JPS6182117A - Direct current feedback type eddy current range finder - Google Patents

Direct current feedback type eddy current range finder

Info

Publication number
JPS6182117A
JPS6182117A JP20423484A JP20423484A JPS6182117A JP S6182117 A JPS6182117 A JP S6182117A JP 20423484 A JP20423484 A JP 20423484A JP 20423484 A JP20423484 A JP 20423484A JP S6182117 A JPS6182117 A JP S6182117A
Authority
JP
Japan
Prior art keywords
signal
eddy current
amplifier
voltage
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20423484A
Other languages
Japanese (ja)
Other versions
JPH0334807B2 (en
Inventor
Toshiaki Hosoe
利昭 細江
Seigo Ando
安藤 静吾
Yoshihiro Kawase
川瀬 芳広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP20423484A priority Critical patent/JPS6182117A/en
Publication of JPS6182117A publication Critical patent/JPS6182117A/en
Publication of JPH0334807B2 publication Critical patent/JPH0334807B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To eliminate oscillation due to a phase shift by detecting a difference voltage between a couple of secondary coils, applying a obtained DC signal to a DC amplifier, and controlling an AC signal in proportion to its output signal. CONSTITUTION:The difference voltage between voltages induced across secondary coils 1-2 and 1-3 of an eddy current sensor 1 is detected by a synchronous detecting circuit 14 in synchronism with an AC signal supplied to the primary coil 1-1. The DC signal ES obtained by the detection is fed back to a DC amplifier 13. Further, the output of an amplifier 13 is sent to a DC/AC converting circuit 10 to control the voltage level of the AC signal supplied to the coil 1-1. Consequently, the output voltage out of the amplifier 13 corresponds to the relative distance between the sensor 1 and a body 4 to be measured. Consequently, oscillation due to the phase shift of the feedback loop is eliminated and a high-precision DC feedback type eddy current range finder which operates stably and is effectively free of maintenance is obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、直流帰還型渦流距離計の改良に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to an improvement in a DC feedback type eddy current distance meter.

〔発明の技術的背景〕[Technical background of the invention]

非接触条件下において被測定体との距離を計測する技術
としては、従来、レーデ光、超音波、または渦電流を用
いた距離計等がある。第3図この渦流センサ1は1次コ
イル1−1と1対の2次コイル1−2.1−3から構成
され、1次コイル1−1には発振器2から出力される所
定周波数の交流信号が増幅器3ft介して供給されるよ
うになっている。この渦流センサ1は金属圧延板や溶融
金属液体等の被測定体4上に近接配置されている。この
状態において前記交流信号が渦流セ/すに供給されると
、1次コイル1−1から交流磁界が発生されて被測定体
4と父差し、これにより被測定体4の底面に渦電流が発
生する。この渦電流によって、被測定体4からは1次コ
イル1−1より発生された交流磁界に対して反作用とな
る磁界が発生する。これによシ、2次コイル1−2.1
−3と交差する磁界が変化し、各2次コイル1−2.1
−3はそれぞれ値の異なった電圧が誘起される。ここで
、渦電流による磁界変化の影響は、被測定体4により近
接した2次コイル1−2側に対して大きくなりているの
で、1対の2次コイル1−2゜1−3から差分の電圧が
発生し、この差分電圧は信号増幅器5により所定値まで
増幅されて増幅器3の正入力端子に帰還される。このと
きの増幅器3の出力電圧e。utは、渦流センサ1と被
測定体4との相対距離りに対応した値となる。
Conventional techniques for measuring the distance to a measured object under non-contact conditions include distance meters that use Radhe light, ultrasonic waves, or eddy currents. Fig. 3 This eddy current sensor 1 is composed of a primary coil 1-1 and a pair of secondary coils 1-2, 1-3. The signal is fed through an amplifier 3ft. This eddy current sensor 1 is placed close to an object to be measured 4 such as a rolled metal plate or molten metal liquid. When the alternating current signal is supplied to the eddy current cell in this state, an alternating magnetic field is generated from the primary coil 1-1 and is directly connected to the object to be measured 4, thereby generating an eddy current on the bottom surface of the object to be measured 4. Occur. Due to this eddy current, a magnetic field is generated from the object to be measured 4 that is a reaction to the alternating current magnetic field generated by the primary coil 1-1. According to this, secondary coil 1-2.1
-3 and the magnetic field intersecting each secondary coil 1-2.1 changes.
-3, voltages with different values are induced. Here, the influence of magnetic field changes due to eddy currents is greater on the side of the secondary coil 1-2 that is closer to the object to be measured 4, so the difference between the pair of secondary coils 1-2 and 1-3 This differential voltage is amplified to a predetermined value by the signal amplifier 5 and fed back to the positive input terminal of the amplifier 3. The output voltage e of the amplifier 3 at this time. ut is a value corresponding to the relative distance between the eddy current sensor 1 and the object to be measured 4.

ここで、出力電圧e。utは、次式によシ表わされる。Here, the output voltage e. ut is expressed by the following equation.

1−G、・G2(eout/zpXM1−M2ンなお、
G、は増幅器3のオープン増幅度、einは発振器2の
出力電圧、G2は信号増幅器5の増幅度、2は1次コイ
ル1−1のインピーダンス、MlおよびM2は1次コイ
ル1−1と1対の2次コイル1−2.1−3との間の各
相互インピーダンスである。
1-G, ・G2 (eout/zpXM1-M2)
G is the open amplification degree of the amplifier 3, ein is the output voltage of the oscillator 2, G2 is the amplification degree of the signal amplifier 5, 2 is the impedance of the primary coil 1-1, Ml and M2 are the primary coils 1-1 and 1 These are the mutual impedances between the pair of secondary coils 1-2, 1-3.

したがって、増幅器3の出力電圧e。ut tri測す
れば間接的に相対距離りが求められる。
Therefore, the output voltage e of the amplifier 3. Relative distance can be indirectly determined by measuring ut tri.

〔背景技術の問題点〕[Problems with background technology]

ところで、第(1)式の分母において各相互インピーダ
ンスM1# M2の差と(eout/z、)とが掛は算
されているが、この場合各相互インピーダンスM1 +
 M2の各虚数部分が等しくないと、出力電圧e。ut
は虚数部分をもった式で表わされることになる。このよ
うに虚数部分をもつことは実際の出力電圧e。U、では
位相偏位が発生することになる0ところで、この位相偏
位の要因としては次のようなことが考えられる。すなわ
ち、■ 1対の2次コイル1−2.1−3の各インピー
ダンスのアンバランス。
By the way, in the denominator of equation (1), the difference between each mutual impedance M1#M2 is multiplied by (eout/z,), but in this case, each mutual impedance M1 +
If the imaginary parts of M2 are not equal, the output voltage e. ut
can be expressed as an expression with an imaginary part. Having an imaginary part in this way is the actual output voltage e. At U, a phase deviation occurs at 0.The following factors can be considered as factors for this phase deviation. That is, (1) unbalance of each impedance of the pair of secondary coils 1-2, 1-3;

■ 被測定体4の電気的特性と磁気的特性。■ Electrical characteristics and magnetic characteristics of the object to be measured 4.

■ 1次6コイル1−1に供給する交流信号(交流電流
)の周波数。
■ Frequency of the alternating current signal (alternating current) supplied to the primary six coils 1-1.

■ 渦流センサ1全体の径および形状。■ Diameter and shape of the entire eddy current sensor 1.

■ 信号増幅器5の入力インピーダンス値とその変動。■ Input impedance value of signal amplifier 5 and its fluctuation.

■ 過流センサ1と装置本体つまり増幅63、信号増幅
器5とを結線する同軸ケーブルの分布容量のアンバラン
スおよび温度変動による分布d鴬の変動。
■ Unbalance in the distributed capacitance of the coaxial cable that connects the excess current sensor 1 and the main unit of the device, that is, the amplifier 63 and the signal amplifier 5, and fluctuations in the distribution d due to temperature fluctuations.

■ 装置本体(IC)の位相嬬位、グリント基板の分布
容量 などである。
■ These include the phase error of the device body (IC) and the distributed capacitance of the glint board.

ところで、位相偏位が犬きくなると増幅器3は正常に動
作することができなくなり、この結果出力電圧e。ut
は、第4図に示すように正常製作時の出力特性(イ)と
比較して出力特性(ロ)のように非常に大きな誤差を含
んだものとなってしまう。さらに、甚だしくは帰還ルー
プに2いて自己%mすることもめる。
By the way, when the phase deviation becomes large, the amplifier 3 cannot operate normally, and as a result, the output voltage e. ut
As shown in FIG. 4, the output characteristic (b) contains a very large error compared to the output characteristic (a) during normal manufacturing. Furthermore, it is also possible that it may be in a feedback loop and self-destruct.

〔発明の目的〕[Purpose of the invention]

本発明は上記実情に基づいてなされたもので、その目的
とするところは、位相偏位による発掘現象をなくし得て
、安定に動作し、高精度な直流帰還型渦流距離計を提供
することにある。
The present invention has been made based on the above-mentioned circumstances, and its purpose is to provide a DC feedback type eddy current distance meter that can eliminate the excavation phenomenon caused by phase deviation, operates stably, and has high accuracy. be.

〔発明の概要〕[Summary of the invention]

本発明は、被測定体上に所定周波数の交流信号が供給さ
れる1次コイルと各誘起電圧の差電圧を出力する1対の
2次コイルとから構成される渦流センサを配置し、前記
2次コイルから出力される差電圧を同期検波回路により
前記交流信号に同期して検波して直流信号として出力し
、この直流信号を予め設定でれたレベルの直流信号が加
わる差動増幅回路に与え、この差動増幅回路の出力信号
に応じて1次コイルに供給する交流信号のレベルt−側
御してこの差I/lh増幅回路から渦流センサと被測定
休との距離に対応した信号を出力するようにした直流帰
還型渦流距離計である。
The present invention provides an eddy current sensor that includes a primary coil to which an alternating current signal of a predetermined frequency is supplied and a pair of secondary coils that output a voltage difference between respective induced voltages on an object to be measured. The differential voltage output from the next coil is detected by a synchronous detection circuit in synchronization with the AC signal and output as a DC signal, and this DC signal is applied to a differential amplifier circuit to which a DC signal of a preset level is added. The level t-side of the AC signal supplied to the primary coil is controlled in accordance with the output signal of this differential amplifier circuit, and a signal corresponding to the distance between the eddy current sensor and the object to be measured is output from this differential I/lh amplifier circuit. This is a DC feedback type eddy current distance meter with output.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例について図面を参照して説明す
る。第1図は本発明の直流帰還型渦流距離針の構成図で
おる。なお、第3図と同一部分には同一符号を付してる
る。すなわち、1は渦流センサであって、1−1は1次
コイル、1−2.1−3は対をなす2次コイルであり、
2は発振器、4は溶融金属液体、圧延板等の技工、DC
ZAC変換回路と指称する)および増幅1filに設定
された電力増幅器1ノを介して交流信号が供給されるよ
うになっており、また2次コイル1−;!、1−3は差
動型信号増幅@12の入力端に接続されている。なお、
DC/AC変換回路10は、直流増幅器13から出力さ
れる信号E。u、t−受け、発振器2からの交流信号の
′電圧レベルを信号E。utに比例制御して電力増幅器
11に送出する機能を持ったものでおる。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of the DC feedback type eddy current distance needle of the present invention. Note that the same parts as in FIG. 3 are given the same reference numerals. That is, 1 is an eddy current sensor, 1-1 is a primary coil, 1-2.1-3 is a pair of secondary coils,
2 is an oscillator, 4 is a technique for molten metal liquid, rolled plate, etc., DC
An alternating current signal is supplied through a power amplifier (referred to as a ZAC conversion circuit) and a power amplifier (referred to as a ZAC conversion circuit) and a power amplifier (referred to as a ZAC conversion circuit), which is set to amplification of 1fil, and a secondary coil (referred to as a ZAC conversion circuit); , 1-3 are connected to the input terminals of the differential signal amplifier @12. In addition,
The DC/AC conversion circuit 10 receives the signal E output from the DC amplifier 13. u, t-receive the voltage level of the alternating current signal from oscillator 2 as signal E; It has a function of controlling proportionally to ut and sending it to the power amplifier 11.

さらに差動型信号増幅器12の出力端は同期検波回路1
4に接続されている。この同期検波回路14は、発振器
2から出力される所定周波数の交i!号に同期して差動
型信号増幅器12の出力信号を検波し、この検波により
て得られた直流信号Eを直流増幅器13の正入力端子に
舊 供給するものでるる。この直流増幅器13は、0芽の負
入力端子に直流基準電圧発生回路15から予め設定され
たレベルの直流基準電圧ERが加わっており、よりて、
この直流基準′1圧EILと同期検波回路14から得ら
れた直流信号Esの差電圧”outを出力するものであ
って、この差電圧E。utが渦流センサーと被測定体4
との距離に対応した値となる。
Further, the output terminal of the differential signal amplifier 12 is connected to the synchronous detection circuit 1.
Connected to 4. This synchronous detection circuit 14 detects the frequency i! of a predetermined frequency output from the oscillator 2! The output signal of the differential signal amplifier 12 is detected in synchronization with the signal, and the DC signal E obtained by this detection is supplied to the positive input terminal of the DC amplifier 13. This DC amplifier 13 has a DC reference voltage ER of a preset level applied from the DC reference voltage generation circuit 15 to the negative input terminal of the 0 output terminal.
It outputs the difference voltage "out" between this DC reference voltage EIL and the DC signal Es obtained from the synchronous detection circuit 14, and this difference voltage E.ut is the difference between the eddy current sensor and the object to be measured 4.
The value corresponds to the distance from

次に上記の如く構成された距離針の動作について説明す
る。渦流センサーが被測定体4上の近接した位置に置か
れ、この渦流センサーの1次コイル1−1に発振器2か
ら所定周波数の交流信号がDC/ACi換回路102よ
び電力増幅器11t−介して供給されると、1久コイル
1−1からは交流磁界が発生し、この交流磁界は被測定
体4と交差する。すると、被測定体4の表面に渦電流が
発生し、この渦電流によって1次コイル1−1から発生
された交流磁界に対して反作用となる磁界が発生する。
Next, the operation of the distance hand configured as described above will be explained. An eddy current sensor is placed close to the object to be measured 4, and an alternating current signal of a predetermined frequency is supplied from the oscillator 2 to the primary coil 1-1 of the eddy current sensor via the DC/ACi conversion circuit 102 and the power amplifier 11t. Then, an alternating current magnetic field is generated from the first coil 1-1, and this alternating magnetic field intersects with the object to be measured 4. Then, an eddy current is generated on the surface of the object to be measured 4, and this eddy current generates a magnetic field that acts as a reaction to the alternating current magnetic field generated from the primary coil 1-1.

この磁界の反作用により2次コイル1−2.1−3と交
差する交流磁界が変化し、その変化は被測定金属体4に
近い側のコイル1−2に対して大きくなる。
Due to the reaction of this magnetic field, the alternating current magnetic field intersecting the secondary coil 1-2, 1-3 changes, and the change becomes larger for the coil 1-2 closer to the metal object 4 to be measured.

したがって、各2次コイル1−2.1−3の各誌起電圧
はそれぞれ異なった電圧値となる。そこで、2次コイル
1−2の誘起電圧t”e  e2次コイル1−3の誘起
電圧te、□とすると、差動型信号増幅器12からは(
e、”s2 ) Gb=e、なる信号が出力される。な
お、Gbは差動型信号増@612の増幅度でおる。
Therefore, the respective electromotive voltages of the secondary coils 1-2, 1-3 have different voltage values. Therefore, if the induced voltage t"e of the secondary coil 1-2 and the induced voltage te of the secondary coil 1-3 are □, then the differential signal amplifier 12 outputs (
e, "s2)" A signal Gb=e is output. Note that Gb is the amplification degree of the differential type signal amplification@612.

この信号e、は同期検波回路14に加えられ、この同期
検波回路14により検波される。つまり、同期検波回路
14は、発″IJi器2から出力される交流信号に同期
して信号e、′t−検波し、この検波により得られた直
流信号E、=e、asθを出力する。したがって、差動
型信号増幅#12の出力信号eに位相偏位がめりても、
この位相偏位成分は除かれる。
This signal e is applied to the synchronous detection circuit 14 and detected by the synchronous detection circuit 14. That is, the synchronous detection circuit 14 detects the signal e,'t- in synchronization with the AC signal output from the generator IJi device 2, and outputs the DC signal E,=e,asθ obtained by this detection. Therefore, even if the output signal e of differential signal amplifier #12 has a phase deviation,
This phase deviation component is removed.

そして、同期検波回路14の出力信号E、は直流増幅器
13に送られすなわち正帰還され、これにより直流増幅
器13からは、直流基準電圧E、と出力信号E8との差
電圧が増幅されてDC/AC変換回路10に加えられる
。そして、DC/AC変換回路10は、入力された信号
の電圧値に比例して発振器2からの交流信号の電圧値を
制御し、その交流信号を電力島幅器11を介して1次コ
イル1−1に供給する。このときの直流増幅器13の出
力電圧E。utは渦流センサーと被測定体4との距離t
。に対応した憾となる。ここで、出力電圧E。utは次
式により表わされる。すなわち翫 でめる・ここで、KはDC/ACi換回′M10の変換
効率、G8は直流増幅器13のオープン増幅度、G、は
差動型信号増幅器12の増幅度、Nは同期検波回路14
の変換効率、eは電力増幅器p 11の出力電圧である。したがって、第(2)式からE
RlG、G、KpよびNの6値が固定設定されれば、直
流増幅器13の出力電圧E。U、は渦流センサーと被測
定体4との相対距離に対応した値となることが判る。
Then, the output signal E of the synchronous detection circuit 14 is sent to the DC amplifier 13, that is, it is positively fed back, and the difference voltage between the DC reference voltage E and the output signal E8 is amplified from the DC amplifier 13, and the DC/ It is added to the AC conversion circuit 10. Then, the DC/AC conversion circuit 10 controls the voltage value of the AC signal from the oscillator 2 in proportion to the voltage value of the input signal, and passes the AC signal to the primary coil 1 through the power island width converter 11. -1. The output voltage E of the DC amplifier 13 at this time. ut is the distance t between the eddy current sensor and the object to be measured 4
. I regret that this corresponds to this. Here, the output voltage E. ut is expressed by the following formula. Here, K is the conversion efficiency of the DC/ACi converter M10, G8 is the open amplification degree of the DC amplifier 13, G is the amplification degree of the differential signal amplifier 12, and N is the synchronous detection circuit. 14
The conversion efficiency of , e is the output voltage of the power amplifier p11. Therefore, from equation (2), E
If the six values of RlG, G, Kp and N are fixedly set, the output voltage E of the DC amplifier 13. It can be seen that U is a value corresponding to the relative distance between the eddy current sensor and the object to be measured 4.

第2図は、第1図に示す距離計により得られた出力特性
図である。なお、渦流センサーとしては30mφ径のも
のが用いられている。
FIG. 2 is an output characteristic diagram obtained by the rangefinder shown in FIG. 1. Note that the eddy current sensor used has a diameter of 30 mφ.

このように本発明の距離計においては、渦流センサーの
各2次コイル1−2.1−3の各誘起電圧の差電圧を同
期検波回路14により1次コイル1−1に供給する交流
信号と同期して検波し、この検反により得られた直流信
号E、を直流増幅器13に帰還し、さらに直流増幅器1
3の出力電圧をD C/A C変換回路10に送って1
次コイル1−1に供給する交流信号の電圧レベル金制御
し、これにより直流増幅613の出力電圧E。ut’距
pmtoに対応するものとしたので、位相偏位により出
力電圧E。utが誤差の含んだ1直となりたり、また帰
還ループにおいて発振が起こったりすることはなく距離
計全体としての動作が安定する。したがって被測定体4
が旨温の例えば溶解液でおって渦流センサ1の配置され
る位置がM−m境でろると、渦流センサ1の2次コイル
1−2.1−3の各インピーダンスがアンバランスVC
なるなどして位相偏位が起こるが、本発明の距ai’t
−適用すれば同期検波回路14により直流化して帰還さ
せるので悪還境下にあっても発掘は起こらず安定した動
作で距離が測定でさる。
In this way, in the distance meter of the present invention, the difference voltage between the induced voltages of the secondary coils 1-2, 1-3 of the eddy current sensor is converted into an AC signal supplied to the primary coil 1-1 by the synchronous detection circuit 14. The DC signal E obtained by this detection is fed back to the DC amplifier 13, and further to the DC amplifier 1.
Send the output voltage of 3 to the DC/AC conversion circuit 10 and convert the output voltage of 1
The voltage level of the AC signal supplied to the next coil 1-1 is controlled, thereby increasing the output voltage E of the DC amplifier 613. Since the distance ut' corresponds to the distance pmto, the output voltage E due to the phase deviation. The operation of the rangefinder as a whole is stabilized without causing ut to become a single shift containing errors or causing oscillation in the feedback loop. Therefore, the object to be measured 4
For example, if the eddy current sensor 1 is disposed at the M-m boundary when the solution is at a certain temperature, the impedances of the secondary coils 1-2, 1-3 of the eddy current sensor 1 become unbalanced VC.
However, the distance ai't of the present invention
- If applied, the synchronous detection circuit 14 converts it to direct current and returns it, so even under adverse conditions, no excavation occurs and distances can be measured with stable operation.

また、従来の距離計では、オシロスコープ等により各回
路における出力電圧の位相g#を調整、点検していたが
、本発明の距離針では帰還ルーfを直流化したので従来
のような複雑なm 整、’点検がなくなりメンテナンス
が簡単となる。
In addition, in conventional rangefinders, the phase g# of the output voltage in each circuit was adjusted and inspected using an oscilloscope, etc., but in the distance needle of the present invention, the feedback loop f is changed to DC, so it is not necessary to use a complicated m There is no need for regular inspections and maintenance is simplified.

式らに、従来の帰還増幅型渦流距離計と同号以上の測定
スパンが得られる。
According to the equation, a measurement span equal to or greater than that of a conventional feedback amplification type eddy current distance meter can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によルば、渦流センサの1対の2次コイル間の差
電圧を同期検波回路により渦流センサの1次コイルに供
給する交流信号に同期して検波し、この検波により得ら
れた直流信号を直流増幅器に加え、さらにこの直流増幅
器の出力信号に比例して交流信号全制御し、このとき得
られる直流増@器の出力信号から両流センサと被測定体
との距l@ヲ求めるようにしたので、帰還ループにおけ
る位相偏位による発振現象をなくし得て安定に動作しか
つメンテナンスフリに有効な高精度な直流帰還型渦流距
離計を提供できる。
According to the present invention, a differential voltage between a pair of secondary coils of an eddy current sensor is detected by a synchronous detection circuit in synchronization with an AC signal supplied to the primary coil of the eddy current sensor, and the DC signal obtained by this detection is Add the signal to a DC amplifier, then control all AC signals in proportion to the output signal of this DC amplifier, and calculate the distance l between the dual-current sensor and the object to be measured from the output signal of the DC amplifier obtained at this time. As a result, it is possible to provide a highly accurate DC feedback type eddy current distance meter that can eliminate oscillation caused by phase deviation in the feedback loop, operates stably, and is maintenance-free and effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る直流帰還型渦流距離計の一実施例
を示す構成図、第2図は第1図に示す距離針の出力特性
図、第3図は従来の渦流式距離計の構成図、第4図は第
3図に示す距離計の出力特性図である。 1・・・渦流センサ、1−1・・・1次コイル、1−2
゜1″″3・・・2次コイル、2・・・発#を器、4・
・・被測定体、10・・・DC/AC変換回路、11・
・・電力増幅器、12・・・差動塑信号増幅器、13・
・・直流増幅器、14・・・同期検波回路、15・・・
直流基準電圧発生回路。 出鹿人代理人  弁理士 鈴 江 武 彦第1図 第2図 渕りγE角L Lo(mm) 第3図 フ 第4図 5則t¥Ii−JiJ(mm)
Fig. 1 is a configuration diagram showing an embodiment of a DC feedback type eddy current rangefinder according to the present invention, Fig. 2 is an output characteristic diagram of the distance needle shown in Fig. 1, and Fig. 3 is a diagram of a conventional eddy current rangefinder. The configuration diagram, FIG. 4, is an output characteristic diagram of the distance meter shown in FIG. 3. 1... Eddy current sensor, 1-1... Primary coil, 1-2
゜1″″3...Secondary coil, 2...Energy #, 4.
...Object to be measured, 10...DC/AC conversion circuit, 11.
...Power amplifier, 12...Differential plastic signal amplifier, 13.
...DC amplifier, 14...synchronous detection circuit, 15...
DC reference voltage generation circuit. Izuka's agent Patent attorney Takehiko Suzue Figure 1 Figure 2 Edge γE angle L Lo (mm) Figure 3 F Figure 4 Rule 5 t\Ii-JiJ (mm)

Claims (1)

【特許請求の範囲】[Claims] 被測定体上に近接して配置され、所定周波数の交流信号
が供給される1次コイルおよび各誘起電圧の差電圧を出
力する対なる2次コイルを有する渦流センサと、この渦
流センサの2次コイルから出力される電圧の差電圧を前
記交流信号に同期して検波し、直流信号として取り出す
同期検波回路と、この同期検波回路から出力される直流
信号を受け、この直流信号と予め設定された直流基準信
号とのレベル差を求めて前記渦流センサおよび前記被測
定体の間の距離に対応した信号を出力する差動増幅回路
と、この差動増幅回路から出力される信号に応じて前記
渦流センサの1次コイルに供給される交流信号の電圧レ
ベルを制御する供給制御回路とを具備したことを特徴と
する直流帰還型渦流距離計。
An eddy current sensor is provided with a primary coil that is placed close to an object to be measured and is supplied with an alternating current signal of a predetermined frequency, and a paired secondary coil that outputs a differential voltage between the respective induced voltages, and a secondary coil of this eddy current sensor. a synchronous detection circuit that detects the difference voltage between the voltages output from the coil in synchronization with the AC signal and extracts it as a DC signal; a differential amplifier circuit that calculates a level difference with a DC reference signal and outputs a signal corresponding to the distance between the eddy current sensor and the object to be measured; A DC feedback type eddy current distance meter comprising a supply control circuit that controls the voltage level of an AC signal supplied to a primary coil of the sensor.
JP20423484A 1984-09-29 1984-09-29 Direct current feedback type eddy current range finder Granted JPS6182117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20423484A JPS6182117A (en) 1984-09-29 1984-09-29 Direct current feedback type eddy current range finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20423484A JPS6182117A (en) 1984-09-29 1984-09-29 Direct current feedback type eddy current range finder

Publications (2)

Publication Number Publication Date
JPS6182117A true JPS6182117A (en) 1986-04-25
JPH0334807B2 JPH0334807B2 (en) 1991-05-24

Family

ID=16487064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20423484A Granted JPS6182117A (en) 1984-09-29 1984-09-29 Direct current feedback type eddy current range finder

Country Status (1)

Country Link
JP (1) JPS6182117A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01161118A (en) * 1987-09-28 1989-06-23 Geotronics Ab Detector for slag interface level within molten metal bath
WO2014174725A1 (en) 2013-04-24 2014-10-30 イーグル工業株式会社 Sliding part
CN106225657A (en) * 2016-08-12 2016-12-14 安徽容知日新科技股份有限公司 Displacement transducer
CN106969698A (en) * 2017-06-02 2017-07-21 深圳怡化电脑股份有限公司 A kind of electric vortex sensor measuring circuit and current vortex sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01161118A (en) * 1987-09-28 1989-06-23 Geotronics Ab Detector for slag interface level within molten metal bath
WO2014174725A1 (en) 2013-04-24 2014-10-30 イーグル工業株式会社 Sliding part
CN106225657A (en) * 2016-08-12 2016-12-14 安徽容知日新科技股份有限公司 Displacement transducer
CN106225657B (en) * 2016-08-12 2019-12-06 安徽容知日新科技股份有限公司 displacement sensor
CN106969698A (en) * 2017-06-02 2017-07-21 深圳怡化电脑股份有限公司 A kind of electric vortex sensor measuring circuit and current vortex sensor

Also Published As

Publication number Publication date
JPH0334807B2 (en) 1991-05-24

Similar Documents

Publication Publication Date Title
CA1052886A (en) Capacitive thickness gauging
US4193298A (en) Excitation system for electromagnetic flowmeter
JPS6182117A (en) Direct current feedback type eddy current range finder
GB1516397A (en) Transducer circuit
EP0095839B1 (en) An instrument for measuring electrical resistance, inductance or capacitance
US3714570A (en) Apparatus for measuring the effective value of electrical waveforms
JPS59187272A (en) Electric constant measuring apparatus
US2590946A (en) Combining measuring circuit
US3501694A (en) Ohmmeter circuit having stabilizing circuit which reduces the effect of source variations on indication
SU630597A1 (en) Phase metering arrangement
US3022665A (en) Liquid contents gauges
CN1012009B (en) Bridge resistance measuring device for auget
US4066959A (en) Electronic volt-square-hour metering method and apparatus
JPS6182102A (en) Eddy current type range finder
JPS6018701A (en) Displacement measuring device
RU2120623C1 (en) Capacitance proximate moisture meter
SU811160A1 (en) Survey apparatus
SU154949A1 (en)
RU1779985C (en) Method for individual measurement of parameters of electrode boundary at slow discharge stage
SU993365A1 (en) Device for measuring internal resistance of electrochemical current source
US3559058A (en) Compensated electrical measuring instrument
JPS63103975A (en) Current effective value measuring circuit for cycle control type electric power controller
SU1441180A1 (en) Eddy-current measuring device
SU1273809A1 (en) Eddy current speed meter
SU928263A2 (en) Method of determination of the distance to short circuit in power lines