JPS6177752A - Interfacial-potential measuring apparatus - Google Patents

Interfacial-potential measuring apparatus

Info

Publication number
JPS6177752A
JPS6177752A JP19986584A JP19986584A JPS6177752A JP S6177752 A JPS6177752 A JP S6177752A JP 19986584 A JP19986584 A JP 19986584A JP 19986584 A JP19986584 A JP 19986584A JP S6177752 A JPS6177752 A JP S6177752A
Authority
JP
Japan
Prior art keywords
filter
suspension
electrodes
particles
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19986584A
Other languages
Japanese (ja)
Other versions
JPH0574776B2 (en
Inventor
Kazuhiro Hayashida
林田 和弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP19986584A priority Critical patent/JPS6177752A/en
Publication of JPS6177752A publication Critical patent/JPS6177752A/en
Publication of JPH0574776B2 publication Critical patent/JPH0574776B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/60Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrostatic variables, e.g. electrographic flaw testing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To make it possible to perform measurement even in a solid-liquid dispersed system, by applying a specified force to a suspension, attaching fine grains on the surface of a filter, vibrating the filter in the direction along the surface, and measuring an AC signal generated between a pair of electrodes, which are attached to the filter. CONSTITUTION:A suspension to be measured is put in a container 2 so that an upper electrode 108 of a filtering electrode 1 is completely submerged. A motor 6 is driven, and up and down vibrations are imparted to the filtering electrode part 1 by a crank mechanism 5. Then a sucking pump 9 is driven, and a hollow part 104 is made to be a pressure reduced state. The suspension is sucked through a filter 105. Thus grains in the suspension are attached to the surface of the filter 105. The grains are vibrated with respect to the liquid. An AC potential corresponding to the vibration is generated at the electrodes 108 and 109 based on a streaming potential phenomenon. An ammeter 10 is connected between the electrodes 108 and 109. The interfacial potential of the fine grains, which are attached to the filter, is measured baded on the measured value of the AC. Thus the measurement without error can be performed even in the solid-liquid dispersed system.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は固−液分散系の界面に存在する電荷量を測定す
る装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to an apparatus for measuring the amount of charge existing at the interface of a solid-liquid dispersion system.

(ロ)従来技術 一般に、固体粒子が液体内にIE濁した固−液分散系に
おいては、その界面に存在する電荷量は、液中の電位を
零として相対的に電圧で表わされ、その電位は通常、界
面動電位(ζ電位)で表わされることが多い。ζ電位の
測定法には、大きく分けて電気泳動法、電気浸透法、流
動電位法および沈降電位法がある。これらの中で、粒子
径10μm以下の比較的安定した分散系の測定には、通
常、電気泳動法が用いられ、また、粒子径1μm以上の
粒子又は繊維などの粗大粒子、あるいは不安定系の測定
には流動電位法が用いられている。
(B) Prior art In general, in a solid-liquid dispersion system in which solid particles are suspended in a liquid, the amount of charge existing at the interface is expressed as a voltage relative to the potential in the liquid as zero; Potential is usually expressed as an interfacial potential (ζ potential). Methods for measuring ζ potential are broadly divided into electrophoresis, electroosmosis, streaming potential, and sedimentation potential. Among these, electrophoresis is usually used to measure relatively stable dispersion systems with a particle size of 10 μm or less, and also to measure coarse particles such as particles or fibers with a particle size of 1 μm or more, or unstable systems. The streaming potential method is used for measurement.

しかし、電気泳動法は、被測定分散系に電気エネルギを
与えて測定を行うので、試料内の電気浸透流、ジュール
熱の発生、電極分解反応等の妨害因子が多く、測定が繁
雑となる。また、この電気泳動法のうち、顕微鏡電気泳
動法は、被渕定忍濁液内において個々の粒子が識別でき
る程度の濃度であることが条件であり、また、移動速度
の統計的処理を行う必要があって、同じように測定の繁
雑さを伴う。
However, since the electrophoresis method performs measurements by applying electrical energy to the dispersed system to be measured, there are many interfering factors such as electroosmotic flow within the sample, generation of Joule heat, and electrode decomposition reactions, making measurements complicated. Furthermore, among these electrophoresis methods, microelectrophoresis requires that the concentration in the sample suspension be at a level that allows individual particles to be identified, and statistical processing of the migration speed is also performed. It is necessary, but it also involves the complexity of measurement.

一方、流動電位法は機械的エネルギを分散系に与えて、
これにより住する電気出力を測定するので妨害因子は少
ないが、粒子を液のみ透過するような容器等に充填して
測定する為、測定に先立って固体と液体とを分離する必
要があるとともに、1μm以下の粒子では、荷電状態の
変形、すなわち、電気二重層の重なりが生じ、測定結果
が真の値よりも小さくなるという誤差を生ずる。
On the other hand, the streaming potential method applies mechanical energy to the dispersed system,
This measures the electrical output of the current, so there are few interfering factors, but since the particles are filled in a container etc. that allows only the liquid to pass through, it is necessary to separate the solid and liquid before measurement. For particles of 1 μm or less, deformation of the charged state, that is, overlapping of electric double layers, occurs, resulting in an error in which the measurement result is smaller than the true value.

(ハ)目的 本発明の目的は、被測定分散系に機械的エネルギを与え
て電気出力を得る方式の流動電位法の方式を採用して、
測定の妨害因子を少なくし、かつ、流動電位法では誤差
の発生により測定困難とされていた微粒子の固−液分散
系の測定も可能な界面電位測定装置を提供することにあ
る。
(C) Purpose The purpose of the present invention is to adopt the streaming potential method, which gives mechanical energy to the dispersed system to be measured and obtains an electrical output.
The object of the present invention is to provide an interfacial potential measuring device that reduces factors that interfere with measurement and is also capable of measuring solid-liquid dispersions of fine particles, which has been difficult to measure due to errors caused by the streaming potential method.

(ニ)構成 本発明の界面電位測定装置は、被測定懸濁液内の微粒子
を通さないフィルタと、被測定懸濁液に所定の力を加え
てそのフィルタの面上に微粒子を付着させる手段と、フ
ィルタをその面に沿う方向に振動させる手段と、その振
動方向に対応する方向に対向してフィルタに取り付けら
れた一対の電極と、その電極間に発生する交流信号を測
定する手段を備え、その交流信号の測定値からフィルタ
に付着した微粒子の界面電位を求め得るよう構成したこ
とにより特徴づけられる。
(D) Structure The interfacial potential measuring device of the present invention includes a filter that does not allow the passage of fine particles in a suspension to be measured, and a means for applying a predetermined force to the suspension to be measured to cause the fine particles to adhere to the surface of the filter. and a means for vibrating the filter in a direction along the surface thereof, a pair of electrodes attached to the filter facing each other in a direction corresponding to the direction of vibration, and a means for measuring an alternating current signal generated between the electrodes. It is characterized by being configured so that the interfacial potential of the particles attached to the filter can be determined from the measured value of the AC signal.

(ホ)実施例 本発明の実施例を、以下、図面に基づいて説明する。(e) Examples Embodiments of the present invention will be described below based on the drawings.

第1図は本発明実施例の全体構成図である。FIG. 1 is an overall configuration diagram of an embodiment of the present invention.

図において、1は後で詳述する濾過・電極部。In the figure, 1 is a filtration/electrode section which will be described in detail later.

2は被測定懸濁液をいれる為の容器、3は容器2内の懸
濁液を撹拌する為のマグネチックスターラである。濾過
・電極部1は、シャフト4を介してクランク機構5に接
続されており、モータ6の回転駆動により上下方向に振
動される。なお、7はスライドベアリングである。また
、濾過・電極部1に設けられた吸入口103は、チュー
ブ8を介して吸引ポンプ9に接続されている。更に、濾
過・電極部1に設けられている接点112および113
は電流計10の測定端子に接続されており、その電流計
10の出力Xは同期整流器11に入力されている。なお
、この電流計10は、被測定液の導電率に比べて充分小
さいインピーダンスを有するものが用いられる。また、
モータ6の出力軸に取り付けられたシャッタ12を光電
スイッチ13で検出することにより、濾過・電極部1の
振動に同期した矩形波信号が形成され、この信号yも同
期整流器11に入力されている。
2 is a container for containing the suspension to be measured, and 3 is a magnetic stirrer for stirring the suspension in the container 2. The filtration/electrode unit 1 is connected to a crank mechanism 5 via a shaft 4, and is vibrated in the vertical direction by the rotational drive of a motor 6. Note that 7 is a slide bearing. Further, a suction port 103 provided in the filtration/electrode section 1 is connected to a suction pump 9 via a tube 8. Furthermore, contacts 112 and 113 provided in the filtration/electrode section 1
is connected to a measurement terminal of an ammeter 10, and the output X of the ammeter 10 is input to a synchronous rectifier 11. Note that the ammeter 10 used has an impedance sufficiently smaller than the conductivity of the liquid to be measured. Also,
By detecting the shutter 12 attached to the output shaft of the motor 6 with the photoelectric switch 13, a rectangular wave signal synchronized with the vibration of the filter/electrode section 1 is formed, and this signal y is also input to the synchronous rectifier 11. .

上述したマグネチックスターラ3は、第2図に要部正面
図を示す如く、マグネット3aをモータ3bで回動させ
ることにより、容器2内に沈められた撹拌子14を回動
させ、懸濁液を撹拌することができる。
The magnetic stirrer 3 described above, as shown in the front view of the main part in FIG. can be stirred.

第3図は濾過・電極部1の中央縦断面図で、第4図はそ
の分解斜視図である。母材101は絶縁性材料で形成さ
れ、その外周には直径0.5m乃至1fl程度の小孔1
02が多数個穿たれており、その小孔102の穿たれた
内部は、吸入口103に連通ずるリング状の空p1oh
となっている。
FIG. 3 is a central vertical cross-sectional view of the filtration/electrode section 1, and FIG. 4 is an exploded perspective view thereof. The base material 101 is made of an insulating material, and a small hole 1 with a diameter of about 0.5 m to 1 fl is formed on its outer periphery.
A large number of small holes 102 are bored inside the hole 102, and the inside of the small hole 102 is a ring-shaped hole p1oh that communicates with the suction port 103.
It becomes.

小孔102の外方は、全ての小孔102を覆うようフィ
ルタ105が取り付けられている。このフィルタ105
は、で濁液内の粒子を通過しない程度のメンシュサイズ
を有しておればどのようなものでもよいが、通常、表面
状態、目開きが一定しているメンブランフィルタが用い
られる。フィルタ105の取り付は方は、第4図に示す
如く、母材101の小孔102部分を覆うよう巻き付け
、その重ね合わせ部分を押しつけるよう押え具106を
ビス等によってねじ孔107に固着する。
A filter 105 is attached to the outside of the small holes 102 so as to cover all the small holes 102. This filter 105
The membrane filter may be of any type as long as it has a mensch size that does not allow particles in the turbid liquid to pass through, but a membrane filter with a constant surface condition and opening is usually used. To attach the filter 105, as shown in FIG. 4, it is wrapped around the base material 101 so as to cover the small hole 102, and a presser 106 is fixed to the screw hole 107 with a screw or the like so as to press the overlapped portion.

フィルタ105の上下両端部には、リング状の電極10
8,109が装着され、それぞれリード線110および
111によって上述の接点112および113に接続さ
れている。電極108および109は、金、白金、銀−
塩化銀等の可逆電極を用いる。
Ring-shaped electrodes 10 are provided at both upper and lower ends of the filter 105.
8 and 109 are mounted and connected to the aforementioned contacts 112 and 113 by leads 110 and 111, respectively. Electrodes 108 and 109 are made of gold, platinum, silver-
Use a reversible electrode such as silver chloride.

次に、本発明実施例の作用を、測定方法とともに述べる
。第2図に示した如く、被測定懸濁液を濾過・電極部1
の上方の電極108が完全に浸るよう容器2内に入れ、
モータ6を駆動してクランク機構5により濾過・電極部
1に上下振動を与える。次に、吸入ポンプ9を駆動して
空洞部104を減圧状恕にし、フィルタ105を介して
懸濁液を吸引する。これにより、フィルタ105の表面
には懸濁液内の粒子が付着し、これを液に対して振動さ
せることになるから、流動電位現象により電極108お
よび109には振動に対応した交流電位が発生する。こ
の電極108,109間に、液の導電率に比べて充分小
さなインピーダンスをもつ電流計10を接続すれば、交
流電流が流れて、これを測定することができる。これは
界面に存在する電荷が、固体(フィルタ、粒子)と液が
相対的に運動することにより相対的に移動することによ
るもので、ここで流れる電流7mは、次の<1)式によ
って界面電位Vsと関係づけられる。
Next, the effects of the embodiments of the present invention will be described together with the measurement method. As shown in Figure 2, the suspension to be measured is filtered and the electrode section 1
into the container 2 so that the upper electrode 108 is completely submerged,
The motor 6 is driven to apply vertical vibration to the filtration/electrode section 1 by the crank mechanism 5. Next, the suction pump 9 is driven to reduce the pressure in the cavity 104, and the suspension is sucked through the filter 105. As a result, particles in the suspension adhere to the surface of the filter 105 and vibrate against the liquid, so an AC potential corresponding to the vibration is generated at the electrodes 108 and 109 due to the streaming potential phenomenon. do. If an ammeter 10 having an impedance sufficiently smaller than the conductivity of the liquid is connected between the electrodes 108 and 109, an alternating current flows and can be measured. This is because the charge existing at the interface moves relatively due to the relative movement of the solid (filter, particles) and liquid, and the current 7 m flowing here is calculated by the following equation It is related to the potential Vs.

im”’8−r−ω・x o−V S Cosωt−(
1)ここで、εは液の誘電率、rは第3図に示す如く濾
過・電極部1のフィルタ外周半径、ωは振動角速度、X
Qは振幅、tは時間である。なお、この(11式におい
ては、濾過・電極部1の上下振動変位が近似的にサイン
カーブ(単振動)となるよう構成した場合に適用され、
これはクランク機構のアーム長をクランク長に対して充
分長くすることによって達成することができる。
im"'8-r-ω・x o-V S Cosωt-(
1) Here, ε is the dielectric constant of the liquid, r is the filter outer radius of the filtration/electrode section 1 as shown in Fig. 3, ω is the vibration angular velocity, and X
Q is amplitude and t is time. In addition, this formula (11) is applied when the vertical vibration displacement of the filtration/electrode section 1 is configured to approximately become a sine curve (single motion),
This can be achieved by making the arm length of the crank mechanism sufficiently longer than the crank length.

この場合、電流計10の出力Xはα・cosωtで表わ
され、光電スイッチ13の出力yとの関係は第5図に示
す如くとなる。なお、光電スイッチ13の出力yは、濾
過・電極部1の下方向への変位時にHレベル、上方向へ
の変位時にはLレベルとして示し、180°の開閉比を
持つ矩形波となるようシャフタ12の形状が選択されて
いる。なお、界面の荷電状態が正負逆になった場合は、
出力Xは破線で示す如く極性が逆転し、以下に示す2の
変化の方向も逆転することになる。
In this case, the output X of the ammeter 10 is expressed by α·cosωt, and its relationship with the output y of the photoelectric switch 13 is as shown in FIG. Note that the output y of the photoelectric switch 13 is shown as an H level when the filtration/electrode section 1 is displaced downward, and as an L level when it is displaced upward, and the shafter 12 shape is selected. In addition, if the charge state of the interface becomes reversed,
The polarity of the output X is reversed as shown by the broken line, and the direction of change shown in 2 below is also reversed.

同期整流器11においては、信号yによって信号Xをチ
ョッピングして同期整流し、信号2として出力する。こ
の信号2の時間的変化の一例を第6図に示す。tlは濾
過・電極部1の振動開始時、t2は吸引開始時である。
In the synchronous rectifier 11, the signal X is chopped and synchronously rectified according to the signal y, and is output as a signal 2. An example of the temporal change of this signal 2 is shown in FIG. tl is the time when the vibration of the filtration/electrode section 1 starts, and t2 is the time when the suction starts.

Zfはフィルター05の界面電位で、吸引開始とともに
粒子がフィルタ105面上に堆積し始め、それにつれて
2は変化し、粒子が完全にフィルター05を覆いつくし
たとき(時間te)、一定値Zsとなる。このZsが粒
子の界面電位Vsを表わすことになり、次の(2ン式で
その関係が示される。
Zf is the interfacial potential of the filter 05. Particles start to accumulate on the surface of the filter 105 when suction starts, and 2 changes accordingly, and when the particles completely cover the filter 05 (time te), it reaches a constant value Zs. Become. This Zs represents the interfacial potential Vs of the particles, and the relationship is shown by the following equation.

Zs=β−t −r−ω・xr3−Vs  −=(2)
ここでβはLmから2への変換率で、装置定数として決
定される値である。従って、Zsを測定すれば、ε、r
、ω+XOは既知であるから、Vsを求めることができ
る。Vsは界面での荷電量を示すもので、界面動電位(
ゼータ電位)ことは次の(3)式の関係にある。
Zs=β-t-r-ω・xr3-Vs-=(2)
Here, β is a conversion rate from Lm to 2, and is a value determined as a device constant. Therefore, if Zs is measured, ε, r
, ω+XO are known, so Vs can be found. Vs indicates the amount of charge at the interface, and is the interfacial potential (
zeta potential) is in the relationship of the following equation (3).

ζ ここでδは界面二重層の厚みである。このδはイオンの
種類、イオン強度等によって変化し、理論的に求めるこ
とはできないが、測定条件が限定できれば大きな変化は
なく、従ってVsはζにほぼ比例することになる。
ζ where δ is the thickness of the interfacial bilayer. This δ changes depending on the type of ion, ion strength, etc., and cannot be determined theoretically, but if the measurement conditions can be limited, there is no significant change, and therefore Vs is approximately proportional to ζ.

この本発明実施例により得られるV、sは、第7図に示
す如く、フィルタ105上に堆積した粒子の最外部(測
定表面)の荷電量であり、下層部に堆積している粒子は
側定値に関与しない。これは、フィルタ105をその面
に沿う方向に振動を与えるから、つまり、粒子堆積層表
面に沿う振動変位を与えるからであり、従来の流動電位
法のような界面二重層の重なりによる影響を大きく受け
ることがない。
As shown in FIG. 7, V and s obtained by this embodiment of the present invention are the amount of charge on the outermost part (measurement surface) of the particles deposited on the filter 105, and the particles deposited on the lower layer are on the side. Not involved in fixed values. This is because the filter 105 is vibrated in the direction along its surface, that is, the vibration displacement is applied along the surface of the particle deposit layer, and the influence of the overlap of the interfacial double layer as in the conventional streaming potential method is greatly reduced. I never receive it.

なお、以上の実施例では、円筒状のフィルタの表面に粒
子を付着させた場合の例について示したが、フィルタの
裏面の影響を受けない構成であればその形状は任怠のも
のを用いることができ、例えば第8図に示す如く、内皿
状等のフィルタ105′を用いてもよい。この場合、電
極108’、109’の配設位置、およびフィルタ10
5′の振動方向はそれぞれ図示の如き関係で示される。
In addition, in the above example, an example was shown in which particles were attached to the surface of a cylindrical filter, but if the configuration is not affected by the back surface of the filter, any arbitrary shape may be used. For example, as shown in FIG. 8, an inner dish-shaped filter 105' may be used. In this case, the arrangement positions of the electrodes 108' and 109' and the filter 10
The vibration directions of 5' are shown in the relationship as shown.

また、粒子をフィルタ上に堆積させる方法は吸引に限定
されることなく、例えばフィルタを挟んで液に差圧を生
じさせたり、あるいはフィルタを通るよう液を循環させ
る等の方法も考えられる。
Furthermore, the method for depositing particles on the filter is not limited to suction, and methods such as creating a pressure difference in the liquid with the filter in between, or circulating the liquid through the filter can also be considered.

更に、以上の実施例では、電流Lmを測定したが、振動
により生じる電圧emを測定しても同様な結果を得るこ
とができる。この場合、電圧emと界面動電位ことの関
係は次の<4)式で示される。
Further, in the above embodiments, the current Lm was measured, but similar results can be obtained by measuring the voltage em generated by vibration. In this case, the relationship between the voltage em and the interfacial dynamic potential is expressed by the following equation <4).

ε・r・ω・xO・β・ζ・ cosωt2π・ (R
2−r’)  ・λ・δ −−−・ (4) ここで、βは電極間距離、Rは懸濁液の容器2の内周半
径、λは懸濁液の導電率である。
ε・r・ω・xO・β・ζ・ cosωt2π・ (R
2-r') ·λ·δ --- (4) Here, β is the distance between the electrodes, R is the inner radius of the suspension container 2, and λ is the conductivity of the suspension.

また濾過・電極部1の振動をサインカーブの速度変化を
与えた例を示したが、発生電流は相対的移動速度に比例
するから、任意の振動を与えることができ、とくに規定
する必要はない。
In addition, an example was shown in which the vibration of the filtration/electrode section 1 was given a speed change of a sine curve, but since the generated current is proportional to the relative moving speed, any vibration can be given, and there is no need to specify it in particular. .

(へ)効果 以上説明したように、本発明によれば、被測定懸渇液内
のフィルタの面上に懸濁粒子を付着堆積せしめ、そのフ
ィルタを面方向に沿って振動させ、その振動方向に配設
された一対の電極から、界面電位に相関する交流信号を
得るよう構成したから、フィルタの目開きを変えること
によって任意の径の粒子、例えば直径1 /J m以下
の粒子についても、従来の流動電位法のように電気二重
層の重なり等を生ずることな(、誤差のない測定が可能
となった。また、機械的エネルギ(振動)を与えて電気
出力を測定しているから、浸透流、ジュール熱。
(f) Effects As explained above, according to the present invention, suspended particles are deposited on the surface of the filter in the suspended liquid to be measured, the filter is vibrated along the surface direction, and the vibration direction is Since the configuration is configured to obtain an alternating current signal correlated to the interfacial potential from a pair of electrodes arranged at Unlike the conventional streaming potential method, it does not cause overlapping of electric double layers (and error-free measurement is possible. Also, because the electrical output is measured by applying mechanical energy (vibration), Osmotic flow, Joule heating.

分解等による影Kを受けることががない。更に、交流信
号を測定するから、電極の接触電位によるドリフトの影
響は極めて少なく、装置の信頼性が向上する。更にまた
、従来の流動電位法では、測定に先立って固体(粒子)
と液体とを分離する必要があったが、本発明によると濾
過しながら測定するので、あらかじめ固−液を分離する
必要がなくなり、手順が簡素化される。
It is not affected by shadows K due to decomposition, etc. Furthermore, since AC signals are measured, the influence of drift due to the contact potential of the electrodes is extremely small, improving the reliability of the device. Furthermore, in the conventional streaming potential method, solids (particles) are
However, according to the present invention, since measurement is performed while filtering, there is no need to separate solid and liquid in advance, and the procedure is simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の全体構成図、第2図はその要部
正面図、第3図および第4図はそれぞれ本発明実施例の
濾過・電極部1の中央縦断面図および分解斜視図、第5
図は本発明実施例の電流計10出力Xと光電スイッチ1
3出力yの関係を示すグラフ、第6図は同期整流器11
出力2の時間的変化の一例を示すグラフ、第7図は本発
明実施例の作用説明図、第8図は本発明の他の実施例の
濾過・電極部を示す図である。 1・・−濾過・電極部   101−・母材102−小
孔     103−・−吸入口104−・・・空洞 
     105−・フィルタ108、lQ9− 電極 112.113−接点 2−・−容器         5・−・クランク機構
9・−吸引ポンプ     10・・−電流計11−同
期整流器     12−シャッタ13−・光電スイッ
Fig. 1 is an overall configuration diagram of an embodiment of the present invention, Fig. 2 is a front view of the main parts thereof, and Figs. 3 and 4 are respectively a center vertical sectional view and an exploded perspective view of the filtration/electrode section 1 of the embodiment of the present invention. Figure, 5th
The figure shows an ammeter 10 output X and a photoelectric switch 1 according to an embodiment of the present invention.
A graph showing the relationship between the three outputs y, Figure 6 shows the synchronous rectifier 11
A graph showing an example of a temporal change in output 2, FIG. 7 is an explanatory diagram of the operation of an embodiment of the present invention, and FIG. 8 is a diagram showing a filtration/electrode section of another embodiment of the present invention. 1...-Filtration/electrode part 101--Base material 102-Small hole 103--Suction port 104--Cavity
105--Filter 108, lQ9- Electrode 112.113-Contact 2--Container 5--Crank mechanism 9--Suction pump 10--Ammeter 11--Synchronous rectifier 12-Shutter 13--Photoelectric switch

Claims (1)

【特許請求の範囲】[Claims] 液体内に固体微粒子が懸濁してなる固−液分散系におい
てその固−液界面に存在する電荷量を測定する装置であ
って、被測定懸濁液内の微粒子を通さないフィルタと、
上記懸濁液に所定の力を加えて上記フィルタの面上に上
記微粒子を付着させる手段と、上記フィルタをその面に
沿う方向に振動させる手段と、その振動方向に対応する
方向に対向して上記フィルタに取り付けられた一対の電
極と、その一対の電極間に発生する交流信号を測定する
手段とを備え、上記交流信号の測定値から上記フィルタ
に付着した微粒子の界面電位を求め得るよう構成したこ
とを特徴とする界面電位測定装置。
A device for measuring the amount of charge existing at the solid-liquid interface in a solid-liquid dispersion system in which solid particles are suspended in a liquid, the device comprising: a filter that does not allow the particles in the suspension to be measured to pass;
means for applying a predetermined force to the suspension to cause the fine particles to adhere to the surface of the filter; means for vibrating the filter in a direction along the surface; and means facing in a direction corresponding to the vibration direction. The structure includes a pair of electrodes attached to the filter, and means for measuring an alternating current signal generated between the pair of electrodes, and is configured to determine the interfacial potential of particles attached to the filter from the measured value of the alternating current signal. An interfacial potential measuring device characterized by:
JP19986584A 1984-09-25 1984-09-25 Interfacial-potential measuring apparatus Granted JPS6177752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19986584A JPS6177752A (en) 1984-09-25 1984-09-25 Interfacial-potential measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19986584A JPS6177752A (en) 1984-09-25 1984-09-25 Interfacial-potential measuring apparatus

Publications (2)

Publication Number Publication Date
JPS6177752A true JPS6177752A (en) 1986-04-21
JPH0574776B2 JPH0574776B2 (en) 1993-10-19

Family

ID=16414926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19986584A Granted JPS6177752A (en) 1984-09-25 1984-09-25 Interfacial-potential measuring apparatus

Country Status (1)

Country Link
JP (1) JPS6177752A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5498336A (en) * 1991-02-22 1996-03-12 Terumo Kabushiki Kaisha Leukocyte-removing filter and leukocyte-removing apparatus furnished therewith

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5498336A (en) * 1991-02-22 1996-03-12 Terumo Kabushiki Kaisha Leukocyte-removing filter and leukocyte-removing apparatus furnished therewith

Also Published As

Publication number Publication date
JPH0574776B2 (en) 1993-10-19

Similar Documents

Publication Publication Date Title
US4602989A (en) Method and apparatus for determining the zeta potential of colloidal particles
Jaffe et al. An ultrasensitive vibrating probe for measuring steady extracellular currents
Biggs et al. Electrosteric stabilisation of colloidal zirconia with low-molecular-weight polyacrylic acid. An atomic force microscopy study
US4907453A (en) Colloid analyzer
US4679439A (en) Method and apparatus for measuring the unsteady sedimentation potential of colloidal particles
Lyklema Nomenclature, symbols, definitions and measurements for electrified interfaces in aqueous dispersions of solids (Recommendations 1991)
JPH10507521A (en) Analyte selection sensor
Szymczyk et al. Characterisation of the electrokinetic properties of plane inorganic membranes using streaming potential measurements
Delgado et al. Electrokinetic phenomena and their experimental determination: an overview
JP3035350B2 (en) Low frequency angular velocity sensor
Pelton et al. Factors influencing the adhesion of polystyrene spheres attached to Pyrex by polyethyleneimine in aqueous solution
JPS6177752A (en) Interfacial-potential measuring apparatus
JPS6177753A (en) Interfacial-potential measuring apparatus
JPS5818157A (en) Zeta potential measuring device
JP5207373B2 (en) Simple zeta potential measuring device and zeta potential measuring method
Yasuda et al. Studies on particle separation by acoustic radiation force and electrostatic force
WO2005124335A1 (en) Apparatus and method for determining the zeta potential of surfaces and for the measurement of streaming metrics related thereto
JP4045242B2 (en) Method and apparatus for measuring zeta potential using AC electric field and T channel
US3824171A (en) Novel electrochemical electrode assembly
Arki et al. Nano-and Microfluidic Channels as Electrokinetic Sensors and Energy Harvesting Devices-Importance of Surface Charge on Solid-Liquid Interfaces
Lin et al. An impedimetric bioaffinity sensing chip integrated with the long-range DC-biased AC electrokinetic centripetal vortex produced in a high conductivity solution
SU1029086A1 (en) Angular motion parameter electrokinetic meter
JPH0495866A (en) Layer change detecting method
Jiang et al. Manipulation of gold coated microspheres using electrorotation
JPH0153418B2 (en)