12762884A JPS618342A JP S618342 A JPS618342 A JP S618342A JP 59127628 A JP59127628 A JP 59127628A JP 12762884 A JP12762884 A JP 12762884A JP S618342 A JPS618342 A JP S618342A
Authority
JP
Japan
Prior art keywords
layer
printed circuit
resistance layer
circuit board
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59127628A
Other languages
Japanese (ja)
Other versions
JPH047596B2 (en
Inventor
内田 宇之助
順二 田中
久和 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP59127628A priority Critical patent/JPS618342A/en
Publication of JPS618342A publication Critical patent/JPS618342A/en
Publication of JPH047596B2 publication Critical patent/JPH047596B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は可撓性基板上に、第一層目として抵抗層、更に
第二層目として導体層を設けた抵抗層付プリント回路基
板に関する。更に詳しくは、ポリイミドフィルムに代表
される耐熱性フィルム、あるい祉金属箔上に耐熱性樹脂
を被覆した二層からなる可撓性基板上に、第一層目とし
て、酸化インジウムが主成分である抵抗層を設け、更に
第二層として導体層を設けた事を特徴とする抵抗層付プ
リント回路基板に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a printed circuit board with a resistance layer, which has a resistance layer as a first layer and a conductor layer as a second layer on a flexible substrate. More specifically, the first layer is made of a heat-resistant film such as a polyimide film, or a flexible substrate consisting of two layers of heat-resistant resin coated on a metal foil, and the main component is indium oxide. The present invention relates to a printed circuit board with a resistive layer, characterized in that a certain resistive layer is provided, and a conductor layer is further provided as a second layer.

従来よシ抵抗層付プリント回路基板としては、印刷法、
無電解メッキ法、蒸着法等によって基板上にi成したも
のがあるが、いずれもガラスセラミックス等に代表され
る硬質基板上に形成されている。したがってこれらの基
板を用いて実装する際には、一様に平面的な場所が必要
で、凹凸面や、狭い平面上並びに曲面上の間隙部分に実
装する事は不可能である。そこで上記の欠点を補うため
には、可撓性の優れた薄い基板を用いる事が必要になる
。しかしながらこの様に可撓性のある基板に。
Conventionally, printed circuit boards with resistive layers are produced using printing methods,
There are products that are formed on a substrate by an electroless plating method, a vapor deposition method, etc., but all of them are formed on a hard substrate typified by glass ceramics or the like. Therefore, when mounting using these substrates, a uniformly flat location is required, and it is impossible to mount on an uneven surface, a narrow flat surface, or a gap on a curved surface. Therefore, in order to compensate for the above drawbacks, it is necessary to use a thin substrate with excellent flexibility. However, on a flexible substrate like this.

抵抗層を設けた際の問題点は、ニクロムに代表される様
に従来用いられている抵抗体はいずれも硬度が大きいた
め、基板の変形に伴ないクラックが生じ、抵抗体として
の使用が不可能であった。
The problem with providing a resistive layer is that conventionally used resistors, such as nichrome, have a high degree of hardness, so cracks occur as the substrate deforms, making them unsuitable for use as resistors. It was possible.

本発明は上記の問題点を解決したものであシ、可撓性基
板の変形に対しては、抵抗体自体の伸びによってクラッ
クの発生を押さえ、種々の実装状態の使用にも耐え、か
つ抵抗体としてもニクロム以上の性能を有する抵抗層付
プリント基板を見出したものである。
The present invention solves the above-mentioned problems.The present invention suppresses the occurrence of cracks due to the elongation of the resistor itself when the flexible substrate is deformed. We have discovered a printed circuit board with a resistive layer that has better physical performance than Nichrome.

従来より抵抗体の要求性能として社、比抵抗が高く、経
時変化が少なく、かつ抵抗温度係数が小さい事が望まれ
、現在に至るまで多くの組成について検討されて来た。
Conventionally, the required performance of a resistor has been to have a high specific resistance, little change over time, and a small temperature coefficient of resistance, and many compositions have been studied up to the present.

本発明による酸化インジウムを主成分とする抵抗体の場
合には、ニクロムにッケル;クロムの重量比80%:2
0%)に比べ伸びが約20倍に増加する事を見出した。
In the case of the resistor based on indium oxide according to the present invention, the weight ratio of nichrome:nickel:chromium is 80%:2
It was found that the elongation increased approximately 20 times compared to 0%).

このため所望の抵抗値を得るために、種々の基板の変形
が伴なうエツチング加工を経ても、抵抗値に異常がない
抵抗体パターンが形成出来、更に種々の実装状態に於い
ても、抵抗値変化が認められない、非常に可撓性の優れ
た抵抗層付プリント回路基板を得る事が出来た。又本発
明の酸化インジウムを主成分とする抵抗層は、ニクロム
に比べ5倍以上の比抵抗を有するため、パターン加工に
よシ、ニクロムに比べ広い抵抗値範囲の抵抗体を形成す
る事が可能にeD、又抵抗体の小型化が容易になった。
Therefore, in order to obtain the desired resistance value, a resistor pattern with no abnormality in resistance value can be formed even after undergoing etching processes that involve various deformations of the board, and even in various mounting states. It was possible to obtain a printed circuit board with an extremely flexible resistive layer in which no change in value was observed. Furthermore, since the resistive layer of the present invention whose main component is indium oxide has a specific resistance more than five times that of nichrome, it is possible to form a resistor with a wider resistance value range than nichrome through pattern processing. In addition, it has become easier to miniaturize the resistor.

更に必要性能である経時変化や抵抗温度係数につ−いて
も、ニクロムと同等以上の性能を有する事を見出した。
Furthermore, it was found that the required performance, such as change over time and temperature coefficient of resistance, is equivalent to or better than that of nichrome.

又、最近の電子部品の高密度化に伴ない実装する抵抗体
の数も増加し、このため電極部分との接合に掛かる工数
がコストに大きな影響を与えている。しかし本発明によ
る抵抗層付プリント回路基板では、抵抗部分と電極部分
が一体化されているため、工程が省け、加工費の大巾な
削減が可能になる。
Furthermore, with the recent increase in the density of electronic components, the number of resistors to be mounted has also increased, and therefore the number of man-hours required for bonding to the electrode portions has a significant impact on cost. However, in the printed circuit board with a resistive layer according to the present invention, since the resistor part and the electrode part are integrated, the process can be omitted and processing costs can be significantly reduced.

ここで電子材料に広く用いられているハンダによるリー
ド線との接合を酸化インジウムを主成分とする抵抗層に
直接性なった場合、ハンダ付着後の急激な応力により抵
抗層にクラックが生じ、使用しえない。
If the lead wire is connected directly to a resistive layer made of indium oxide as a main component using solder, which is widely used in electronic materials, cracks will occur in the resistive layer due to the sudden stress after the solder is attached, and the resistive layer will not be used. I can't do it.

これは、ハンダの冷却の際に生じる応力は、ハンダの破
断強度に等しい応力が抵抗層に直接かかり、境界面付近
でクラックと云う形で応力緩和が計られるからである。
This is because the stress generated when the solder cools is equal to the breaking strength of the solder and is directly applied to the resistance layer, and the stress is relaxed in the form of cracks near the interface.

この点本発明によれば抵抗層上に導電層を形成し、この
導電層にノ・ンダ付をするため抵抗層を保護出来、安定
したフレキシブル抵抗体となるものである。又、電子部
品として用いるためには各種環境下に於ける長時間の安
定性が必要となるため導電ペースト、導電ゴムを用いた
電極付けでは、不安定になる。特に本発明の目的である
抵抗体として用いる場合には、高温多湿の環境下や抵抗
温度係数の点から、使用に耐えない。
In this regard, according to the present invention, a conductive layer is formed on the resistive layer and solder is applied to the conductive layer, so that the resistive layer can be protected and a stable flexible resistor can be obtained. In addition, since long-term stability under various environments is required for use as an electronic component, electrode attachment using conductive paste or conductive rubber will result in instability. In particular, when used as a resistor, which is the object of the present invention, it cannot withstand use in a high temperature and humidity environment or from the viewpoint of the temperature coefficient of resistance.

以下に本発明を更に詳しく述べる。The present invention will be described in more detail below.

本発明に於ける基板については、充分な可撓性を有すれ
ば特に制約はないが、高温使用目的の際にはハンダ使用
にも耐える耐熱性に優れたポリイミド、ポリエーテルイ
ミド、ポリエーテルサルホン等のフィルムあるいはこれ
らの樹脂を金属箔上に接着し−た複合基板が最も望まし
い。
There are no particular restrictions on the substrate used in the present invention as long as it has sufficient flexibility, but for high-temperature use, polyimide, polyetherimide, or polyethersal, which have excellent heat resistance that can withstand soldering, may be used. The most desirable material is a composite substrate in which a film such as fluorine or a resin thereof is adhered onto a metal foil.

特に基板として透明なポリエーテルイミド、ポリエーテ
ルサルホンフィルムを用いた場合、面スィッチ等に使用
出来る透明フレキシブル抵抗体となシ多くの応用が期待
出来る。
In particular, when a transparent polyetherimide or polyethersulfone film is used as a substrate, many applications can be expected, such as a transparent flexible resistor that can be used for surface switches and the like.

次に抵抗層としては、可撓性があシ化学的に安定な酸化
インジウムを主成分とするものが良い。
Next, as the resistance layer, it is preferable to use a material whose main component is indium oxide, which is flexible and chemically stable.

ここで酸化インジウム以外の成分としては目的とする比
抵抗によって異方るが、スズ、アンチモン、カドミニウ
ム、インジウム、アルミニウム、チタン等あるいはこれ
らの酸化物が好ましい。又、酸イレインジウムの重量比
は70〜98%である事が好咬しい。これは、98−以
上になると絶縁物に近づき、比抵抗が余りにも増大して
一般的な抵抗体としては使用しえなくなるためである。
Here, as components other than indium oxide, tin, antimony, cadmium, indium, aluminum, titanium, etc., or oxides thereof are preferable, although they vary depending on the intended resistivity. Further, it is preferable that the weight ratio of ileidium acid is 70 to 98%. This is because when it becomes 98- or more, it becomes close to an insulator and the resistivity increases too much, making it impossible to use it as a general resistor.

又、酸化インジウムを主成分とする抵抗層の膜厚は所望
する抵抗値や面積の制限によシ変化するが、比抵抗の安
定する003μ〜02μが望ましい。更に抵抗層上に形
成する導体層は導電性、加]:性の上から銅が望ましい
Further, the thickness of the resistive layer containing indium oxide as a main component varies depending on the desired resistance value and area limitations, but it is preferably 0.03 to 0.2 μm, which stabilizes the resistivity. Further, the conductor layer formed on the resistance layer is preferably made of copper from the viewpoint of conductivity.

以下実施例によシ本発明を文に詳細に説明する。The present invention will be explained in detail below with reference to Examples.

実施例1.2 50μのポリイミドフィルム上並びに7.5μ厚の銅箔
上にポリイミド樹脂を10^被扱した基板の樹脂被膜上
に、抵抗層として主成分として酸化インジウムを84w
t5その他の成分として酸化スズを16wt%含む化合
物をスパッタ法によシ0,1μの厚みで形成し、更に導
体層として銅を連続的に5μの厚みにスパッタ法によシ
・形成した抵抗層付プリント基板を用いて、回路中10
0μ、長さ8Onの薄膜抵抗体を化学的なエツチング法
によシ形成した。この薄膜抵抗体の可撓性と、ニクロム
に対しての比抵抗の高低を第−表に示す。尚第一表中に
於ける可撓性とは、加工時の変形に伴なう異常個所の有
無並びに半径L5+wの曲率面を巻く様に実装した際の
抵抗値変化の有無によって示す。
Example 1.2 84w of indium oxide as the main component was applied as a resistive layer on the resin coating of a board made of 10^ of polyimide resin on a 50μ polyimide film and a 7.5μ thick copper foil.
t5 A resistive layer in which a compound containing 16 wt% of tin oxide as other components is formed by sputtering to a thickness of 0.1 μm, and copper is continuously formed as a conductor layer to a thickness of 5 μm by sputtering. 10 in the circuit using a printed circuit board with
A thin film resistor with a diameter of 0 μm and a length of 8 On was formed by chemical etching. Table 1 shows the flexibility of this thin film resistor and the specific resistance relative to nichrome. The flexibility in Table 1 is indicated by the presence or absence of abnormal parts due to deformation during processing and the presence or absence of resistance value change when mounted so as to wrap around a curvature surface of radius L5+w.

比較例1 50μのポリイミドフィルムに1抵抗層としてニッケル
、クロムの重量比が80%、20チからなる合金をスパ
ッタ法によJ 0.1μの厚みで形成し、更に導体層と
して銅を連続的に5μの厚みにスパッタ法によシ形成し
た抵抗層付プリント回路基板を用いて、同様な薄膜抵抗
体を形成したものの結果を第−表に示す。
Comparative Example 1 An alloy consisting of 20 nickel and chromium with a weight ratio of 80% was formed as one resistance layer on a 50μ polyimide film to a thickness of J 0.1μ by sputtering, and copper was further continuously formed as a conductor layer. Table 1 shows the results of forming a similar thin film resistor using a printed circuit board with a resistive layer formed by sputtering to a thickness of 5 μm.

第−表で明らかな様に、本実施例による抵抗層付プリン
ト回路基板を用いて作成した薄膜抵抗体は、ニクロムに
比べ高い比抵抗を有し、かつ非常に優れた可撓性を示す
事がわかる。
As is clear from Table 1, the thin film resistor fabricated using the printed circuit board with a resistive layer according to this example has a higher specific resistance than nichrome and exhibits extremely excellent flexibility. I understand.

Claims (3)

【特許請求の範囲】[Claims] (1)可撓性基板上に、第一層目として酸化インジウム
が主成分である抵抗層を設け、更にその上に第二層目と
して導体層を設けたことを特徴とするフレキシブル抵抗
層付プリント回路基板。
(1) With a flexible resistance layer characterized by providing a resistance layer mainly composed of indium oxide as a first layer on a flexible substrate, and further providing a conductor layer as a second layer on top of the resistance layer. printed circuit board.
(2)可撓性基板がポリイミド等の耐熱性樹脂フィルム
である特許請求の範囲第(1)項記載の抵抗層付プリン
ト回路基板。
(2) A printed circuit board with a resistive layer according to claim (1), wherein the flexible substrate is a heat-resistant resin film such as polyimide.
(3)可撓性基板が金属箔上に耐熱樹脂を被覆した二層
からなるものである特許請求の範囲第(1)項記載の抵
抗層付プリント回路基板。
(3) A printed circuit board with a resistive layer according to claim (1), wherein the flexible substrate is made of two layers of metal foil coated with heat-resistant resin.
JP59127628A 1984-06-22 1984-06-22 Printed circuit substrate with flexible resistance layer Granted JPS618342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59127628A JPS618342A (en) 1984-06-22 1984-06-22 Printed circuit substrate with flexible resistance layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59127628A JPS618342A (en) 1984-06-22 1984-06-22 Printed circuit substrate with flexible resistance layer

Publications (2)

Publication Number Publication Date
JPS618342A true JPS618342A (en) 1986-01-16
JPH047596B2 JPH047596B2 (en) 1992-02-12

Family

ID=14964785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59127628A Granted JPS618342A (en) 1984-06-22 1984-06-22 Printed circuit substrate with flexible resistance layer

Country Status (1)

Country Link
JP (1) JPS618342A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4794634A (en) * 1985-12-24 1988-12-27 Kabushiki Kaisha Komatsu Seisakusho Position-sensitive photodetector and light transmissive tablet and light-emitting pen
JPH01232034A (en) * 1988-03-11 1989-09-18 Kanegafuchi Chem Ind Co Ltd Flexible composite film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4794634A (en) * 1985-12-24 1988-12-27 Kabushiki Kaisha Komatsu Seisakusho Position-sensitive photodetector and light transmissive tablet and light-emitting pen
JPH01232034A (en) * 1988-03-11 1989-09-18 Kanegafuchi Chem Ind Co Ltd Flexible composite film

Also Published As

Publication number Publication date
JPH047596B2 (en) 1992-02-12

Similar Documents

Publication Publication Date Title
US3248779A (en) Method of making an electronic module
US4783642A (en) Hybrid integrated circuit substrate and method of manufacturing the same
JPH0235475B2 (en)
US4594473A (en) Substrate having at least one fine-wired conductive layer
JPH06349339A (en) Anisotropic conductive film
JPS618342A (en) Printed circuit substrate with flexible resistance layer
JPH047595B2 (en)
JP4707890B2 (en) Chip resistor and manufacturing method thereof
JPS6272200A (en) Printed circuit board with flexible resistance layer
JPH10284342A (en) Conductive connection structure
US5040292A (en) Method of forming dielectric layer on a metal substrate having improved adhesion
US4936010A (en) Method of forming dielectric layer on a metal substrate having improved adhesion
JP2022012055A (en) Resistor
JPS60262304A (en) Conductor
JP4754710B2 (en) Chip resistor and manufacturing method thereof
JPS6262480B2 (en)
US5164547A (en) Articles having a dielectric layer on a metal substrate having improved adhesion
JP2760035B2 (en) Thick film circuit board
JP2002299102A (en) Chip resistor
JPS61177792A (en) Manufacture of flexible printed circuit board
JP3801334B2 (en) Semiconductor device mounting substrate and manufacturing method thereof
JPH0821763B2 (en) Electronic circuit parts
JPH02306686A (en) Flexible printed circuit
JP3159963B2 (en) Chip resistor
JP3456225B2 (en) High thermal conductive substrate and method of manufacturing the same