JPS6170607A - Process controller - Google Patents

Process controller

Info

Publication number
JPS6170607A
JPS6170607A JP19216284A JP19216284A JPS6170607A JP S6170607 A JPS6170607 A JP S6170607A JP 19216284 A JP19216284 A JP 19216284A JP 19216284 A JP19216284 A JP 19216284A JP S6170607 A JPS6170607 A JP S6170607A
Authority
JP
Japan
Prior art keywords
identification
signal
control
transfer function
process control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19216284A
Other languages
Japanese (ja)
Inventor
Keiko Nishijima
西島 敬子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19216284A priority Critical patent/JPS6170607A/en
Publication of JPS6170607A publication Critical patent/JPS6170607A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • G05B13/021Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system in which a variable is automatically adjusted to optimise the performance
    • G05B13/022Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system in which a variable is automatically adjusted to optimise the performance using a perturbation of the variable
    • G05B13/0225Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system in which a variable is automatically adjusted to optimise the performance using a perturbation of the variable being a periodic perturbation

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To set optimum control parameters at optimum timing and to perform optimum process control speedily by providing a process identification part, identification end decision part, and parameter arithmetic part which calculates control parameters for a process-controlled system and sets those control parameters in a main control part. CONSTITUTION:The process identification part 6 inputs an operation signal (g) on which an identification signal is superposed and a control signal (m) at a specific sampling period. The identification end decision part 10 monitors variations of values of coefficients G0 and G1 of a transfer function G(s) which is obtained by the process identification part 6 successively and calculates the rate A of variation of G0 with time. Then, the rate B of variation of the coeffi cient Gd1 with time is calculated. The identification end decision part 10 when deciding that the identification is made sends out identification end signals E and E' to close a switch SW for setting. A PID parameter calculation part 11 calculates PID parameters according to the current transfer function G(s) which is obtained by the process identification part 6 and sends them out to a PID control part 2 through the switch SW for setting.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、プロセス制御装置に関し、特に制御・(ラメ
ータを自動的だ設定する機能を持った −プロセス制御
装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a process control device, and particularly to an improvement of a process control device having a function of automatically setting control parameters.

〔発明の技術的背景〕[Technical background of the invention]

プロセス制御対象全最適に制御するには、プロセス制御
装置を構成する調節計のPID演算処理での各PIDパ
ラメータ全プロセス制御対象の動特性に適した値に設定
する必要がある。そこで従来%PID/41ラメータは
、プロセス制御対象の同定を行なってプロセス制御対象
の動特性を求め、この動特性から算出して設定している
In order to optimally control all the process control objects, it is necessary to set each PID parameter in the PID calculation processing of the controller constituting the process control device to a value suitable for the dynamic characteristics of all the process control objects. Therefore, conventionally, the %PID/41 parameter is set by identifying the process control target, determining the dynamic characteristic of the process control target, and calculating from this dynamic characteristic.

すなわち、動作中のプロセス制御対象に例えばM系列信
号からなる同定信号を与え、これによるプロセス制御対
象の応答出力と、このときのプロセス制御対象への入力
とに基づいて演算処理を行ない、プロセス制御対象の動
特性が求められる。そして、この動特性を表わす伝達関
数からPIDパラメータが算出され、このPIDパラメ
ータが調節計に変更設定される。
That is, an identification signal consisting of, for example, an M-sequence signal is applied to an operating process control target, and arithmetic processing is performed based on the response output of the process control target and the input to the process control target at this time, and process control is performed. The dynamic characteristics of the object are required. Then, a PID parameter is calculated from the transfer function representing this dynamic characteristic, and this PID parameter is changed and set in the controller.

〔背景技術の問題点〕[Problems with background technology]

ところが、プロセス制御対象の同定は、どの時点をもっ
て終了したのかの判断が難しい。つまり、同定によって
求められる伝達関数は、同定開始時、変動した値とな)
しだいに動特性を示す一定な値になる。そのうえ、伝達
関数が−1定の値になるまでの時間は、各プロセス制御
対象によって異なっている。したがって、全てのプロセ
ス制御対象のPIDパラメータを算出するタイミングを
適切にとることが非常に困難であった。しかして、同定
時間が短か過ぎると、同定が不十分となって正確な動特
性が求められず、現在のプロセス制御対象に不適切なP
ID パラメータが設定されてしまう。また、同定時間
が長すぎると適切なPrD /#ラメータの設定はでき
るが、この設定までに時間がかかり適切なプロセス制御
の開始が遅くなってしまう。
However, it is difficult to determine when identification of process control targets has ended. In other words, the transfer function obtained by identification has a fluctuating value at the beginning of identification.)
It gradually becomes a constant value indicating dynamic characteristics. Furthermore, the time it takes for the transfer function to reach a constant value of -1 differs depending on each process control target. Therefore, it has been extremely difficult to find an appropriate timing to calculate PID parameters for all process control targets. However, if the identification time is too short, the identification will be insufficient and accurate dynamic characteristics cannot be obtained, resulting in a P that is inappropriate for the current process control target.
ID parameter is set. Furthermore, if the identification time is too long, although it is possible to set an appropriate PrD/# parameter, it takes time to set this, and the start of appropriate process control is delayed.

〔発明の目的〕[Purpose of the invention]

本発明は上記実情に基づいてなされたもので、その目的
とするところは、プロセス制御対象に対して最適な制御
・セラメータを最適なタイミングでもって設定し得、迅
速に最適なプロセス制御ができるフロセス制御装置全提
供することにある。
The present invention has been made based on the above-mentioned circumstances, and its purpose is to enable a flow process that can quickly perform optimal process control by setting the optimal control and ceramica at the optimal timing for the process control target. The entire control device is to be provided.

−〔発明の概要〕 本発明は、プロセス制御対象に同定信号全操作信号に加
えて与え、このときの前記プロセス制御対象から出力さ
れる制御信号と前記プロセス制御対象に与えた同定信号
と操作信号との加算信号とを演算処理して前記プロセス
制御対象の伝達関数を求め、同定終了判定部はこの伝達
関数の変化が所定範囲内に入ったことを判定して同定終
了信号を出力し、このときパラメータ演算部により伝達
関数を受けて制御・臂うメータを求め、これ全前記プロ
セス制御対象を制御する主制御部に設定するようにした
プロセス制御装置である。
- [Summary of the Invention] The present invention provides an identification signal in addition to all operation signals to a process control object, and at this time, a control signal output from the process control object, an identification signal and an operation signal given to the process control object. The transfer function of the process control object is obtained by calculating the transfer function of the process control target, and the identification end determination section determines that the change in the transfer function is within a predetermined range and outputs an identification end signal. In this process control device, a parameter calculation section receives a transfer function, determines a meter to be controlled and controlled, and sets this in a main control section that controls all of the process control objects.

〔発明の実施しIJ ] 以下、本発明に係るプロセス制御装置の一実施例につい
て第1図ないし第3図を参照して説明する。第1図はプ
ロセス制御装置の構成図である。第1図において1はプ
ロセス制御対象であり、2は主制御部としてのPID制
御部であって、このPID制御部2は%PID/fラメ
ータが20ロセス制御対象1の動作状態に応じて適時変
更設定され、プロセス制御対象1から出力嘔れる制御信
号mと目標イ言号発生部3から出力される目標信号Cと
の偏差信号kを受け、この偏差信号k t−PID (
比例、積分、微分)演算処理し。
[Practice of the Invention IJ] Hereinafter, one embodiment of a process control device according to the present invention will be described with reference to FIGS. 1 to 3. FIG. 1 is a block diagram of a process control device. In FIG. 1, 1 is a process control target, and 2 is a PID control unit as a main control unit. Receives a deviation signal k between a control signal m that has been changed and output from the process control object 1 and a target signal C output from the target signal generator 3, and calculates this deviation signal k t-PID (
Proportional, integral, differential) calculation processing.

この処理結果に得られた操作信号3をプロセス制御対象
lに送出してプロセス制御対象Jを制御するものである
0 4け同定信号発生部であって、とfiはプロセス制御対
象1の動特性金求めるための2値のM系列信号からなる
同定信号dを発生するものである。なお、同定信号dは
加算器5により扮作信号5lcili畳されてプロセス
制御対象JK送られるようになっている。
The operation signal 3 obtained as a result of this processing is sent to the process control object L to control the process control object J, where 0 and fi are the dynamic characteristics of the process control object 1. It generates an identification signal d consisting of a binary M-sequence signal for determining gold. The identification signal d is multiplied by the impersonation signal 5lcili by the adder 5 and sent to the process control object JK.

6はプロセス同定部であって、これはプロセス制御対象
ノの同定時、プロセス制御対象Jに送られる同定信号の
重畳した操作信号gとプロセス制御対象ノから出力され
る制御信号mとを所定のサンプリング周期でもって取込
んで操作信号gと制御信号mとの偏差を求め、この偏差
の2乗和か最小となるように、つまり最小2乗法により
プロセス制御対象1の動特性を表わす伝達関数GC8’
) ’c演t(L求めるものである。この伝達関数G(
s)は次式のように表わされる。
Reference numeral 6 denotes a process identification unit, which, when identifying a process control object, converts the operation signal g on which the identification signal sent to the process control object J is superimposed and the control signal m output from the process control object into a predetermined manner. The deviation between the operation signal g and the control signal m is acquired at a sampling period, and the transfer function GC8 representing the dynamic characteristics of the process controlled object 1 is calculated using the least squares method so as to minimize the sum of the squares of this deviation. '
) 'c operation t(L). This transfer function G(
s) is expressed as follows.

G(s)=□ ・・・(1) GO+G1・5−1−G2・S2+G3・s3ここで、
後述する同定終了の判定に重要な係数はGO(!:GI
 とである。すなわち、Goはプロセスダインの逆数で
あり、Glはプロセスの時定数をプロセスダインにより
除算したものである0 さて、10は同定終了判定部であって、この同定終了判
定部10はプロセス同定部6により求められる伝達関数
G(s)のうち係数Goと01と全監視し、これら係数
GOと01 とがそれぞれ設定された範囲内に入ったこ
と全判断し、この判定時に同定終了信号Eを設定用スイ
ッチSW送出するものである。つまり、伝達関数G(s
)は、同定開始時、第2図に示すように変動した値をと
る。そして、時間経過とともにプロセス制御対象1の動
特性を示す値に定まってくる。よって、同定終了判定部
101−1:、伝達関数G(s)の変動が一定になって
きたことを係数Go+Gtt監視することによって判定
している。
G(s)=□...(1) GO+G1・5-1−G2・S2+G3・s3 Here,
The important coefficient for determining the end of identification, which will be described later, is GO(!:GI
That is. That is, Go is the reciprocal of the process dyne, and Gl is the process time constant divided by the process dyne. The coefficients Go and 01 of the transfer function G(s) obtained by are all monitored, and it is determined that these coefficients GO and 01 are within the respective set ranges, and the identification end signal E is set at the time of this determination. The switch SW sends out the signal. In other words, the transfer function G(s
) takes a fluctuating value as shown in FIG. 2 at the start of identification. Then, as time passes, the value becomes determined to be a value indicating the dynamic characteristics of the process control target 1. Therefore, the identification end determination unit 101-1 determines whether the fluctuation of the transfer function G(s) has become constant by monitoring the coefficient Go+Gtt.

JlはPIDパラメータ算出部であって、これは同定終
了判定部10から出力された同定終了信号E 、 E’
によυ設定用スイッチSWが閉じたときに、プロセス同
定部6により求められた伝達関数G(s) t−受け、
この伝達関数G(a)に対応するPIDパラメータを算
出し、設定用スイッチSWを介してPID制御部2に送
出するものである。
Jl is a PID parameter calculating section, which receives identification end signals E, E' output from the identification end determining section 10.
When the υ setting switch SW is closed, the transfer function G(s) obtained by the process identification unit 6 is
A PID parameter corresponding to this transfer function G(a) is calculated and sent to the PID control section 2 via the setting switch SW.

なお、上記した各部2,3,4,6,10゜11は中央
制御部(不図示)から発せられる指令により動作する。
It should be noted that each of the above-mentioned sections 2, 3, 4, 6, 10.degree. 11 operates according to commands issued from a central control section (not shown).

次に上記の如く構成された装置の動作、特にPID 7
4′ラメ一タ設定時の動作について第3図に示す同定終
了判定フローチャートに従って説明する。中央制御部か
ら同定開始指令が発せられると、同定信号発生部4は2
値のM系列信号からなる同定信号dt−送出する。この
同定信号dは操作信号Sに重畳してプロセス制御対象1
に送られる。プロセス制御対象1ば、同定信号dが重畳
した操作信号gt受け、この信号gに応じた制御信号m
f出力する。そこで、プロセス同定部6け、同定信号の
重畳した操作信号gと制御信号mとを所定のサンプリン
グ周期でもって取込み、これら信号を最小二乗法により
演算処理してプロセス制御対象1の動特性を表わす伝達
関数G(8)を逐次求める。
Next, we will discuss the operation of the device configured as described above, especially PID 7.
The operation when setting the 4' laminate will be explained according to the identification completion determination flowchart shown in FIG. When an identification start command is issued from the central control unit, the identification signal generating unit 4
An identification signal dt consisting of an M-sequence signal of values is transmitted. This identification signal d is superimposed on the operation signal S to process control target 1.
sent to. A process control object 1 receives an operation signal gt on which an identification signal d is superimposed, and receives a control signal m corresponding to this signal g.
Output f. Therefore, the process identification section 6 takes in the operation signal g on which the identification signal is superimposed and the control signal m at a predetermined sampling period, and processes these signals using the method of least squares to express the dynamic characteristics of the process control object 1. The transfer function G(8) is found one after another.

ここで、同定終了判定部10は、プロセス同定部6によ
り逐次求められている伝達関数G(s)の係数Go、G
、の値の変化を監視している。
Here, the identification end determination unit 10 determines the coefficients Go, G
, is monitoring changes in the value of .

まず、COの時間経過による変化率Aが演算し求められ
る。すなわち、 である。そして、この変化率Aが、伝達関数G(x) 
r一定とみなすことができる値り、よりも小きな値にな
ったかどうかの判断が行なわれる。
First, the rate of change A of CO over time is calculated and determined. That is, . Then, this rate of change A is the transfer function G(x)
A determination is made as to whether r has become a value smaller than a value that can be regarded as constant.

次に係数G1の時間経過による変化率Bが演算し求めら
れる。すなわち、 である。そして、この変化率BがAと同様に伝達関数C
(s) i一定とみなすことができる値D2よりも小さ
な値になったかどうかの判断が行なわれる。
Next, the rate of change B of the coefficient G1 over time is calculated and determined. That is, . Then, like A, this rate of change B is the transfer function C
(s) It is determined whether i has become a value smaller than a value D2 that can be regarded as constant.

そして、以上の判断がいずれも満足し、その回数かに回
連続してなされた場合に、同定終了の判定がなされる。
Then, when all of the above judgments are satisfied and have been made consecutively for the specified number of times, it is judged that the identification has ended.

なお、判断の回数には各プロセス制御対象1に応じて設
定されろものである。
Note that the number of times of determination should be set according to each process control target 1.

このように同定終了の判定がなされると、同定終了判定
部10は同定終了信号E、E”i送出し、これにより設
定用スイッチSWは閉じろ。
When it is determined that the identification has ended in this manner, the identification end determination section 10 sends out identification end signals E, E''i, thereby closing the setting switch SW.

このときPIDパラメータ算出部11は、プロセス同定
部6により求められた現時点での伝達関数G(s)によ
りPID/4′ラメータを算出し、これを設定用スイッ
チSW全通してPID制御部2に送出する。そこで、P
ID制御部2は送られてきたPID/#ラメータを受け
て、このPID/#ラメータに更新設定する。この結果
、プロセス制御対象ノば、現在の動作状態に適切なPI
Dパラメータをもって制御される。
At this time, the PID parameter calculation section 11 calculates a PID/4' parameter using the current transfer function G(s) determined by the process identification section 6, and passes this through all setting switches SW to the PID control section 2. Send. Therefore, P
The ID control unit 2 receives the sent PID/# parameter and updates the PID/# parameter. As a result, the process controlled node has the appropriate PI for the current operating state.
It is controlled by the D parameter.

このように本発明の装置においては、プロセス同定部6
により求められる伝達関数G(s)の特にプロセスゲイ
ンの逆数Goとプロセスの時定数をプロセスダインで除
算した係数Gl とを監視し、G、の変化mAが所定値
D1以下、またG、の変化率Bが所定値D2以下になる
ことが連続してに回以上あった場合に、プロセス同定が
終了したとみなし、このときの伝達関数G(3)金もっ
てPIDパラメータ全算出してPID制御部2に設定す
るので、プロセス同定が確実に終了した時点を−速くと
らえ、この時点での伝達関数G(8)からプロセス制御
対象1の動特性に最適なPID A’ラメータf!:算
出して設定できる。丁なわち、プロセス同定部6により
得られる伝達関数はプロセス制御対象1の動特性全正確
に表ゎす値となり、これによってPID ノ?ラメータ
は!ロセス制御対象1t−制御するうえにとって最適ハ な値となる。よって、プロセス制御中、a時に最適なP
IDパラメータが自動的に設定されて最適なプロセス制
御ができる。
In this way, in the apparatus of the present invention, the process identification section 6
In particular, the reciprocal of the process gain Go and the coefficient Gl obtained by dividing the process time constant by the process dyne of the transfer function G(s) determined by are monitored, and the change mA in G is less than a predetermined value D1, and the change in G is When the rate B becomes less than the predetermined value D2 more than 2 consecutive times, it is assumed that the process identification has been completed, and the transfer function G (3) at this time is used to calculate all the PID parameters and calculate the PID control unit. 2, the time point at which process identification is reliably completed is quickly detected, and the PID A' parameter f! that is optimal for the dynamic characteristics of process control target 1 is determined from the transfer function G(8) at this point. :Can be calculated and set. In other words, the transfer function obtained by the process identification unit 6 becomes a value that accurately represents all the dynamic characteristics of the process control object 1, and thereby the PID number? Lameter is! It is the optimum value for controlling the process control target 1t. Therefore, during process control, the optimal P at time a
ID parameters are automatically set for optimal process control.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、プロセス同定中に求められるプロセス
制御対象の動特性を表わす伝達関数の変化を監視し、こ
の伝達関数が一定になったことを判断してプロセス同定
終了とみなし、このときの伝達関数をもって制御パラメ
ータを求めて設定するので、プロセス制御対象に対して
最適な制御ノ(ラメータを最適なタイミングでもって設
定し得、迅速に最適なプロセス制御ができるプロセス制
御装置全提供できる。
According to the present invention, changes in the transfer function representing the dynamic characteristics of the process control target determined during process identification are monitored, and it is determined that the process identification has ended when the transfer function has become constant. Since the control parameters are determined and set using the transfer function, the optimum control parameter for the process control object can be set at the optimum timing, making it possible to provide a complete process control device that can quickly perform optimum process control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るプロセス制御装置の一実施例を示
す構成図、第2図は第1図に示す装置におけるプロセス
同定部での伝達関数の変化を示す図、第3図は第1図に
示す装置の同定終了判定フローチャートである。 1・・・プロセス制御対象、2・・・PID制御部、3
・・・目標信号発生部、4・・・同定信号発生部、6・
・・プロセス同定部、10・・・同定終了判定部、1)
・・・PID /4ラメータ算出部。 第1図 第2図 時間を 第3図
FIG. 1 is a block diagram showing an embodiment of the process control device according to the present invention, FIG. 2 is a diagram showing changes in the transfer function in the process identification section of the device shown in FIG. 1, and FIG. It is a flowchart of identification end determination of the apparatus shown in the figure. 1... Process control target, 2... PID control unit, 3
...Target signal generation section, 4.Identification signal generation section, 6.
...Process identification section, 10...Identification end judgment section, 1)
...PID/4 rammeter calculation unit. Figure 1 Figure 2 Time Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)プロセス制御対象により得られた制御信号を取込
んで制御演算処理を行ない、前記プロセス制御対象に操
作信号を出力する主制御部と、前記プロセス制御対象に
同定用信号を前記操作信号に加算して与えたときの前記
プロセス制御対象から出力される前記制御信号と前記プ
ロセス制御対象に与えた前記同定用信号と前記操作信号
とからなる加算信号に基づいて前記プロセス制御対象の
伝達関数を演算し求めるプロセス同定部と、このプロセ
ス同定部により求められる伝達関数の変化を監視し、こ
の伝達関数変化が所定範囲内に入ったことを判定して同
定終了信号を送出する同定終了判定部と、この同定終了
判定部から送出された同定終了信号を受け、前記プロセ
ス同定部から伝達関数を取込んで前記プロセス制御対象
に対する制御パラメータを求め、この制御パラメータを
前記主制御部に設定するパラメータ演算部とを具備した
ことを特徴とするプロセス制御装置。
(1) A main control unit that takes in a control signal obtained by a process control object, performs control calculation processing, and outputs an operation signal to the process control object, and an identification signal to the process control object to the operation signal. A transfer function of the process controlled object is determined based on an added signal consisting of the control signal output from the process controlled object when added together, the identification signal given to the process controlled object, and the operation signal. A process identification unit that performs calculations and obtains the results; an identification end determination unit that monitors the change in the transfer function determined by the process identification unit, determines that the change in the transfer function is within a predetermined range, and sends out an identification end signal. , receiving the identification end signal sent from the identification end determination section, taking in the transfer function from the process identification section to obtain control parameters for the process control object, and setting the control parameters in the main control section. A process control device comprising:
(2)同定終了判定部は、伝達関数のうちプロセスゲイ
ンの逆数値とプロセスの時定数を前記プロセスゲインに
より除算した値とがそれぞれプロセス制御対象の動特性
を示す値を含む範囲内に入るのを判断する特許請求の範
囲第(1)項記載のプロセス制御装置。
(2) The identification end determination unit determines whether the reciprocal value of the process gain and the value obtained by dividing the process time constant by the process gain of the transfer function are each within a range that includes a value indicating the dynamic characteristics of the process control target. A process control device according to claim (1) that determines.
JP19216284A 1984-09-13 1984-09-13 Process controller Pending JPS6170607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19216284A JPS6170607A (en) 1984-09-13 1984-09-13 Process controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19216284A JPS6170607A (en) 1984-09-13 1984-09-13 Process controller

Publications (1)

Publication Number Publication Date
JPS6170607A true JPS6170607A (en) 1986-04-11

Family

ID=16286716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19216284A Pending JPS6170607A (en) 1984-09-13 1984-09-13 Process controller

Country Status (1)

Country Link
JP (1) JPS6170607A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0384437A2 (en) * 1989-02-23 1990-08-29 Kabushiki Kaisha Toshiba Method and system for changing control parameters in accordance with state of process in process control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0384437A2 (en) * 1989-02-23 1990-08-29 Kabushiki Kaisha Toshiba Method and system for changing control parameters in accordance with state of process in process control

Similar Documents

Publication Publication Date Title
US4213175A (en) Fault-detecting apparatus for controls
JP2647217B2 (en) Composite control method
MX9702973A (en) Model predictive control apparatus and method.
US20020019722A1 (en) On-line calibration process
JPH05204408A (en) Method of correcting control parameter in industrial equipment
JPS6170607A (en) Process controller
JPH0822306A (en) Automatic adjusting device for arithmetic control parameter
US5432885A (en) Recurrent fuzzy inference apparatus
JPH07261805A (en) Automatic adjusting device for proportional plus integral plus derivative control parameter
JP2643506B2 (en) Predictive controllers for industrial processes
JPH0619506A (en) Identifying device
JPS6144326B2 (en)
JPS6385804A (en) Apparatus for renewing correlation of physical nature together with measurement data
JPS638802A (en) Method for automatically adjusting control constant of pid controller
JPH11102203A (en) Plant controller
JP2781886B2 (en) Control device and control method
JPS6148163B2 (en)
JPH06259109A (en) Intermittent fuzzy pid controller
JP2915220B2 (en) Process control equipment
JPH08314504A (en) Pid-imc interface device and imc controller
JPH0922302A (en) Process control device
JPH0551923B2 (en)
JPS6148162B2 (en)
JPS60138612A (en) Process controller
JPH03256102A (en) Device for calculating control parameter