JPS6173032A - Photodetecting device - Google Patents

Photodetecting device

Info

Publication number
JPS6173032A
JPS6173032A JP19559684A JP19559684A JPS6173032A JP S6173032 A JPS6173032 A JP S6173032A JP 19559684 A JP19559684 A JP 19559684A JP 19559684 A JP19559684 A JP 19559684A JP S6173032 A JPS6173032 A JP S6173032A
Authority
JP
Japan
Prior art keywords
light
wavelength
optical path
switching means
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19559684A
Other languages
Japanese (ja)
Inventor
Yuzo Nanun
雄三 南雲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP19559684A priority Critical patent/JPS6173032A/en
Publication of JPS6173032A publication Critical patent/JPS6173032A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4257Photometry, e.g. photographic exposure meter using electric radiation detectors applied to monitoring the characteristics of a beam, e.g. laser beam, headlamp beam
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To easily detect light with unknown wavelength in a short time by splitting measured light to two optical paths, detecting the quantity of light from one optical path and the transmission wavelength peak of the light from the other optical path, and measuring and displaying both. CONSTITUTION:Light from an optical fiber 2 is made incident on a switching means 4. The switching means 4 moves up and down a mirror 6 which is slanted by, for example, 45 deg. periodically through a displacing mechanism 8 to split the light to the two optical paths. Then, the light of one optical path is inputted to, for example, an Si photodiode 10, etc., to detect the quantity of the light. Further, the light of the other optical path is made incident on a wavelength dispersing element 12 such as a plane diffraction grating. Then, the light dispersed according to the wavelength is incident on a position detecting element 14 to detect the wavelength. Then, the quantity of light detected by the photodetecting element 14 is corrected automatically with the wavelength obtained by the position detecting element 14. Therefore, the quantity of light is corrected automatically with the wavelength, so the light having unknown wavelength is easily detected.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、光ファイバの光量測定などに適用される光検
出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a photodetection device applied to measuring the amount of light in an optical fiber.

(ロ)従来技術とその問題点 光フアイバ通信においてその伝送損失を測定する場合な
どには、光量測定装置が用いられる。このような光量測
定装置に設けられた光検出素子、たとえばSiフォトグ
イオートやGeフォトダイオードなとは光検出感度に波
長依存性があるので、先爪を精度良く測定するにはこれ
を補償する必要がある。
(b) Prior art and its problems A light amount measuring device is used to measure transmission loss in optical fiber communications. The photodetection element installed in such a light amount measurement device, such as a Si photodiode or a Ge photodiode, has a wavelength dependence in photodetection sensitivity, so this must be compensated for in order to accurately measure the tip of the toe. There is a need.

従来、光検出素子の波長感度依存性を補償するには、測
定した光量値を添付された光検出素子の波長感度曲線で
補正したり、波長感度曲線を予めメモリに記憶しておき
、外部から波長ピークの値を設定人力することにより上
記メモリに記憶された波長感度曲線に基ついて測定した
光量を補正するなどしている。しかしながら、このよう
な補正を行なうには予め光の伝送波長ピーク値か分って
いるか、別途伝送波長ピーク値を測定する必要がある。
Conventionally, in order to compensate for the wavelength sensitivity dependence of a photodetecting element, the measured light intensity value is corrected using the attached wavelength sensitivity curve of the photodetecting element, or the wavelength sensitivity curve is stored in memory in advance, and By manually setting the wavelength peak value, the measured light quantity is corrected based on the wavelength sensitivity curve stored in the memory. However, in order to perform such correction, it is necessary to know the transmission wavelength peak value of the light in advance or to separately measure the transmission wavelength peak value.

伝送波長ピークが不明の場合には補正ができず光量測定
値の精度が悪くなって得られたデータの信頼性に乏しく
、また別途伝送波長ピークを測定し、1.かし測定した
波長ピーク値を装置に改めて人力するのでは測定に時間
かかかり、しから測定操作か偵雑になるなどの不具合が
ある。
If the transmission wavelength peak is unknown, it cannot be corrected and the accuracy of the light intensity measurement value deteriorates, resulting in poor reliability of the data obtained. However, manually inputting the measured wavelength peak value into the apparatus takes time, and the measurement operation becomes complicated.

(ハ)[I的 本発明は従来のかかる問題点を解消し、光検出素子の波
長感度特性を自動的に補償して、光量と伝送波長ピーク
の両者を同時に測定表示できるようにして、波長未知の
光の検出が容易かつ短時間にできるようにすることを目
的とする。
(C) [I] The present invention solves such problems in the conventional art, automatically compensates for the wavelength sensitivity characteristics of the photodetector, and makes it possible to measure and display both the light amount and the transmission wavelength peak at the same time. The purpose is to enable detection of unknown light easily and in a short time.

(ニ)構成 本発明は上述の目的を達成するため、被計測光を2つの
光路に切り換える切換手段を備えるとと乙に、この切換
手段で切り換えられた前記一方の光路上には光検出素子
を、他方の光路上には波長分散素子をそれぞれ配置し、
かつ、前記波長分散素子から放射されろ分散光の集光位
置には位置検出素子を設けて光検出装置を構成している
(iv) Structure In order to achieve the above-mentioned object, the present invention is provided with a switching means for switching the light to be measured into two optical paths, and (ii) a photodetecting element is provided on the one optical path switched by the switching means. , a wavelength dispersion element is placed on the other optical path, and
Further, a position detection element is provided at a condensing position of the dispersed light emitted from the wavelength dispersion element to constitute a photodetection device.

従って、切換手段で被計測光を2つの光路に切り換え、
切り換えた一方の光を光検出素子でその光量を測定し、
これに並行して他方の光を波長分散素子で波長に応じて
分散して位置検出素子でその波長を検出する。そして、
位置検出素子で検出した波長に基づいて光検出素子で検
出した光量を補正する。これによって補正後の光量と伝
送波長ピークとが同時測定される。
Therefore, the light to be measured is switched to two optical paths by the switching means,
The light intensity of one of the switched lights is measured using a photodetection element,
In parallel with this, the other light is dispersed according to its wavelength by a wavelength dispersion element, and its wavelength is detected by a position detection element. and,
The amount of light detected by the photodetector is corrected based on the wavelength detected by the position detector. As a result, the corrected light amount and the transmission wavelength peak are simultaneously measured.

(ポ)実施例 以下、本発明を図面に示す実施例に基づいて詳細に説明
する。
(P) Examples The present invention will now be described in detail based on examples shown in the drawings.

第1図はこの実施例の光検出装置の構成図である。光検
出装置1は、先ファイバ2の出射端から放射される被計
測光を2つの光路に切り換える切換手段4を備える。こ
の切換手段4は被計測光の入射光路に対して45度傾斜
させて配置されたミラー6とこのミラー6を図上上下に
周期的に変位させる変位機構8とからなる。そして、切
換手段4て切り換えられる一方の光路上にはSiフォト
ダイオードやGeフォトダイオードなどの光検出素子I
Oが配置され、また他方の光路上には平面回折格子など
の波長分散索子12が配置されている。さらにこの波長
分散索子12から波長に応じて分散放射される分散光の
集光位置にはフォトダイオードアレー等の位置検出素子
14が設けられている。なお、!6は光ファイバ2と切
換手段4との間に配置されたコリメート用レンズ、I8
は波長分散索子I2と位置検出素子14との間に配置さ
れた集光レンズである。
FIG. 1 is a block diagram of the photodetector of this embodiment. The photodetector 1 includes a switching means 4 that switches the measured light emitted from the output end of the front fiber 2 into two optical paths. This switching means 4 includes a mirror 6 arranged at an angle of 45 degrees with respect to the incident optical path of the light to be measured, and a displacement mechanism 8 that periodically displaces the mirror 6 up and down in the figure. A photodetecting element I such as a Si photodiode or a Ge photodiode is placed on one optical path that is switched by the switching means 4.
A wavelength dispersion probe 12 such as a plane diffraction grating is disposed on the other optical path. Furthermore, a position detection element 14 such as a photodiode array is provided at a convergence position of the dispersed light emitted from the wavelength dispersion probe 12 according to the wavelength. In addition,! 6 is a collimating lens arranged between the optical fiber 2 and the switching means 4; I8;
is a condensing lens arranged between the wavelength dispersion probe I2 and the position detection element 14.

第2図は光検出装置Iのブロック図である。同図におい
て、20は光検出素子lOから出力される光量検出信号
の入力端子、22は位置検出素子14から構成される装
置検出信号の入力端子、24は変位機構8に与えられる
ミラー6の駆動信号か人力される入力端子である。また
、26は上記光量検出信号を駆動信号で同期検波する第
1検波器、28は位置検出信号を駆動信号で同期検波す
る第2検波器である。30は第2検波器28から出力さ
れる同期検波された位置検出信号を波長検出信号に変換
するととらに変換した波長検出信号を位置検出素子14
の波長感度特性に応じて重み付けする変換回路、32は
第3図に示すような光検出素子lOの波長感度曲線すが
予め記憶されたメモリ、34は人力信号に基づいて被計
測光の光量と波長ピークとを算出4゛る中央制御回路、
36は中央制御回路34て算出された光量の値を表示す
る第1表示器、38は中央制御回路34で算出太 11
f−助巨V−々/7′Il古ん婁壬十ス笛 9 婁モ嬰
1ぷる。
FIG. 2 is a block diagram of the photodetector I. In the figure, 20 is an input terminal for a light amount detection signal outputted from the photodetection element 1O, 22 is an input terminal for an apparatus detection signal composed of the position detection element 14, and 24 is a drive for the mirror 6 provided to the displacement mechanism 8. This is an input terminal that receives a signal or a human input. Further, 26 is a first detector that synchronously detects the light quantity detection signal with the drive signal, and 28 is a second detector that synchronously detects the position detection signal with the drive signal. 30 converts the synchronously detected position detection signal outputted from the second detector 28 into a wavelength detection signal, and transmits the converted wavelength detection signal to the position detection element 14.
32 is a memory in which the wavelength sensitivity curve of the photodetecting element lO as shown in FIG. A central control circuit that calculates the wavelength peak,
36 is a first display that displays the value of the amount of light calculated by the central control circuit 34; 38 is the value calculated by the central control circuit 34;
f-Suke Huge V-2/7'Il Old Lou Mi Jusu Flute 9 Lou Mo Yan 1 Puru.

この光検出装置1で被計測光の光量と波長ピークの3値
を測定するには、まず、切換手段4の変位機構8に駆動
信号を与えてミラー6を周期的に変位させる。この状態
で光ファイバ2の出射端から放射される波計1111光
をコリメート用レンズ16で平行光にして切換手段4に
向けて放射する。放射された被計測光は、ミラー6がそ
の放射光路から離間しているときにはそのまま直進して
光検出素子[0に受光される。ミラー6が被計測光の放
射光路」二に位置しているときには被計測光は該ミラー
6で反射されて波長分散索子12に向い、波長分散索子
12てその波長に応じて一定角度で分散される。この分
散光は集光レンズ18で集光され、位置検出素子14上
に焦点を結ぶ。
In order to measure the three values of the light intensity and the wavelength peak of the light to be measured using this photodetecting device 1, first, a drive signal is applied to the displacement mechanism 8 of the switching means 4 to periodically displace the mirror 6. In this state, the light of the wavemeter 1111 emitted from the output end of the optical fiber 2 is converted into parallel light by the collimating lens 16 and is emitted toward the switching means 4. When the mirror 6 is away from the emitted light path, the emitted light to be measured continues straight and is received by the photodetecting element [0. When the mirror 6 is located on the emission optical path of the light to be measured, the light to be measured is reflected by the mirror 6 and directed toward the wavelength dispersion probe 12, which then emits the light at a constant angle according to its wavelength. distributed. This dispersed light is collected by a condensing lens 18 and focused on the position detection element 14 .

ミラー6を周期的に変位するために変位機構8に与えら
る駆動信号は同時に入力端子24を介して第1、第2検
波器26.28にそれぞれ入力されろ。また、光検出素
子10は被計測光を受光すると、ごれに対応する光量検
出信号を出力し、この光量検出信号を入力端子20を介
して第1検波器26に与える。これにより、第1検波器
26は上記光量検出信号を駆動信号で同期検波し、同期
検波した光量検出信号を中央制御回路34に送出する。
Drive signals applied to the displacement mechanism 8 for periodically displacing the mirror 6 are simultaneously input to the first and second detectors 26 and 28 via the input terminal 24, respectively. Further, when the photodetection element 10 receives the light to be measured, it outputs a light amount detection signal corresponding to dirt, and provides this light amount detection signal to the first detector 26 via the input terminal 20. Thereby, the first detector 26 synchronously detects the light amount detection signal with the drive signal, and sends the synchronously detected light amount detection signal to the central control circuit 34 .

一方、位置検出素子14は被計測光を受光すると、受光
した位置に対応する位置検出信号を出力し、この位置検
出信号を入力端子22を介して第2検波器28に与える
。第2検波器28は上記位置検出信号を駆動信号で同期
検波し、同期検波した位置検出信号を次段の変換回路3
0に送出する。
On the other hand, when the position detection element 14 receives the measured light, it outputs a position detection signal corresponding to the position where the light was received, and provides this position detection signal to the second detector 28 via the input terminal 22. The second detector 28 synchronously detects the position detection signal with the drive signal, and transmits the synchronously detected position detection signal to the conversion circuit 3 of the next stage.
Send to 0.

位置検出素子14は光検出素子lOと同様に、第4図の
実線で示されるようなある波長感度特性を何しているた
め、検出する波長ピークp1は実際の被計測光の波長ピ
ークp2と見掛は上のずれΔを生じる。このずれΔを補
正するため、変換回路30には同図中一点鎖線で示され
るような補正曲線Cが記憶されている。従って、変換回
路30に入力された前記位置検出信号は、まず波長検出
信号に変換され、さらに波長検出信号は補正曲線Cによ
って市み付C′Jされて実際の波長ピークに適合するよ
うに補正される。そして補正された波長検出信号が中央
制御回路34に送出される。中央側g11回路3・1は
人力された波長検出信号、光量検出信号ならびにメモリ
32に記憶された光検出素子IOの波長感度曲線すに基
づいて補正光量を算出し、算出結果を第1表示器36に
出力する。また、波長検出信号から波長ピーク値を算出
し、算出結果を第2表示器38に出力する。これにより
、第1表示器36には被計測光の光量が、第2表示器3
8にはその被計測光の波長ピーク値がそれぞれ数値表示
される。
Like the photodetector element 1O, the position detection element 14 has a certain wavelength sensitivity characteristic as shown by the solid line in FIG. 4, so the detected wavelength peak p1 is different from the wavelength peak p2 of the actual measured light. An apparent upward deviation Δ occurs. In order to correct this deviation Δ, the conversion circuit 30 stores a correction curve C as shown by the dashed line in the figure. Therefore, the position detection signal input to the conversion circuit 30 is first converted into a wavelength detection signal, and the wavelength detection signal is further corrected by the correction curve C to match the actual wavelength peak. be done. The corrected wavelength detection signal is then sent to the central control circuit 34. The central g11 circuit 3.1 calculates the corrected light amount based on the manually input wavelength detection signal, light amount detection signal, and the wavelength sensitivity curve of the photodetector IO stored in the memory 32, and displays the calculation result on the first display. Output to 36. Further, the wavelength peak value is calculated from the wavelength detection signal, and the calculation result is output to the second display 38. As a result, the amount of light to be measured is displayed on the first display 36, and the amount of light to be measured is displayed on the second display 36.
8, the wavelength peak value of the measured light is numerically displayed.

なお、この実施例では波長分散索子12として平面回折
洛子を用いているが、これに代えて凹面回折洛子を適用
してもよい。その場合には集光レンズ18を省略するこ
とが可能となる。
In this embodiment, a plane diffraction element is used as the wavelength dispersion element 12, but a concave diffraction element may be used instead. In that case, the condenser lens 18 can be omitted.

(へ)効果 以上のように本発明によれば、光検出素子の波長感度特
性を自動的に補償して、光量と伝送波長ピークの両者を
同時に測定表示できる。従って、波長未知の光の検出が
容易かつ短時間にできるようになるという優れた効果を
奏する。
(f) Effects As described above, according to the present invention, the wavelength sensitivity characteristics of the photodetecting element can be automatically compensated, and both the light amount and the transmission wavelength peak can be measured and displayed simultaneously. Therefore, an excellent effect is achieved in that light of unknown wavelength can be detected easily and in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図は光検出装置の構
成図、第2図は同装置のブロック図、第3図は光検出素
子の波長感度特性図、第4図は位置検出素子の波長特性
図である。 1・・光検出装置、4・・切換手段、10・・光検出素
子、12・−波長分散素子、14 位置検出素子。
The drawings show an embodiment of the present invention, in which Fig. 1 is a block diagram of a photodetector, Fig. 2 is a block diagram of the same, Fig. 3 is a wavelength sensitivity characteristic diagram of a photodetector, and Fig. 4 is a position detection diagram. It is a wavelength characteristic diagram of an element. DESCRIPTION OF SYMBOLS 1..Photodetection device, 4..Switching means, 10..Photodetection element, 12.-Wavelength dispersion element, 14. Position detection element.

Claims (1)

【特許請求の範囲】[Claims] (1)被計測光を2つの光路に切り換える切換手段を備
えるとともに、この切換手段で切り換えられた前記一方
の光路上には光検出素子が、他方の光路上には波長分散
素子がそれぞれ配置され、かつ、前記波長分散素子から
放射される分散光の集光位置には位置検出素子が設けら
れていることを特徴とする光検出装置。
(1) A switching means is provided for switching the light to be measured into two optical paths, and a photodetecting element is arranged on one of the optical paths switched by the switching means, and a wavelength dispersion element is arranged on the other optical path. , and further comprising a position detection element provided at a condensing position of the dispersed light emitted from the wavelength dispersion element.
JP19559684A 1984-09-18 1984-09-18 Photodetecting device Pending JPS6173032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19559684A JPS6173032A (en) 1984-09-18 1984-09-18 Photodetecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19559684A JPS6173032A (en) 1984-09-18 1984-09-18 Photodetecting device

Publications (1)

Publication Number Publication Date
JPS6173032A true JPS6173032A (en) 1986-04-15

Family

ID=16343776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19559684A Pending JPS6173032A (en) 1984-09-18 1984-09-18 Photodetecting device

Country Status (1)

Country Link
JP (1) JPS6173032A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102313594A (en) * 2011-05-18 2012-01-11 福建师范大学 Detection device with different diffraction angle light intensity distributions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102313594A (en) * 2011-05-18 2012-01-11 福建师范大学 Detection device with different diffraction angle light intensity distributions

Similar Documents

Publication Publication Date Title
US6538728B1 (en) Gas sensor with open optical measurement path
US4531834A (en) Fluorimeter
KR100803237B1 (en) An optical system, an optical spectrum analyzer, and its method for providing concurrent detection of a calibration signal and a test signal in an optical spectrum analyzer
JP2604754B2 (en) Spectrophotometer
US3163700A (en) Radiation meter utilizing a dual surfaced detecting cell
EP1120637A2 (en) Method and means for calibrating a grating monochromator
JPS6173032A (en) Photodetecting device
JPH0915048A (en) Spectrophotometer
JP2001091357A (en) Simultaneous analysis method of multiple optical spectrum
EP0600636A1 (en) Self-calibrated power meter
JP3122190B2 (en) Voltage detector
JPS6217621A (en) Optical power meter
JPH04248423A (en) Apparatus for measuring luminescence
JP3761025B2 (en) Optical spectrum analyzer
JPS6144334A (en) Temperature measuring device
JP3110139B2 (en) Optical fiber temperature sensor
JPH041536A (en) Optical power meter
JPS6147514A (en) Reflective type optical fiber sensor
JPH1125821A (en) Optical sensor device
SU905658A1 (en) Two-channel spectral photometer
US20010013932A1 (en) Wavelength-variable light source apparatus
JPH0331090Y2 (en)
JPH0650885A (en) Photoelectric colorimeter
JPS63308531A (en) Optical type gas pressure sensor
JPH05113369A (en) Spectral photometer