JPS6181788A - Novel bacillus subtilis containing thermostable beta-galactosidase and production of thermostable beta-galactosidase - Google Patents

Novel bacillus subtilis containing thermostable beta-galactosidase and production of thermostable beta-galactosidase

Info

Publication number
JPS6181788A
JPS6181788A JP59202965A JP20296584A JPS6181788A JP S6181788 A JPS6181788 A JP S6181788A JP 59202965 A JP59202965 A JP 59202965A JP 20296584 A JP20296584 A JP 20296584A JP S6181788 A JPS6181788 A JP S6181788A
Authority
JP
Japan
Prior art keywords
dna
galactosidase
bacillus subtilis
vector
thermostable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59202965A
Other languages
Japanese (ja)
Other versions
JPH0571227B2 (en
Inventor
Haruhisa Hirata
晴久 平田
Hirosuke Okada
岡田 弘輔
Seiji Negoro
根来 誠司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wakamoto Pharmaceutical Co Ltd
Original Assignee
Wakamoto Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wakamoto Pharmaceutical Co Ltd filed Critical Wakamoto Pharmaceutical Co Ltd
Priority to JP59202965A priority Critical patent/JPS6181788A/en
Priority to EP85112245A priority patent/EP0176971A3/en
Priority to US06/780,842 priority patent/US4861718A/en
Priority to DE198585112245T priority patent/DE176971T1/en
Publication of JPS6181788A publication Critical patent/JPS6181788A/en
Publication of JPH0571227B2 publication Critical patent/JPH0571227B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01023Beta-galactosidase (3.2.1.23), i.e. exo-(1-->4)-beta-D-galactanase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/75Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2468Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1) acting on beta-galactose-glycoside bonds, e.g. carrageenases (3.2.1.83; 3.2.1.157); beta-agarase (3.2.1.81)
    • C12N9/2471Beta-galactosidase (3.2.1.23), i.e. exo-(1-->4)-beta-D-galactanase

Abstract

PURPOSE:To product beta-galactosidase having improved thermostability industrially advantageously, by transducing DNA obtained by integrating a DNA fragment carrying specific genetic information into vector DNA for Bacillus subtilis into Bacillus subtilis, and cultivating the Bacillus subtilis. CONSTITUTION:Recombinant DNA obtained by integrating DNA fraction carry ing genetic information of thermostable beta-galactosidase collected from Bacillus stearothermophilus into a vector for Bacillus subtilis is transduced into Bacillus subtilis, which is cultivated. Then, thermostable beta-galactosidase accumulated in the culture material is collected. The integration of the chromosome DNA into vector DNA can be carried out by scissoring the chromosome DNA and the vector DNA with a restricted enzyme to prepare a chromosome DNA frag ment and a vector DNA fragment, and treating a mixture of them with DNA ligase. DNA ligase derived from phage T4 is preferably used as the DNA ligase.

Description

【発明の詳細な説明】 (発明の目的) 産業上の利用分野 本発明は耐熱性β−ガラクトシダーゼ遺伝子を有する新
規な枯草菌及び耐熱性β−ガラクトシダーゼの製造法(
=関する。
Detailed Description of the Invention (Objective of the Invention) Industrial Application Field The present invention relates to a novel Bacillus subtilis having a heat-stable β-galactosidase gene and a method for producing thermostable β-galactosidase (
= related.

β−ガラクトシダーゼは乳糖をガラクトースとグルコー
スに加水分解する酵素で、低乳糖牛乳の製造に用いられ
たり、f−ズ製造の際副産物として大量に生成する乳清
(Whey )中の乳糖から利用価値の高いガラクトー
ス又はグルコースを製造するために用いられる等食品加
工に広く利用されている。
β-galactosidase is an enzyme that hydrolyzes lactose into galactose and glucose, and is used in the production of low-lactose milk and extracts useful value from lactose in whey, which is produced in large quantities as a by-product during the production of f-su. It is widely used in food processing, such as when used to produce high galactose or glucose.

食品加工に利用する酵素は加工中の微生物汚染を防ぐ観
点から高温使用に耐え得るものが望ましい。
It is desirable that enzymes used in food processing be able to withstand high temperature use in order to prevent microbial contamination during processing.

又、この酵素は乳糖不耐症を治療するための医薬品とし
ても利用されており、この場合でも耐熱性の優れている
方が製剤の安定性の点で好ましい。
Furthermore, this enzyme is also used as a drug for treating lactose intolerance, and even in this case, excellent heat resistance is preferred from the viewpoint of stability of the preparation.

本発明は、これらの要望に答えるため、耐熱性の優れた
β−ガラクトシダーゼを工業的有利に製造する方法を確
立することを目′的とするものである。
In order to meet these demands, the present invention aims to establish an industrially advantageous method for producing β-galactosidase with excellent heat resistance.

従来の技術及び問題点 好熱性のパンルス(Bacillus )属細菌が耐熱
性β−ガラクトシダーゼを産生ずること、及びその微生
物菌体を固定化して牛乳処理を行い低乳糖牛乳を得るこ
とは1例えば次の■、■及び■の文献C:記載されてい
る。
PRIOR TECHNOLOGIES AND PROBLEMS It is known that thermophilic Bacillus bacteria produce heat-stable β-galactosidase, and that low-lactose milk can be obtained by immobilizing the microbial cells and processing milk. ■, ■, and ■ Document C: Described.

■ R,E、 Goodman、 et al ;Ca
nadian Journal of Microbi
ology。
■ R, E, Goodman, et al; Ca
nadian Journal of Microbi
ology.

皿、 817−825 (1976)。Dish, 817-825 (1976).

■ M、 W、 Griffiths、 et al 
 ;Journal of the 5cience 
of Food andAgriculture、 2
9.753−761 (1978)−■ T、 Kob
ayashi、 et al  ;Journal o
f Fermentation Technology
■ M, W, Griffiths, et al.
;Journal of the 5science
of Food and Agriculture, 2
9.753-761 (1978)-■ T, Kob
ayashi, et al ;Journal o
f Fermentation Technology
.

並、 309−314 (1978)。Parallel, 309-314 (1978).

しかしながら、これらの従来法では酵素の生産性が低く
、酵素自体の基質(乳糖)に対する親和力が小さく、耐
熱性も充分でない等の問題があった。
However, these conventional methods have problems such as low enzyme productivity, low affinity for the enzyme's substrate (lactose), and insufficient heat resistance.

本発明者等は、先きに、遺伝子組換技術を利用して、パ
シルス・ステアロサーモフィラスIAM 11001の
耐熱性β−ガラクトンダーゼ遺伝子をベクターを介して
大腸菌(:導入することに成功し、この遺伝子組換え大
腸菌〔エシェリヒア・コリ294−43 (pH02)
 、徴工研菌寄第7233号〕の培養による耐熱性β−
ガラクトシダーゼの製造法を完成し、特許出願した。(
特願昭58−171077号)c。
The present inventors have previously succeeded in introducing the thermostable β-galactonase gene of Pacillus stearothermophilus IAM 11001 into Escherichia coli (:: This genetically modified Escherichia coli [Escherichia coli 294-43 (pH02)]
Heat-resistant β-
Completed a method for producing galactosidase and applied for a patent. (
Patent Application No. 58-171077) c.

この方法(=よれば、耐熱性の非常に優れたβガラクト
シダーゼを取得出来、しかもこの方法(=よる酵素は単
純な加熱処理で高度に精製されることから、工業生産に
於ける精製工程の簡略化を可能にしたが、酵素の生産量
がやや低い欠点があった。
According to this method (=), it is possible to obtain β-galactosidase with very good heat resistance, and since the enzyme according to this method (=) can be highly purified by simple heat treatment, it is possible to simplify the purification process in industrial production. However, the drawback was that the production amount of the enzyme was rather low.

(発明の構成) 本発明は好熱菌パシルス・ステアロサーモフィラスから
得た耐熱性β−ガラクトシダーゼの遺伝情報を担うDN
Aをベクターを介して枯草菌に導入させることに成功す
るとともに、この枯草菌を培養して得られる培養物から
耐熱性β−ガラクトシダーゼを工業的有利(:取得する
ことに成功したことに基くものである。
(Structure of the Invention) The present invention provides a DNA carrying the genetic information of thermostable β-galactosidase obtained from the thermophilic bacterium Pacillus stearothermophilus.
This is based on the successful introduction of A into Bacillus subtilis via a vector and the commercially advantageous acquisition of thermostable β-galactosidase from the culture obtained by culturing this Bacillus subtilis. It is.

従って0本発明は1次の各発明を包含している。Therefore, the present invention includes each of the following inventions.

(1)  バシルス・ステアロサーモフィラスから取得
した耐熱性β−ガラクトシダーゼの遺伝情報を担うDN
A断片を枯草菌用ベクターDNAに組込んだ新規組換え
体DNA。
(1) DN carrying the genetic information of thermostable β-galactosidase obtained from Bacillus stearothermophilus
A novel recombinant DNA in which the A fragment is integrated into the vector DNA for Bacillus subtilis.

(2)  バシルス・ステアロサーモフィラスから取得
した耐熱性β−ガラクトシダーゼの遺伝情報を担うDN
A断片を枯草菌用ベクターDNAに組込んだ組換え体D
NAを導入させた新規な枯草菌。
(2) DN carrying the genetic information of thermostable β-galactosidase obtained from Bacillus stearothermophilus
Recombinant D in which fragment A is integrated into vector DNA for Bacillus subtilis
A new Bacillus subtilis with NA introduced.

(3)  パシルス・ステアロサーモフィラスから取得
した耐熱性β−ガラクトシダーゼの遺伝情報を担うDN
A断片を枯草菌用ベクターDNAに組込んだ組換え体D
NAを導入させた枯草菌を培養し、その培養物中に蓄積
した耐熱性β−ガラクトシダーゼを採取することを特徴
とする耐熱性β−ガラクトシダーゼの製造法、本発明を
実施するにあたり、耐熱性β−ガラクトシダーゼの遺伝
情報を担うDNA(以下。
(3) DN carrying the genetic information of thermostable β-galactosidase obtained from Pacillus stearothermophilus
Recombinant D in which fragment A is integrated into vector DNA for Bacillus subtilis
A method for producing heat-stable β-galactosidase, which is characterized by culturing Bacillus subtilis into which NA has been introduced and collecting heat-stable β-galactosidase accumulated in the culture. - DNA that carries the genetic information of galactosidase (hereinafter referred to as

染色体DNAと称する)のパシルス・ステアロサーモフ
ィラスからの単離精製は常法C二従って行うことができ
る。例えばBiochim 、 Biophys、Ac
ta72、619−629 (1963)に記載のフェ
ノール法により行うことができる。
Isolation and purification of chromosomal DNA (referred to as chromosomal DNA) from Pacillus stearothermophilus can be carried out according to conventional method C2. For example, Biochim, Biophys, Ac
It can be carried out by the phenol method described in Ta72, 619-629 (1963).

この染色体DNAのベクターDNAへの組込みは染色体
DNAおよびベクターDNAを制限酵素で切断して染色
体DNA断片およびベクターDNA断片を調製したのち
9両者の混合物をDNAリガーゼで処理することにより
行うことができる。ここで用いられるベクターDNAと
しては1例えばI)UBIIO,I)E194. pC
194,pBD9゜p’rp 4等があげられる。
This chromosomal DNA can be integrated into vector DNA by cutting the chromosomal DNA and vector DNA with restriction enzymes to prepare chromosomal DNA fragments and vector DNA fragments, and then treating a mixture of the two with DNA ligase. Examples of vector DNA used here include 1) I) UBIIO, I) E194. pC
194, pBD9°p'rp 4, etc.

また、制限酵素としてはBamHl、 Bgl 1ie
Eco RI、 Pst I、 Mlu I、 Sal
 I、 Xho I等があげられる。
In addition, restriction enzymes include BamHl and Bgl 1ie.
Eco RI, Pst I, Mlu I, Sal
I, Xho I, etc.

さらに、DNAリガーゼとしてはT4ファージ由来のD
NAリガーゼが好適に用いられる。
Furthermore, as a DNA ligase, D
NA ligase is preferably used.

上記方法で得られた組換え体DNAの枯草菌への導入は
プロトプラスト形質転換法(Molecularand
  General  Genetics、  168
. 111−115 (1979)、) に″″′”°
°“”kQ−T’fxb%、 WdfA@I −N 5
組換え体DN クトシダーゼの遺伝情報を担うDNA断片を組込んだベ
クターDNA)を有する菌株の選択方法は、当該組換え
体DNAを調製するの(;際して使用した制限酵素やベ
クターDNAの種類によっても異なるが9例えば、制限
酵素としてEcoRIを用い、ベクターDNAとしてp
UBlloを用いた場合には1次のようにして行うこと
ができる。すなわち菌株を5−ブロモ−4−クロロ−3
−インドリル−β−D−ガラクトピラノシド(以下Xg
alという)とカナマイシンを含むDM3寒天培地に培
養し、 青色を呈するコロニーを選択し、最終的にはβ
−ガラクトシダーゼ活性の有無を確認する。
The recombinant DNA obtained by the above method is introduced into Bacillus subtilis using the protoplast transformation method (Molecularand
General Genetics, 168
.. 111-115 (1979),)
°“”kQ-T'fxb%, WdfA@I-N 5
The method for selecting a strain having a recombinant DNA (vector DNA incorporating a DNA fragment carrying genetic information for tosidase) is to prepare the recombinant DNA (; For example, using EcoRI as the restriction enzyme and p
When using UBllo, this can be done in a first-order manner. That is, the strain is 5-bromo-4-chloro-3
-indolyl-β-D-galactopyranoside (hereinafter Xg
The cells were cultured on DM3 agar medium containing (referred to as al) and kanamycin, and colonies that appeared blue were selected, and finally β
- Check the presence or absence of galactosidase activity.

次いで、上記方法で得られた組換え体DNA含有菌株よ
り組換え体DNAを単離する。組換え体DNAの単離は
常法C二従って行うことができる。例えばNuclei
cAcids Re5earch、 7. 1513−
1523 (1979)に記載のアルカリ抽出法(;よ
り行うことができる。この様(ニして得られた組換え体
DNAを枯草菌に導入すれば1組換え体DNAを含有す
る枯草菌を調製することができる。組換え体DNAを含
有する枯草菌はカナマイシンとXgalを含むDM3寒
天培地に出現する青色コロニーとして取得することがで
きる。
Next, recombinant DNA is isolated from the recombinant DNA-containing bacterial strain obtained by the above method. Isolation of recombinant DNA can be carried out according to conventional method C2. For example, Nuclei
cAcids Research, 7. 1513-
1523 (1979). If the recombinant DNA obtained in this manner is introduced into Bacillus subtilis, Bacillus subtilis containing the recombinant DNA can be prepared. Bacillus subtilis containing recombinant DNA can be obtained as blue colonies appearing on a DM3 agar medium containing kanamycin and Xgal.

なおりM3  寒天培地は次の8溶液を別滅菌後混合し
て調製する。
Naori M3 agar medium is prepared by separately sterilizing and mixing the following 8 solutions.

1)4チ寒天           20〇−2) I
Mコハク酸ナトリウム(pH7,3)    500d
3)5%カザミノ酸         100−4)1
0%酵母エキス         5〇−3,5%リン
酸2カリウム+    100d5)1.5%リン酸l
カリウム 6)20チグルコース          25−7)
  IMMget2               2
0d8)2%牛血清アルブミン      5d本発明
による耐熱性β−ガラクトシダーゼの製造は、上記のよ
うにシて得られた新規な遺伝子組換え枯草菌を常法によ
り培養し、集菌したのち、常法により菌体を破砕し、無
細肪抽出液をとることにより行われる。かくして得られ
た耐熱性β−ガラクトシダーゼの精製は、熱処理および
通常のタンパク質の精製法1例えばイオン交換クロマト
グラフィー、ゲルf過等の方法により行われるが、特に
熱処理が有効である。
1) 4chi agar 200-2) I
M Sodium succinate (pH 7,3) 500d
3) 5% Casamino Acid 100-4) 1
0% yeast extract 50-3.5% dipotassium phosphate + 100d5) 1.5% phosphoric acid l
Potassium 6) 20 Tyglucose 25-7)
IMMget2 2
0d8) 2% Bovine Serum Albumin 5dThe thermostable β-galactosidase according to the present invention is produced by culturing the novel genetically modified Bacillus subtilis obtained as described above by a conventional method, collecting the bacteria, and then using a conventional method. This is done by crushing the bacterial cells and obtaining a fat-free extract. The heat-stable β-galactosidase thus obtained is purified by heat treatment and conventional protein purification methods such as ion exchange chromatography and gel filtration, but heat treatment is particularly effective.

この熱処理による精製法はパシルス・ステアロチーモフ
ィラスやナーマス・サーモフィラスから耐熱性β−ガラ
クトシダーゼを取得するための従来方法とは異なり、新
規かつ有効な方法である。
This heat treatment purification method is different from conventional methods for obtaining heat-stable β-galactosidase from Pacillus stearochymophilus and Namus thermophilus, and is a new and effective method.

即ち、好熱菌の生産する蛋白質は全て熱安定性が良いた
め、細胞抽出液を熱処理した場合。
That is, since all proteins produced by thermophilic bacteria have good thermal stability, when the cell extract is heat-treated.

全蛋白質が徐々(=変性するのみで、特にβ−ガラクト
シダーゼのみが精製されることはない。
The entire protein is only gradually denatured, and only β-galactosidase is not purified.

これに対し、常温菌の枯草菌に好熱菌の遺伝子を組込ん
だ本発明の新規微生物が産生ずるβ    ′−ガラク
トシダーゼは熱安定性の点で1元の枯草菌の蛋白質とは
大差があ1ハ約70℃、15〜30分程度の加熱処理で
枯草菌の蛋白質は大部分変性して沈殿となるが、β−ガ
ラクトシダーゼはほとんど変性せず熱処理液中に溶解し
ている。
On the other hand, the β'-galactosidase produced by the novel microorganism of the present invention, in which genes from a thermophilic bacterium are integrated into the thermophilic bacterium Bacillus subtilis, has a large difference in thermostability from the original Bacillus subtilis protein. Most of the proteins of Bacillus subtilis are denatured and precipitated by heat treatment at about 70° C. for about 15 to 30 minutes, but β-galactosidase is hardly denatured and is dissolved in the heat-treated solution.

この熱処理液を遠心分離するだけで、上清に純度の上昇
したβ−ガラクトシダーゼが得られる。
By simply centrifuging this heat-treated solution, β-galactosidase with increased purity can be obtained as a supernatant.

この熱処理による簡便かつ効率の良いβ−ガラクトシダ
ーゼの分離精製法は本発明の遺伝子組換え技術により初
めて可能になった新規技術である。
This simple and efficient method for separating and purifying β-galactosidase using heat treatment is a new technology made possible for the first time by the genetic recombination technology of the present invention.

次に本発明の詳細な説明するため実施例を示す。なお、
以下に示す実施例はDNA供与体として、パシルス・ス
テアロサーモフィルスIAM11001の耐熱性β−ガ
ラクトシダーゼの遺伝情報を担うDNA断片を組込んだ
組換え体プラスミドpH02を保持する大腸菌、エシェ
リヒア・コリ294−43 (pH02) 、  (微
工研菌寄第7233号)を、ベクターDNAとしてpU
Blloを、宿主枯草菌としてバシルス・ズブチリスM
1111(T、 IMANAKA、 et al、、 
JOURNAL of EACTERI−OLOGY、
 146. 1091−1097 (1981) −二
記載の公知の枯草菌〕を、それぞれ利用して行った例で
ある。
Next, examples will be shown to explain the present invention in detail. In addition,
In the example shown below, Escherichia coli 294-294-2, which carries a recombinant plasmid pH02 incorporating a DNA fragment carrying genetic information for heat-stable β-galactosidase of Pacillus stearothermophilus IAM11001, is used as a DNA donor. 43 (pH02), (Feikoken Bacterial Serial No. 7233) as vector DNA.
Blolo and Bacillus subtilis M as host Bacillus subtilis.
1111 (T, IMANAKA, et al.
JOURNAL OF EACTERI-OLOGY,
146. 1091-1097 (1981)-2] were used.

実施例1.  耐熱性β−ガラクトンダーゼの遺伝情報
を担うプラスミドDNAの調製 と切断 エシェリヒア・コリ294−43 (pH02)をM9
培地(NazHPO45,8?/L 、 KH2PO4
3fμ、 NaCl3 ?/l 、  NH2Cl 1
 ?/l 、  CaCl211F’μ、Mg5049
5m9/l、  FeCl31.6m9/l、 カザミ
ノ酸5 ?/l 、グルコース4 f/l ) 150
−中、37℃で培養液の600nmの吸光度が0.6−
1.0になるまで培養後、200μm/−のクロラムフ
ェニコールを添加して一夜培養を続けた。菌体を集洗菌
後、  2my/−のりゾチームを含む25 mM T
ris −HCt (pH8,0) 、 50 mMグ
ルーy−ス、  10mMEDTA、  15m1:懸
濁し、0℃で30分間放置後、  0.2N NaOH
,1% SDS (ラウリル硫酸ナトリウム)30−を
加え溶菌させ。
Example 1. Preparation and cleavage of plasmid DNA carrying genetic information for thermostable β-galactonase Escherichia coli 294-43 (pH 02) was transformed into M9
Medium (NazHPO45,8?/L, KH2PO4
3fμ, NaCl3? /l, NH2Cl 1
? /l, CaCl211F'μ, Mg5049
5m9/l, FeCl31.6m9/l, casamino acid 5? /l, glucose 4 f/l) 150
-The absorbance of the culture solution at 600 nm at 37℃ is 0.6-
After culturing until the concentration reached 1.0, 200 μm/− of chloramphenicol was added and the culture was continued overnight. After collecting and washing the bacterial cells, 25 mM T containing 2 my/- Norizozyme was added.
ris-HCt (pH 8,0), 50mM glucose, 10mM EDTA, 15ml: Suspended and left at 0°C for 30 minutes, then 0.2N NaOH
, 1% SDS (sodium lauryl sulfate) 30- was added to lyse the bacteria.

0℃で5分間放置した。次いで3M酢酸ナトリウム(p
H4,8) 22.5−を加え、0℃で1時間放置後。
It was left at 0°C for 5 minutes. Then 3M sodium acetate (p
H4,8) 22.5- was added and left at 0°C for 1 hour.

遠心分離(8,00Orpm、 20分)して上清を得
た。
A supernatant was obtained by centrifugation (8.00 rpm, 20 minutes).

上溝1m−2,5倍量のエタノールを加え、DNAを沈
殿させた後、5ゴのI Q mM Tris−HCt(
pH7,5)。
After adding 2.5 times the amount of ethanol to the upper groove to precipitate the DNA, 5 times the amount of IQ mM Tris-HCt (
pH 7.5).

1 mM EDTA (以下TE緩衝液と称す)に溶か
した。このDNA溶液をエチジウムブロマイド−塩化セ
シクム平衡密度勾配遠心にかけ、pH02プラスミド5
00μtを得た。プラスミドDNAをベクターDNAと
耐熱性β−ガラクトシダーゼの遺伝情報を担うパシルス
・ステアロサーモフィルスの染色体DNAとに分離する
ため5μtのD N A +:対し、5UのPstIを
加え+  20 mM Tris−HCt(pH7,5
)、  10mMMget2. 50mM(NH4)2
s04゜0.1 m97at牛血清アルブミンの反応液
50μを中で37℃にて3時間切断を行った。65℃、
10分間加熱してPst Iを失活させ、  DNAを
エタノール沈殿させた後、20μtのTE緩衝液にとか
した。
It was dissolved in 1 mM EDTA (hereinafter referred to as TE buffer). This DNA solution was subjected to ethidium bromide-sesicum chloride equilibrium density gradient centrifugation, and pH02 plasmid 5
00 μt was obtained. To separate plasmid DNA into vector DNA and Pacillus stearothermophilus chromosomal DNA that carries genetic information for thermostable β-galactosidase, 5 μt of DNA +: was added with 5 U of PstI + 20 mM Tris-HCt. (pH 7,5
), 10mMget2. 50mM(NH4)2
Cutting was carried out at 37°C for 3 hours in 50μ of a reaction solution of s04°0.1 m97at bovine serum albumin. 65℃,
Pst I was inactivated by heating for 10 minutes, the DNA was precipitated with ethanol, and then dissolved in 20 μt of TE buffer.

実施例2.  耐熱性β−ガラクトシダーゼの遺伝情報
を担うDNA断片末端のPst I部位からEcoRI
部位への変換 実施例1で得た耐熱性β−ガラクトシダーゼの遺伝情報
を担うDNA断片をベクターDNA1)UBIIOに連
結するため、末端のPst I 部位を下記の方法でE
CORI部位へ変換した。 実施例1 テ得りPst 
I t77断DNA5pfを20mMTris −HC
L (pH8,0) 、  600mM NaC1、1
2mM CaCl2.1mM BDTAの反応液25μ
を中で、エキンヌクレア−セBAL −31(New 
England Biolabs社製)0.2Uで30
℃、6分間反応させた。フェノール処理ζ二よりBAL
−31を失活させ、エタノール沈殿後。
Example 2. EcoRI from the Pst I site at the end of the DNA fragment carrying genetic information for thermostable β-galactosidase.
In order to link the DNA fragment carrying the genetic information of thermostable β-galactosidase obtained in Example 1 to the vector DNA1) UBIIO, the terminal Pst I site was converted to E by the following method.
Converted to CORI site. Example 1 Te obtained Pst
I t77 cut DNA 5pf was treated with 20mM Tris-HC.
L (pH 8,0), 600mM NaCl, 1
2mM CaCl2.1mM BDTA reaction solution 25μ
Inside, Equine Nuclease BAL-31 (New
(manufactured by England Biolabs) 30 at 0.2U
℃ for 6 minutes. BAL from phenol-treated ζ2
-31 was inactivated and after ethanol precipitation.

26μtのTE緩衝液にとかした。5′末端をT4−ポ
リヌクレオチドキナーゼでリン酸化したEc。
Dissolved in 26μt TE buffer. Ec phosphorylated at the 5' end with T4-polynucleotide kinase.

Rニリンカー(GGAATTCC) (宝酒造製) 2
5 pmolを加えテ、  66 mM Tris−H
CL(pH7,5) 、 10 mMkfgct2 。
R Nirinka (GGAATTCC) (manufactured by Takara Shuzo) 2
Add 5 pmol and 66 mM Tris-H
CL (pH 7,5), 10 mM kfgct2.

10mM9jオスレイト−/I/、1mMATPの反応
液40μを中でIUのT4−DNAリガーゼにより。
40μ of a reaction mixture of 10mM 9j Oslate-/I/, 1mM ATP with IU of T4-DNA ligase.

15℃、16時間反応させた。65℃、20分間加熱し
The reaction was carried out at 15°C for 16 hours. Heat at 65°C for 20 minutes.

T4−DNA!Jガーゼを失活させた後、14μυTE
緩衝液と6μtのIMNaCtを加えた反応液6゜μを
中、50UのEcoRIで37℃、3時間反応させた。
T4-DNA! After inactivating J gauze, 14μυTE
The mixture was reacted with 50 U of EcoRI at 37° C. for 3 hours in a 6 μm reaction solution containing a buffer solution and 6 μt of IMNaCt.

65℃、20分間加熱し、 EcoRIを失活させた後
、エタノール沈殿を行い、40μtのTE緩衝液にとか
した。
After heating at 65° C. for 20 minutes to inactivate EcoRI, ethanol precipitation was performed and dissolved in 40 μt of TE buffer.

実施例3.  ベクターDNAの調製と切断カナマイシ
ン耐性を有するpUBIIOプラスミドのDNAを下記
のようにして調製した。pUBIIOをプラスミドとし
て持つ公知の枯草菌、バシルス・ズブチリスMIIII
をL培地(トリプトン1%、酵母エキス0.5%、  
NaC10,5%、  ’;fルーy−:x0.2%、
 pH7、Q)500rnt中、37℃で培養液の60
0 nmの吸光度が2〜3になるまで振とう培養し、菌
体を集洗菌後、  2my/mtのりゾチームを含む2
5mMTris−HCL (pH8,0) 、  5Q
mMグルコース、 10mMEDTA50meに懸濁し
、37℃で30分間放置する。
Example 3. Preparation and cleavage of vector DNA DNA of pUBIIO plasmid having kanamycin resistance was prepared as follows. Bacillus subtilis MIII, a known Bacillus subtilis that has pUBIIO as a plasmid
L medium (tryptone 1%, yeast extract 0.5%,
NaC10.5%, ';
pH 7, Q) 60% of the culture at 37°C in 500rnt.
Culture with shaking until the absorbance at 0 nm becomes 2 to 3, collect and wash the bacterial cells, and add 2 my/mt Norizozyme-containing 2.
5mM Tris-HCL (pH 8,0), 5Q
Suspend in mM glucose, 10mM EDTA50me, and leave at 37°C for 30 minutes.

0.2M NaOH、1% S D S 100−を加
え溶菌させ。
Add 0.2M NaOH and 1% SDS 100- to lyse the bacteria.

0℃で5分間放置した。次いで3M酢酸ナトリウム(p
H4,s ) 75 mlを加え、0℃で1時間放置後
It was left at 0°C for 5 minutes. Then 3M sodium acetate (p
H4,s) 75 ml was added and left at 0°C for 1 hour.

遠心分離(8,00Orpm、 20分)して上清を得
た。
A supernatant was obtained by centrifugation (8.00 rpm, 20 minutes).

上清に2.5倍量のエタノールを加え、DNAを沈殿さ
せた後、5ゴのTE緩衝液に溶かした。このDNA溶液
をエチジウムブロマイド・塩化センクム平衡密度勾配遠
心にかけ、  pUBIIOプラスミドD N A 5
0μ2を得た。ベクターDNAを切断するため、  p
UBIIO1μ2に対して5UのEco RIを加え、
  lQmMTris−HCz(pH7,5)、 10
0mM Na CL 、  10 mM Mg cz2
の反応液75μを中で37℃、2時間反応を行った。6
5℃で10分間加熱し。
2.5 times the volume of ethanol was added to the supernatant to precipitate the DNA, which was then dissolved in 5 volumes of TE buffer. This DNA solution was subjected to ethidium bromide/sencum chloride equilibrium density gradient centrifugation to obtain pUBIIO plasmid DNA 5.
0μ2 was obtained. To cut the vector DNA, p
Add 5U of Eco RI to 1μ2 of UBIIO,
lQmMTris-HCz (pH 7,5), 10
0mM NaCL, 10mM Mg cz2
The reaction was carried out at 37° C. for 2 hours in 75μ of the reaction solution. 6
Heat at 5°C for 10 minutes.

DNAをエタノール沈殿させた後、10μtのTE緩衝
液にとかした。
After the DNA was precipitated with ethanol, it was dissolved in 10 μt of TE buffer.

実施例4.  耐熱性β−ガラクトシダーゼの遺伝情報
を担うDNA断片のベクター DNAへの挿入 実施例2で得たDNAのEco RI断片5μtど実施
例3で得たベクターDNAのEco RI断片1μmを
混合し、  66 mM Tris −HCl (pf
47.5 ) 、 IQmMMgCt2゜10mMジチ
オスレイト−/L/、  1mMAT P (7)反応
液50μを中で0.2UのT4−DNAリガーゼにより
4℃、16時間反応させた。65℃、10分間加熱して
’I’4−DNAリガーゼを失活させ、DNAをエタノ
ール沈殿させた後、100μtのTE緩衝液に溶かし、
DNA溶液とした。
Example 4. Insertion of a DNA fragment carrying genetic information for thermostable β-galactosidase into vector DNA. 5 μt of the Eco RI fragment of the DNA obtained in Example 2 and 1 μm of the Eco RI fragment of the vector DNA obtained in Example 3 were mixed at 66 mM. Tris-HCl (pf
47.5), IQmMMgCt2゜10mM dithiothreate-/L/, 1mMATP (7) 50μ of the reaction solution was reacted with 0.2U of T4-DNA ligase at 4°C for 16 hours. 'I'4-DNA ligase was inactivated by heating at 65°C for 10 minutes, the DNA was precipitated with ethanol, and then dissolved in 100 μt of TE buffer.
This was used as a DNA solution.

実施例5、  組換え体プラスミドによる枯草菌の形質
転換と、耐熱性β−ガラクトシ ダーゼ産生能を有する枯草菌の選択 分離 バシルス・ズブチリスMI 111をPanassay
 broth(肉エキス0.15%、、酵母エキス0.
15%、ベブト10.5%、  グ/l/ =r −ス
o、1 % 、  NaCL O,3%、リン酸2カリ
ウム0.37チ、リン酸1カリクム0.13%、 pH
7,0)20mt中37℃で+  570nmの吸光度
が0.8−1.0になるまで振とう培養し、集菌する。
Example 5 Transformation of Bacillus subtilis with recombinant plasmid and selection isolation of Bacillus subtilis having ability to produce thermostable β-galactosidase Bacillus subtilis MI 111 was transformed into Panassay
broth (meat extract 0.15%, yeast extract 0.
15%, bebuto 10.5%, g/l/=r-so, 1%, NaCLO, 3%, dipotassium phosphate 0.37%, monopotassium phosphate 0.13%, pH
7,0) Culture with shaking at 37°C in 20 mt until the absorbance at +570 nm becomes 0.8-1.0, and collect the bacteria.

24個のリゾチームを含むS M M P溶液(2倍濃
度の8MM溶液と4倍濃度のPenassay bro
thを等撓混合した溶液) 2.5 mt +:、 l
@濁し、37℃で2時間、おだやかに振とうしながらプ
ロトプラストを調製する。
S M M P solution containing 24 lysozymes (2x concentration 8MM solution and 4x concentration Penassay bro
2.5 mt +:, l
Prepare protoplasts by stirring gently at 37°C for 2 hours.

プロトプラストを遠心分離(4,00Orpm、 15
分)で集め8 MM P溶液で洗浄後、再度遠心分離し
Centrifuge the protoplasts (4,00 Orpm, 15
After washing with 8 MMP solution, the cells were centrifuged again.

2rntのS M M P溶液に懸濁する。Suspend in 2rnt S M M P solution.

なお、8MM溶液は0.5M i/ q糖、20mMマ
レイン酸(pH6,5) 、  20 mM Mgcz
2よりなる混合液である。
Note that the 8MM solution contains 0.5M i/q sugar, 20mM maleic acid (pH 6,5), 20mM Mgcz
It is a mixed liquid consisting of 2.

実施例4で得たDNA溶液3oμtと2倍濃度の8MM
溶液30μtの混合液に対し、このプロトプラスト懸濁
液0.5d、  および1.5−の40チポリエチレン
グルコール溶液(100d中1ニポリエテレングルコー
ル6000を40?、2倍濃度のSN1M溶液50−を
含む)を加え、2分間放置後、57!のSMMP溶液を
加え、プロトプラストを遠心分離で回収した。プロトプ
ラストを14の5A4i’LP溶液に懸濁し、30℃で
1.5時間振とう培養後、カナマイシン(1■/*)及
びXgolを含むDM3再生用寒天培地に塗布した。3
7℃で2日間培養すると、β−ガラクトシダーゼ産生能
を有する枯草菌のコロニーは青色を呈する。
3 μt of the DNA solution obtained in Example 4 and 8 MM at twice the concentration
For a mixture of 30 μt of solution, add 0.5 d of this protoplast suspension, and 1.5 d of 40 polyethylene glycol solution (40 μt of 1 polyethylene glycol 6000 in 100 d, 50 d of SN 1M solution of 2 times concentration). -) was added and left for 2 minutes, 57! of SMMP solution was added, and the protoplasts were collected by centrifugation. Protoplasts were suspended in 14 5A4i'LP solution, cultured with shaking at 30°C for 1.5 hours, and then plated on a DM3 regeneration agar medium containing kanamycin (1/*) and Xgol. 3
When cultured at 7°C for 2 days, colonies of Bacillus subtilis capable of producing β-galactosidase exhibit a blue color.

かくして得られた新規な枯草菌はパシルス・ズブチリス
MI 111 (pH05)と名付け、工業技術院微生
物工業技術研究所(−寄託した。この寄託番号は微工研
菌寄第7831号である。
The novel Bacillus subtilis thus obtained was named Pacillus subtilis MI 111 (pH 05) and deposited with the Institute of Microbial Technology, Agency of Industrial Science and Technology (-).The deposit number is FEIB Deposit No. 7831.

なお、この新規枯草菌、バシルス・ズブチリスMI 1
11 (閉G5 )の菌学的性質は、カナマイシン耐性
及び耐熱性β−ガラクトシダーゼ生産性を示す以外は普
通の枯草菌の性質とほぼ同一である。
In addition, this new Bacillus subtilis, Bacillus subtilis MI 1
The mycological properties of No. 11 (closed G5) are almost the same as those of ordinary Bacillus subtilis, except that it exhibits kanamycin resistance and heat-stable β-galactosidase productivity.

実施例6  β−ガラクトシダーゼの製造及び耐熱性試
験 バシルヌ・ズブチリスMI 111 (pH05)をカ
ナマイシン5μf/me を含むLL培地(トリプトン
1%、酵母エキス0.5 % 、  NaCtO,5%
 、 乳糖0.2%。
Example 6 Production and heat resistance test of β-galactosidase Bacillus subtilis MI 111 (pH 05) was grown in LL medium containing kanamycin 5 μf/me (tryptone 1%, yeast extract 0.5%, NaCtO, 5%)
, lactose 0.2%.

pH7,0) 150ゴ中で、37℃、16時間振とう
培養し。
The cells were cultured with shaking at 37°C for 16 hours in a 150°C (pH 7.0).

集菌後、Z緩衝液(0,1Mリン酸緩衝液(メ17.0
 ’) 。
After collecting bacteria, add Z buffer (0.1M phosphate buffer (medium 17.0
').

10mM KCl 、  1 mM MgSO4,50
mM  2−メルカプトエタノール)3−に懸濁する。
10mM KCl, 1mM MgSO4,50
Suspend in mM 2-mercaptoethanol) 3-.

超音波処理後、遠心分離(15,00Orpm、 15
分)して得た上清を細胞抽出液とした。
After ultrasonication, centrifugation (15,00 Orpm, 15
The supernatant obtained was used as a cell extract.

この細胞抽出液の70℃、30分間の熱処理前後のβ−
ガラクトシダーゼ活性を、基質として〇−ニトロフェニ
ルーβ−D−ガラクトピラノシド(以下0NPGと称す
)を用いて下記のようにして測定した。
β- of this cell extract before and after heat treatment at 70°C for 30 minutes
Galactosidase activity was measured as follows using 0-nitrophenyl-β-D-galactopyranoside (hereinafter referred to as 0NPG) as a substrate.

0.81n97me ノON P Gを含む2緩衝液2
 mlと酵素液0.4−を混合し、65℃で一定時間放
置後、IM Na2CO31mlを加えて水冷し1反応
により生じたO−ニトロフェノールの量を420nmの
吸光度により測定した。1分間に1μmolのO−ニト
ロフェノールを遊離する酵素量をIUとした。
2 buffer solution 2 containing 0.81n97me NOON PG
ml of the enzyme solution was mixed and left at 65° C. for a certain period of time, then 1 ml of IM Na2CO was added and cooled with water, and the amount of O-nitrophenol produced in one reaction was measured by absorbance at 420 nm. The amount of enzyme that released 1 μmol of O-nitrophenol per minute was defined as IU.

比較のため、エシェリヒア・コ!I 294−43(p
H02)をテトラサイクリア (5μSF7’++4!
 )を含むLL培地で培養し、上記と同様(=シて得た
細胞抽出液およびパシルス・ステアロサーモフィルスI
AMI100IをLL培地で55℃で培養して得た細胞
抽出液を用い、同様C:試験し、た。
For comparison, Escherichia Ko! I 294-43 (p.
H02) with Tetracyclear (5μSF7'++4!
), and cultured in the same manner as above (= cell extract obtained by cell extraction and Pacillus stearothermophilus I
A similar C test was conducted using a cell extract obtained by culturing AMI100I in LL medium at 55°C.

その結果は第1表の通りである。The results are shown in Table 1.

第1表 第1表から明らかなように1本発明及び比較1のβ−ガ
ラクトシダーゼは70℃、30分の加熱処理後の活性残
存率が90チ及び81%であり、比較2の場合の33チ
(=比較し、著しく高い値を示し、耐熱性が非常に慢れ
ていた。
Table 1 As is clear from Table 1, the β-galactosidase of the present invention and Comparative 1 had an activity residual rate of 90% and 81% after heat treatment at 70°C for 30 minutes, while that of Comparative 2 was 33%. In comparison, it showed a significantly higher value, and its heat resistance was extremely high.

加熱処理による各酵素の精製効果についてみれば9本発
明及び比較1の酵素は比活性が3.2倍及び4.5倍向
上したのに対し、比較3の場合は逆(20,8倍に低下
した。
Looking at the purification effect of each enzyme by heat treatment, the specific activities of the enzymes of the present invention and Comparison 1 were improved by 3.2 and 4.5 times, whereas in the case of Comparison 3, the specific activities were the opposite (20.8 times). decreased.

各微生物の耐熱性酵素の生産性〔加熱後の活性(U/d
)]についてみれば9本発明(:よれば比較1の約29
倍、又は比較2の20倍収率が向上した。
Productivity of thermostable enzymes of each microorganism [activity after heating (U/d
)] according to the present invention (: according to the comparison 1, about 29
The yield was improved by 2 times or 20 times that of Comparative 2.

なお、加熱処理C:よる本酵素の精製効果をさらに詳し
く調査するため9本発明徴生物、パシルス・ズブチリス
MI 111 (pH05)とその宿主微生物、パシル
ス・ズブチリスMI 111 (PUB 110)につ
いて、細胞抽出液及びそれぞれを70℃、15分熱処理
した液を試料として、5DS−ポリアクリルアミドゲル
電気泳動(U、 K 、 Laemmli。
In order to investigate in more detail the purification effect of this enzyme by heat treatment C: cell extraction was carried out for Pacillus subtilis MI 111 (pH 05), a symptomatic organism of the present invention, and its host microorganism, Pacillus subtilis MI 111 (PUB 110). 5DS-polyacrylamide gel electrophoresis (U, K, Laemmli et al.

Nature 227.680−685 (1970)
、)  を行った。
Nature 227.680-685 (1970)
,) was performed.

この試験に於いて、標準品として精製β−ガラクトシダ
ーゼを用い9分子量マーカー蛋白質として、RNA−ポ
リメラーゼ(165000,155000゜39000
 ) 、牛血清アルブミン(68000’) 、  )
リプンンインヒビター(21500)の混合物を使用し
た。泳動後、  0.0:lダマシーブリリアントプル
−R250で染色した結果を第1図に示す。
In this test, purified β-galactosidase was used as a standard product, and RNA-polymerase (165,000, 155,000°, 39,000°) was used as a molecular weight marker protein.
), bovine serum albumin (68000'), )
A mixture of Rippun inhibitors (21500) was used. After electrophoresis, the results of staining with 0.0:1 Damassie Brilliant Pur-R250 are shown in FIG.

第1図に於いて、レーン1〜6はそれぞれ次の通りであ
る。
In FIG. 1, lanes 1 to 6 are as follows.

レーン     試   料 1  分子量マーカー 2  精製β−ガラクトシダーゼ 3  不発明徴生物の細胞抽出液 4  同上を70℃、15分熱処理した液5  宿主微
生物の細胞抽出液 6  同上を700.15分熱処理した液第1図から明
らかなように1本発明徴生物の細胞抽出液(レーン3)
と宿主微生物の細胞抽出液(レーン5)の成分は前者が
β−ガラクトシダーゼを含み、後者がそれを含まない点
を除けば、はぼ同一の多種類の成分を含んでいる。
Lane Sample 1 Molecular weight marker 2 Purified β-galactosidase 3 Cell extract of a non-inventive organism 4 Solution 5 obtained by heat-treating the same as above at 70°C for 15 minutes 5 Cell extract of host microorganism 6 Solution 1 obtained by heat-treating the same as above for 700.15 minutes As is clear from the figure, a cell extract of a symptomatic organism of the present invention (lane 3)
and the host microorganism cell extract (lane 5) contain many identical components, except that the former contains β-galactosidase and the latter does not.

これら多種類のβ−ガラクトシダーゼ以外の成分は、 
700.15分熱処理した試料(レーン4及びレーン6
)からほぼ完全に消失した。
Components other than these many types of β-galactosidase are
Samples heat-treated for 700.15 minutes (lanes 4 and 6)
) has almost completely disappeared.

また、別の試験で9本発明による耐熱性β−ガラクトシ
ダーゼ精製品の活性の半減期を測定した結果、60Cに
於ける半減期が150時間であり、前記文献■の7分及
び文献■の450分に比較して著しく長いことがわかっ
た。
In addition, as a result of measuring the half-life of the activity of the heat-stable β-galactosidase purified product according to the present invention in another test, it was found that the half-life at 60C was 150 hours, 7 minutes in the above document (1) and 450 hours in the document (2). It was found to be significantly longer than 1 minute.

実施例7.  枯草菌の保持する組換え体DNAの解析 実施例5で得た形質転換株をカナマイシン(5μシー)
を含むL培地50〇−中で370で培養し、実施例3と
同様(ニしてプラスミドDNA 50   、μtを得
た。このプラスミドDNAを用いてパシルス・ズブチリ
スMIIIIを実施例5と同様な方法で形質転換したと
ころ、得られた形質転換株は全てカナマイシン耐性で、
β−ガラクトシダーゼ産生能を有していた。
Example 7. Analysis of recombinant DNA retained by Bacillus subtilis The transformed strain obtained in Example 5 was treated with kanamycin (5 μC).
The plasmid DNA 50 was cultured at 370 °C in L medium 500 °C containing 50 °C as in Example 3 (2) to obtain plasmid DNA 50 μt. Using this plasmid DNA, Pacillus subtilis MIII was cultured in the same manner as in Example 5. All the transformed strains obtained were kanamycin resistant,
It had the ability to produce β-galactosidase.

このことは、プラスミドDNAにβ−ガラクトシダーゼ
の遺伝情報を担5DNA断片が組込まれていることを示
している。
This indicates that the 5 DNA fragment carrying the genetic information of β-galactosidase is incorporated into the plasmid DNA.

また、このプラスミドDNAを実施例2と同様の方法で
制限酵素EcoRIで切断し、耐熱性β−ガラクトシダ
ーゼの遺伝情報を担うDNA断片の大きさを1%アガロ
ースゲル電気泳動により測定したところ、2.9キロ塩
基対(k b)であった。
In addition, this plasmid DNA was cut with the restriction enzyme EcoRI in the same manner as in Example 2, and the size of the DNA fragment carrying the genetic information of thermostable β-galactosidase was measured by 1% agarose gel electrophoresis.2. It was 9 kilobase pairs (kb).

なお、このプラスミドDNA(PH05)の構造図(制
限酵素地図)は第2図で示した。
The structural diagram (restriction enzyme map) of this plasmid DNA (PH05) is shown in FIG.

同図C二は、比較のため、特願昭58−171077号
の先願発明で調製したプラスミドDNA (pH02)
の構造図も併わせ示した。
For comparison, C2 in the same figure shows plasmid DNA (pH 02) prepared according to the prior invention of Japanese Patent Application No. 171077/1982.
A structural diagram is also shown.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は8DS−ポリアクリルアミドゲル電気泳動の結
果を示すもので、各レーンの試料は次の通りである。 レーン     試   料 1  分子量マーカー 2  精製β−ガラクトシダーゼ 3  不発明徴生物の細胞抽出液 4  同上を70C,15分熱処理した液5  宿主微
生物の細胞抽出液 6  同上を700.15分熱処理した液第2図は本発
明の新規組換え体プラスミドDNA(pi(G5)及び
特願昭58−171077号の発明のプラスミドDNA
(pH02)の制限酵素地図を示すものである。
FIG. 1 shows the results of 8DS-polyacrylamide gel electrophoresis, and the samples in each lane are as follows. Lane Sample 1 Molecular weight marker 2 Purified β-galactosidase 3 Cell extract of a non-inventive organism 4 Solution obtained by heat-treating the same above at 70C for 15 minutes 5 Cell extract of host microorganism 6 Solution obtained by heat-treating the same above for 700.15 minutes Figure 2 is the novel recombinant plasmid DNA of the present invention (pi (G5)) and the plasmid DNA of the invention of Japanese Patent Application No. 171077/1982.
(pH02) shows a restriction enzyme map.

Claims (3)

【特許請求の範囲】[Claims] (1)バシルス・ステアロサーモフィラスから取得した
耐熱性β−ガラクトシダーゼの遺伝情報を担うDNA断
片を枯草菌用ベクターDNAに組込んだ新規組換え体D
NA。
(1) A novel recombinant D in which a DNA fragment carrying the genetic information of thermostable β-galactosidase obtained from Bacillus stearothermophilus is incorporated into the vector DNA for Bacillus subtilis
N.A.
(2)バシルス・ステアロサーモフィラスから取得した
耐熱性β−ガラクトシダーゼの遺伝情報を担うDNA断
片を枯草菌用ベクターDNAに組込んだ組換え体DNA
を導入させた新規な枯草菌。
(2) Recombinant DNA in which a DNA fragment carrying the genetic information of thermostable β-galactosidase obtained from Bacillus stearothermophilus is integrated into vector DNA for Bacillus subtilis
A new Bacillus subtilis that has been introduced.
(3)バシルス・ステアロサーモフィラスから取得した
耐熱性β−ガラクトシダーゼの遺伝情報を担うDNA断
片を枯草菌用ベクターDNAに組込んだ組換え体DNA
を導入させた枯草菌を培養し、その培養物中に蓄積した
耐熱性β−ガラクトシダーゼを採取することを特徴とす
る耐熱性β−ガラクトシダーゼの製造法。
(3) Recombinant DNA in which a DNA fragment carrying the genetic information of thermostable β-galactosidase obtained from Bacillus stearothermophilus is integrated into vector DNA for Bacillus subtilis
1. A method for producing heat-stable β-galactosidase, which comprises culturing Bacillus subtilis into which B. subtilis has been introduced, and collecting heat-stable β-galactosidase accumulated in the culture.
JP59202965A 1984-09-29 1984-09-29 Novel bacillus subtilis containing thermostable beta-galactosidase and production of thermostable beta-galactosidase Granted JPS6181788A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59202965A JPS6181788A (en) 1984-09-29 1984-09-29 Novel bacillus subtilis containing thermostable beta-galactosidase and production of thermostable beta-galactosidase
EP85112245A EP0176971A3 (en) 1984-09-29 1985-09-27 Gene coding for thermostable beta-galactosidase, bacillus subtilis having the gene, enzyme coded by the gene and a process for the production thereof
US06/780,842 US4861718A (en) 1984-09-29 1985-09-27 Gene coding for thermostable beta-galactosidase, bacillus subtilis having the gene, enzyme coded by the gene and a process for the production thereof
DE198585112245T DE176971T1 (en) 1984-09-29 1985-09-27 FOR A THERMOSTABLE BETA GALACTOSIDASE, ENCODING GENE, BACILLUS SUBTILIS CONTAINING THIS GENE, ENZYME ENCODED BY THIS GENE AND METHOD FOR THE PRODUCTION THEREOF.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59202965A JPS6181788A (en) 1984-09-29 1984-09-29 Novel bacillus subtilis containing thermostable beta-galactosidase and production of thermostable beta-galactosidase

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP14873594A Division JPH0757188B2 (en) 1994-06-08 1994-06-08 Novel thermostable β-galactosidase and method for producing the same

Publications (2)

Publication Number Publication Date
JPS6181788A true JPS6181788A (en) 1986-04-25
JPH0571227B2 JPH0571227B2 (en) 1993-10-06

Family

ID=16466093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59202965A Granted JPS6181788A (en) 1984-09-29 1984-09-29 Novel bacillus subtilis containing thermostable beta-galactosidase and production of thermostable beta-galactosidase

Country Status (1)

Country Link
JP (1) JPS6181788A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003098206A (en) * 2001-09-25 2003-04-03 Tdk Corp Switching power supply and surface potential detecting device
US6991923B2 (en) 2001-07-16 2006-01-31 Arla Foods Amba Process for manufacturing of tagatose

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54163889A (en) * 1978-06-07 1979-12-26 Nat Res Dev Enzyme and utilization thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54163889A (en) * 1978-06-07 1979-12-26 Nat Res Dev Enzyme and utilization thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6991923B2 (en) 2001-07-16 2006-01-31 Arla Foods Amba Process for manufacturing of tagatose
JP2003098206A (en) * 2001-09-25 2003-04-03 Tdk Corp Switching power supply and surface potential detecting device

Also Published As

Publication number Publication date
JPH0571227B2 (en) 1993-10-06

Similar Documents

Publication Publication Date Title
Borck et al. The construction in vitro of transducing derivatives of phage lambda
EP0034470B1 (en) Genetically engineered microorganisms for massive production of amylolytic enzymes and process for preparing same
EP0120693B1 (en) Maltogenic amylase enzyme product, preparation and use thereof
KR0127560B1 (en) Molecular cloning and expression of genes encoding proteolytic enzymes
US4493893A (en) Process for cloning the gene coding for a thermostable alpha-amylase into Escherichia coli and Bacillus subtilis
US4359535A (en) Autonomously replicating DNA containing inserted DNA sequences
GB2133408A (en) Method for improving the production of proteins in bacillus
EP0057976B1 (en) a process for cloning the gene coding for a thermostable alpha-amylase into escherichia coli and bacillus subtilis
US4332897A (en) Novel bacteriophage and method for preparing same
CA1150169A (en) Broad host range small plasmid rings as cloning vehicles
US4532211A (en) Coliform bacillus having a gene for the production of staphylokinase and a process for production of staphylokinase therewith
US4801541A (en) Method of increasing the yield of a product by altering a microorganism
NL8400687A (en) RECOMBINANT PLASMIDS; RECOMBINANT PLASMID CONTAINING BACTERIA; METHOD FOR PREPARING OR MANUFACTURING A MILK PRODUCT; PROCESS FOR PREPARING A PROTEIN.
JPS6181788A (en) Novel bacillus subtilis containing thermostable beta-galactosidase and production of thermostable beta-galactosidase
Walsh et al. Restriction endonuclease analysis of the lactose plasmid in Streptococcus lactis ML3 and two recombinant lactose plasmids
US5049501A (en) Production method for PvuI restriction endonuclease
EP0533153A2 (en) Pichia pastoris linear plasmids and DNA fragments thereof
JPS5879996A (en) Plasmid pac 1 and obtaining method
JPS62143685A (en) Novel heat-resistant beta-galactosidase and gene coding same
JPS6062984A (en) Novel coliform bacilli having heat-resistant beta-galactosidase gene and production of heat-resistant beta-galactosidase
Champness et al. Bacteriophage T4 gol site: sequence analysis and effects of the site on plasmid transformation
JP2833793B2 (en) Plasmid encoding heparinase, heparinase-producing strain carrying this plasmid, and method for producing heparinase
JPS63192388A (en) Production of thermostable protease
JP2632373B2 (en) DNA fragment containing β-galactosidase producing gene and plasmid incorporating the DNA fragment
JPH06319540A (en) Novel thermostable beta-galactosidase and production thereof