JPS616251A - Seal bonding fe-ni-co alloy with superior suitability to blanking - Google Patents

Seal bonding fe-ni-co alloy with superior suitability to blanking

Info

Publication number
JPS616251A
JPS616251A JP12588884A JP12588884A JPS616251A JP S616251 A JPS616251 A JP S616251A JP 12588884 A JP12588884 A JP 12588884A JP 12588884 A JP12588884 A JP 12588884A JP S616251 A JPS616251 A JP S616251A
Authority
JP
Japan
Prior art keywords
alloy
less
composition
seal bonding
nonmetallic inclusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12588884A
Other languages
Japanese (ja)
Other versions
JPS6411097B2 (en
Inventor
Akio Hashimoto
彰夫 橋本
Masakazu Umeda
梅田 正和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP12588884A priority Critical patent/JPS616251A/en
Publication of JPS616251A publication Critical patent/JPS616251A/en
Publication of JPS6411097B2 publication Critical patent/JPS6411097B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Gasket Seals (AREA)

Abstract

PURPOSE:To obtain a seal bonding Fe-Ni-Co alloy with superior suitability to press blanking and curring by specifying the composition of an alloy and the size of nonmetallic inclusions of Mn, Si and one or more among Al, Zr, Ga, Mg and REM dispersed uniformly in the structure. CONSTITUTION:The composition of a seal bonding Fe-Ni-Co alloy is composed of, by weight, 25-35% Ni, 13-20% Co, 0.03-0.3% Si, <0.05% C, 0.05-1% Mn, 0.003-0.025% S (Mn/S>=10), <100ppm O, <50ppm N and the balance Fe with inevitable impurities. 0.0005-0.1% one or more among Al, Zr, Ca, Mg and REM may be added to the composition. Fine nonmetallic inclusions of Mn, Si and one or more among Al, Zr, Ca, Mg and REM having <=3mum size are uniformly dispersed in the structure.

Description

【発明の詳細な説明】 産業分野 この発明は、リードフレーム等に使用するFe−N1−
Co系封着合金に係り、打抜性、切断加工性にすぐれた
Fe −Ni −Co系封着合金に関する。
[Detailed description of the invention] Industrial field This invention is applied to Fe-N1-
The present invention relates to a Co-based sealing alloy, and relates to a Fe-Ni-Co-based sealing alloy that has excellent punchability and cutting workability.

背景技術 一般に、25〜35wt%Ni  13〜20wt%C
o −F*金合金、ガラス、セラミックスの熱膨張特性
と近似していることから、薄板や細線に加工したのち、
所要形状に打抜きあるいはエツチング加工されて、IC
や表示素子等のリードフレーム、また、IC。
Background art Generally, 25-35wt%Ni 13-20wt%C
o -F* Since the thermal expansion characteristics are similar to those of gold alloys, glass, and ceramics, after processing into thin plates or thin wires,
The IC is punched or etched into the desired shape.
, lead frames for display elements, and ICs.

トランジスタ、リードスイッチのリード等に多用されて
おり、製造に際しては、連続して大苗に生産されている
It is widely used for the leads of transistors and reed switches, and during manufacturing, large seedlings are produced continuously.

上記のリードフレームやリードなどは非常に微細なパタ
ーンで極めて^い寸法精度が要求されているため、高速
プレスによる打抜加工では、従来のFe−Ni  Co
系封着合金は打抜加工性が悪く、成形金型の摩耗が激し
く、プレス金型の修正や研摩等の頻度がシロしく、生産
能率の低下によって製品コストの高騰をもたらづ問題が
あった。
The lead frames and leads mentioned above have very fine patterns and require extremely high dimensional accuracy, so when punching them using a high-speed press, conventional Fe-Ni Co
Sealing alloys have problems such as poor punching workability, severe wear of molding dies, infrequent repair and polishing of press dies, and lower production efficiency, leading to higher product costs. Ta.

発明の[1的 この発明は、プレス打抜性や切断加工性を改善したFe
 −Ni−Co系封着合金を目的としている。
[1] This invention is an Fe material with improved press punchability and cutting workability.
-Aimed at Ni-Co based sealing alloys.

発明の構成と効果 この発明は、Fe  NL  Co系封着合金の打抜性
や切断加工性の改善を目的に合金組成等を種々検討した
結果、合金の成分組成を特定し、かつ組織内に均一に分
散するMn、SL及び/V 、Zr 、Ca 、l’b
 、R・[の窒化物、炭化物、酸化物、硫化部等の非金
属介在物の大ぎさを特定することにより、Fa −Ni
−ω系封特合金の打抜性、切断加工性が著しく向上する
ことを知見したものである。
Structure and Effects of the Invention The present invention has been made by studying various alloy compositions for the purpose of improving the punching property and cutting processability of Fe NL Co-based sealing alloys, and as a result, the composition of the alloy has been specified, and Uniformly dispersed Mn, SL and /V, Zr, Ca, l'b
, R. By specifying the size of nonmetallic inclusions such as nitrides, carbides, oxides, and sulfide parts, Fa-Ni
It has been discovered that the punchability and cutting workability of -ω-based special alloys are significantly improved.

tなわち、この発明は、 Ni25〜35wt%、Co13〜20wt%、Si 
 0.03〜0.50 wt%、C0105wt%以下
、Mn  0.05〜1.00 wt%、S 0000
3〜0.02!iwt%、但し、Mn /S≧10゜ 0 100p100pp 下、N  50+11111
114下、を含有し、あるいはさらに、A1.Zr、C
a、MC1.R・E(7)うち少なくとも1種ヲ0.0
005〜0.10 wt%を含有し、 残部は「e及び不可避的不純物からなり、Si、Mll
及びAN、Zr 、Ca 、Mg、[Eの酸化物、窒化
物、炭化物、硫化物等の3虜以下の微細非金属介在物が
、組織内に均一に分散5ることを特徴とする打抜性の良
好なる「e −Ni −Co系封着合金である。
In other words, this invention has Ni25-35wt%, Co13-20wt%, Si
0.03-0.50 wt%, C0105 wt% or less, Mn 0.05-1.00 wt%, S 0000
3~0.02! iwt%, however, Mn/S≧10゜0 100p100pp lower, N 50+11111
114 below, or further comprising A1. Zr,C
a, MC1. At least one of R/E (7) 0.0
005 to 0.10 wt%, and the remainder consists of e and unavoidable impurities, including Si, Mll
A punching process characterized in that fine nonmetallic inclusions of 3 or less, such as oxides, nitrides, carbides, and sulfides of AN, Zr, Ca, Mg, and [E, are uniformly dispersed in the structure. This is an e-Ni-Co based sealing alloy with good properties.

一般に、Fe  NL  Co系封着合金を、第3図の
ようなダイス(力、ポンチ(8)により打抜、切断した
場合の切断面状況は、第1図に示す如く、被打抜材の平
面部(1)より連続したダレ而(2)、剪断面(3)、
破断面(4)、そしてカエリ面(5)とからなっており
、この場合のポンチの移動距離であるポンチストローク
は)と切断に要する力である剪断抵抗(R)との関係は
、第2図のごとき曲線となることが知られている。
In general, when a Fe NL Co sealing alloy is punched and cut using a die (force, punch (8)) as shown in Figure 3, the cut surface state is as shown in Figure 1. A continuous sag (2) from the flat part (1), a sheared surface (3),
It consists of a fracture surface (4) and a burr surface (5), and the relationship between the punch stroke, which is the travel distance of the punch, and the shear resistance (R), which is the force required for cutting, is It is known that the curve shown in the figure is obtained.

第2図において、最大剪断抵抗が小さく、かつ破断まで
のポンチストロークが小さいほど、切断に要するエネル
ギーが小さく、金型に加わる負荷が小さくなり、金型寿
命が長くなるが、この最大剪断抵抗は、被打抜材の引張
強さ、硬度等の機械的強度により決定され、また、切断
までのポンチストロークと、(剪断面厚み/板厚)はほ
ぼ正比例する。
In Figure 2, the smaller the maximum shear resistance and the smaller the punch stroke until breakage, the smaller the energy required for cutting, the less the load on the mold, and the longer the mold life. , is determined by mechanical strengths such as tensile strength and hardness of the material to be punched, and the punch stroke until cutting and (sheared surface thickness/plate thickness) are almost directly proportional.

また、(剪断面厚み/板厚)は、材料の機械的強度のみ
ならず、微量含有元素や析出物、介在物量などの材料の
内質に大きく左右されると考えられ、この発明の如く、
組成を限定しかつ非金属介在物の大きさを特定すること
により、(剪断面厚み/板厚)を小さくでき、切断まで
のポンチストロークが小さくなり、金型寿命を延長でき
る。
In addition, it is believed that (sheared surface thickness/plate thickness) is greatly influenced not only by the mechanical strength of the material but also by the internal properties of the material, such as the amount of trace elements, precipitates, and inclusions.
By limiting the composition and specifying the size of non-metallic inclusions, (sheared surface thickness/plate thickness) can be reduced, the punch stroke until cutting can be reduced, and the life of the mold can be extended.

組成の限定理由 N1は、硬質ガラスやアルミナ系セラミック等との強固
な付着接合が要求される水系合金の基本成分であり、ら
の含有量を考慮して適宜選定されるが、25wt%未満
では、熱膨張係数が小さくなりすぎ、35wt%を越え
ると熱膨張係数が大きくなりすぎ、いずれもガラス、セ
ラミックスの熱膨張係数との偏差が大きくなるので好ま
しくなく、25wt%〜35wt%に限定する。
Reasons for limiting the composition N1 is a basic component of water-based alloys that require strong adhesive bonding with hard glass, alumina ceramics, etc., and is selected appropriately taking into account the content of these materials, but if it is less than 25 wt%, The coefficient of thermal expansion becomes too small, and if it exceeds 35 wt%, the coefficient of thermal expansion becomes too large, and the deviation from the coefficient of thermal expansion of glass or ceramics becomes large, which is not preferable, so it is limited to 25 wt% to 35 wt%.

COは、硬質ガラスやアルミナ系セラミック等との強固
な付着接合が要求される水系合金の基本成分であり、N
Lの含有量を考慮して適宜選定されるが、13wt%未
満では、熱膨張係数が小さくなりすぎ、20wt%を越
えると熱膨張係数が大きくなりすぎ、いずれもガラス、
セラミックスの熱膨張係数との偏差が大きくなるので好
ましくなく、13wt%〜20wt%に限定する。
CO is a basic component of water-based alloys that require strong adhesive bonding with hard glass, alumina ceramics, etc., and N
The L content is appropriately selected in consideration of the L content, but if it is less than 13 wt%, the coefficient of thermal expansion will be too small, and if it exceeds 20 wt%, the coefficient of thermal expansion will be too large.
This is not preferable because the deviation from the coefficient of thermal expansion of ceramics becomes large, so it is limited to 13 wt% to 20 wt%.

Slは、鋳塊中の気泡発生を防止する脱酸元素であり、
またガラス封着時に重要な表面酸化被膜の密着性を改善
する効果があるが、0.03 wt%未満ではその効果
がなく、また、0.50 wt%を越えると材質的に硬
化して冷間加工性が劣化するため好ましくなく、0.0
3 wt%〜0.50 wt%%に限定する。
Sl is a deoxidizing element that prevents the generation of bubbles in the ingot,
It also has the effect of improving the adhesion of the surface oxide film, which is important when sealing glass, but if it is less than 0.03 wt%, it has no effect, and if it exceeds 0.50 wt%, the material will harden and become cold. It is not preferable because machinability deteriorates, and 0.0
3 wt% to 0.50 wt%%.

C(よ、ガラスあるいはセラミックスとの密着時の加熱
過程において、表面からガスとして発生して到着界面に
内包され、封着強庭を低下させるので、0.05wt%
以下に限定する。
C (0.05 wt%) during the heating process during close contact with glass or ceramics, it is generated as a gas from the surface and is included in the arriving interface, reducing the sealing strength.
Limited to the following.

Mnは、熱間加工性を改善する効果があるが、0.05
 wt%未満ではイの効果がなく、1.00 wt%を
越えると熱膨張係数が大きくなりすぎ、ガラス。
Mn has the effect of improving hot workability, but 0.05
If it is less than 1.00 wt%, it will not have the effect described above, and if it exceeds 1.00 wt%, the coefficient of thermal expansion will become too large, resulting in glass.

しラミックスとの封着性を阻害するため、0.05wt
%〜1.00 wt%に限定する。
0.05wt to inhibit the sealing property with the lamix.
% to 1.00 wt%.

Sは、合金内の1と結合して微細な硫化物を生成し、こ
れが組織内に均一に分散してプレス加工性を改善づるが
、0.003wt%未満では改善効果が少なく、0.0
25wt%を越えると、巨人な一硫化物を生成し易くな
り、薄板等に加工する際に表面剥離1割れ等の欠陥が発
生し易くなるため、0.003W【%〜0.025wt
%に限定する。
S combines with 1 in the alloy to produce fine sulfides, which are uniformly dispersed within the structure and improve press workability, but if it is less than 0.003 wt%, the improvement effect is small;
If it exceeds 25wt%, giant monosulfides are likely to be generated, and defects such as surface peeling and cracks are likely to occur when processing into thin plates, etc., so 0.003W [% ~ 0.025wt%]
%.

MnとSの含有比、Mi/Sは、組織内に1と含有しな
いSが残存して熱間加工性を低下し、かつ割れ疵等の欠
陥が発生し易くなるのを防止するために限定する必要が
あり、Iin/S≧10とする必要がある。しかし、そ
の上限は300が好ましく、好ましいlln/S範囲と
しては、35〜200が望ましい。
The content ratio of Mn and S, Mi/S, is limited in order to prevent S from remaining in the structure, reducing hot workability and making defects such as cracks more likely to occur. It is necessary to satisfy Iin/S≧10. However, the upper limit thereof is preferably 300, and the preferable lln/S range is 35 to 200.

0、Nは、ブレス打扱竹の観点から、Si 、Nn。0 and N are Si and Nn from the viewpoint of breath-beating bamboo.

M 、Zr 、Ca 、r 、R・E (希土類元素)
の酸化物。
M, Zr, Ca, r, R・E (rare earth elements)
oxide.

窒化物として、組織内に微小介在物が均一に分散分布し
ていることが望ましく、かつ、熱間加Tv1及び冷間前
■性改善の観点より、Oは1100pp以下、Nは50
ppm以下にする必要がある。
As a nitride, it is desirable that minute inclusions are uniformly distributed within the structure, and from the viewpoint of improving hot heating Tv1 and cold preheating properties, O is 1100 pp or less and N is 50 ppm or less.
It is necessary to keep it below ppm.

Al、Zr、Ca、M(1.R−「(希土類元素)は、
Nj 、FaよりもS、0.C,Nとの親和力が強いた
め、酸化物、炭化物、窒化物、硫化物を生成し、プレス
加工性を改善する効果があるため、上記元素のうち少な
くとも1種を添加するが、o、ooos wt%未満で
は上記効果がなく、0.10wt%を越えると熱間加工
性、冷間加工性を劣化さゼるので好ましくなく、0.0
005 wt%〜0.10wt%の含有とする。
Al, Zr, Ca, M (1.R-"(Rare earth elements) are
Nj, S, 0. than Fa. Since it has a strong affinity with C and N, it produces oxides, carbides, nitrides, and sulfides, and has the effect of improving press workability, so at least one of the above elements is added, but o, ooos If it is less than 0.10 wt%, the above effect will not be obtained, and if it exceeds 0.10 wt%, the hot workability and cold workability will be deteriorated, which is not preferable.
005 wt% to 0.10 wt%.

また、上記のR・[(希土類元素)は、少なくとも1[
iの希土類元素であればよく、コストの面から1.C4
及びミツシュメタルが好ましい。
Further, the above R.[(rare earth element) is at least 1[
It suffices to use rare earth elements of i. C4
and Mitsushmetal are preferred.

Feは、水系合金の基本組成をなすもので、上記の各種
元素を含有した残余の範囲とする。
Fe constitutes the basic composition of the water-based alloy, and is the residual range containing the above-mentioned various elements.

Si 、Mn 、AI 、Zr 、Ca 、F’a 、
R・Eの酸化物、炭化物、窒化物、硫化物等の非金属介
在物の組織内での大ぎさを限定した理由は、非金属介在
物の大きさが3摩を越えると、打抜加■、切断加工時の
力エリが多くなり、薄板の曲げ加工、絞り加工時に亀裂
1割れ発生の起点となるためであり、上記非金属介在物
の大ぎさは3摩以下で、かつ組織内に均一に分散、含有
されていることが重要である。
Si, Mn, AI, Zr, Ca, F'a,
The reason for limiting the size of nonmetallic inclusions such as oxides, carbides, nitrides, and sulfides in the structure of R・E is that if the size of nonmetallic inclusions exceeds 3 mm, the punching ■This is because the force error during cutting increases and becomes the starting point for cracking during bending and drawing of thin plates. It is important that it is uniformly dispersed and contained.

また、この発明において、合金組成内の非金属介在物の
大きさを3摩以下に且つ均一に分散分布させるためには
、溶製条件、造塊条件及び脱酸剤の添加時期、添加層を
適宜選定する必要がある。
In addition, in this invention, in order to reduce the size of nonmetallic inclusions in the alloy composition to 3 mm or less and to uniformly disperse and distribute them, it is necessary to adjust the melting conditions, agglomeration conditions, the addition timing of the deoxidizing agent, and the additive layer. It is necessary to select it appropriately.

また、この発明合金の好ましい組成範囲は、Ni25〜
35wt%、C013〜20wt%、3i  0.10
〜0.30 wt%、(:、  0.03 wt%以下
、Mn  0.35〜0.85 wt%、S 0.00
3〜0.015wt%、但し、Mn /5=35〜20
01 Q  100pp111以下、N  50ppm以下、
を含有し、あるいはさらに、Al、Zr、Ca、M(1
.[Eのうち少なくとも1種を0.0005〜0.05
wt%を含有し、 残部はFe及び不可避的不純物からなる範囲で、3摩以
下の微細な非金属介在物が、60ppm以上均一に分散
することが好ましい。
Further, the preferred composition range of this invention alloy is Ni25~
35wt%, C013~20wt%, 3i 0.10
~0.30 wt%, (:, 0.03 wt% or less, Mn 0.35-0.85 wt%, S 0.00
3-0.015wt%, however, Mn/5=35-20
01 Q 100pp111 or less, N 50ppm or less,
or further contains Al, Zr, Ca, M (1
.. [0.0005 to 0.05 of at least one of E
It is preferable that fine nonmetallic inclusions of 3% or less are uniformly dispersed at 60ppm or more, with the balance consisting of Fe and unavoidable impurities.

実施例 第1表に示すような、本発明範囲ならびに本発明範囲外
の各種組成範囲のFe −NL −Co系月肴合金を、
同一条件で製造して、厚み0.25mmの薄板に仕上げ
た。この薄板より幅8111Ni×長さ50mmの試料
を採取し、第3図のごとき、圧縮試験機を用いて、ダイ
(力に載置した試料(6)を、幅7mmX長さ10 m
m寸法のポンチ(8)によるプレス打ち抜きを行<iい
、該試験機の可動アームの移動距離により、ポンチスト
ローク(9)を測定し、剪断抵抗(R)はロードセルに
より測定した。
Examples As shown in Table 1, Fe-NL-Co based moonshine alloys having various composition ranges within the scope of the present invention and outside the scope of the present invention,
It was manufactured under the same conditions and finished into a thin plate with a thickness of 0.25 mm. A sample with a width of 8111Ni x length of 50 mm was taken from this thin plate, and as shown in Figure 3, using a compression tester, the sample (6) placed on a die (width of 7 mm x length of 10 m) was measured.
Press punching was carried out using a punch (8) of size m, and the punch stroke (9) was measured by the moving distance of the movable arm of the testing machine, and the shear resistance (R) was measured by a load cell.

これより第2図と同様の剪断抵抗(R)とポンチストロ
ーク(1)の関係図を求め、切断までのボンデストロー
クを実測した。
From this, a relationship diagram between shear resistance (R) and punch stroke (1) similar to that shown in FIG. 2 was obtained, and the bond stroke up to cutting was actually measured.

また、打抜後の試料の切断断面を光学顕微鏡にJ、り観
察し、剪断面厚み及び板厚を測定して(剪断面厚み/板
厚)を算出した。
In addition, the cut cross section of the sample after punching was observed under an optical microscope, the sheared surface thickness and plate thickness were measured, and (sheared surface thickness/plate thickness) was calculated.

各種合金の介在物量は、定電位電解法によって金属のみ
溶解し、溶解液中の酸化物、炭化物、窒化物、硫化物等
の非金属介在物残渣を、ミクロフィルターで、3.0左
以下のものと、  3.0)Bを越えるものとに分離抽
出して測定した。
The amount of inclusions in various alloys can be determined by dissolving only metals using constant potential electrolysis, and removing non-metallic inclusion residues such as oxides, carbides, nitrides, and sulfides from the solution using a microfilter. and those exceeding 3.0) B were separated and measured.

上記の各測定結果を、試料の機械的強度及び熱膨張特性
と共に第1表に示す。
The above measurement results are shown in Table 1 along with the mechanical strength and thermal expansion properties of the samples.

第1表から明らかなように、この発明によるFa−Nj
 −Co系封着合金は、切断までのポンチストローク及
び(剪断面厚み/板厚)が、比較例の従来合金よりはる
かに小さく、所要の熱膨張特性および機械的強度を損う
ことなく、打抜、切断加工性が改善されたことが明白で
、金型寿命の延長に多大の効果を有することが分る。
As is clear from Table 1, Fa-Nj according to the present invention
-The Co-based sealing alloy has a much smaller punch stroke and (shear surface thickness/plate thickness) until cutting than the conventional alloy in the comparative example, and can be punched without compromising the required thermal expansion characteristics and mechanical strength. It is clear that the punching and cutting workability has been improved, and it can be seen that this has a great effect on extending the life of the mold.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はFe−NL  Co系封着合金の切断断面を示
す斜視図であり、第2図はポンチストローク(愛)と剪
断抵抗(R)との関係を示づグラフである。 第3図は実施例における圧縮試験装置の説明図である。 1・・・平面部、2・・・ダレ面、3・・・剪断面、4
・・・破断面、5・・・カエリ面6・・・試料、7・・
・ダイ、8・・・ポンチ。 出願人  住友特殊金属株式会社 第1図 第2図 第3図
FIG. 1 is a perspective view showing a cut section of a Fe-NL Co sealing alloy, and FIG. 2 is a graph showing the relationship between punch stroke (A) and shear resistance (R). FIG. 3 is an explanatory diagram of the compression test apparatus in the example. 1... Flat part, 2... Sagging surface, 3... Sheared surface, 4
...Fracture surface, 5...Burning surface 6...Sample, 7...
・Die, 8... Punch. Applicant Sumitomo Special Metals Co., Ltd. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1 Ni25〜35wt%、Co13〜20wt%、S
i0.03〜0.50wt%、C0.05wt%以下、
Mn0.05〜1.00wt%、S0.003〜0.0
25wt%、但し、Mn/S≧10、O100ppm以
下、N50ppm以下、を含有し、残部はFe及び不可
避的不純物からなり、3μm以下の微細非金属介在物が
、組織内に均一に分散することを特徴とする打抜性の良
好なるFe−Ni−Co系封着合金。 2 Ni25〜35wt%、Co13〜20wt%、S
i0.03〜0.50wt%、C0.05wt%以下、
Mn0.05〜1.00wt%、S0.003〜0.0
25wt%、但し、Mn/S≧10、Al、Zr、Ca
、Mg、R・Eのうち少なくとも1種を0.0005〜
0.10wt%、O100ppm以下、N50ppm以
下、を含有し、3μm以下の微細非金属介在物が、組織
内に均一に分散することを特徴とする打抜性の良好なる
Fe−Ni−Co系封着合金。
[Claims] 1 Ni25-35wt%, Co13-20wt%, S
i0.03-0.50wt%, C0.05wt% or less,
Mn0.05-1.00wt%, S0.003-0.0
25wt%, provided that Mn/S≧10, O100ppm or less, N50ppm or less, the remainder consists of Fe and unavoidable impurities, and fine nonmetallic inclusions of 3μm or less are uniformly dispersed in the structure. A Fe-Ni-Co sealing alloy with good punchability. 2 Ni25-35wt%, Co13-20wt%, S
i0.03-0.50wt%, C0.05wt% or less,
Mn0.05-1.00wt%, S0.003-0.0
25wt%, however, Mn/S≧10, Al, Zr, Ca
, Mg, and at least one of R and E from 0.0005 to
A Fe-Ni-Co seal with good punchability, containing 0.10 wt%, 100 ppm or less of O, and 50 ppm or less of N, and having fine nonmetallic inclusions of 3 μm or less uniformly dispersed in the structure. Arrival alloy.
JP12588884A 1984-06-19 1984-06-19 Seal bonding fe-ni-co alloy with superior suitability to blanking Granted JPS616251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12588884A JPS616251A (en) 1984-06-19 1984-06-19 Seal bonding fe-ni-co alloy with superior suitability to blanking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12588884A JPS616251A (en) 1984-06-19 1984-06-19 Seal bonding fe-ni-co alloy with superior suitability to blanking

Publications (2)

Publication Number Publication Date
JPS616251A true JPS616251A (en) 1986-01-11
JPS6411097B2 JPS6411097B2 (en) 1989-02-23

Family

ID=14921399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12588884A Granted JPS616251A (en) 1984-06-19 1984-06-19 Seal bonding fe-ni-co alloy with superior suitability to blanking

Country Status (1)

Country Link
JP (1) JPS616251A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026435A (en) * 1989-06-26 1991-06-25 Hitachi Metals, Ltd. High strength lead frame material and method of producing the same
US5147470A (en) * 1990-12-25 1992-09-15 Hitachi Metals, Ltd. High strength lead frame material and method of producing the same
JPH04354854A (en) * 1991-05-31 1992-12-09 Sumitomo Special Metals Co Ltd Alloy wire for glass sealing
US5246511A (en) * 1990-05-14 1993-09-21 Hitachi Metals, Ltd. High-strength lead frame material and method of producing same
CN100334676C (en) * 2002-12-02 2007-08-29 鸿富锦精密工业(深圳)有限公司 Field emission display unit having sealing arrangement

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026435A (en) * 1989-06-26 1991-06-25 Hitachi Metals, Ltd. High strength lead frame material and method of producing the same
US5246511A (en) * 1990-05-14 1993-09-21 Hitachi Metals, Ltd. High-strength lead frame material and method of producing same
US5147470A (en) * 1990-12-25 1992-09-15 Hitachi Metals, Ltd. High strength lead frame material and method of producing the same
JPH04354854A (en) * 1991-05-31 1992-12-09 Sumitomo Special Metals Co Ltd Alloy wire for glass sealing
CN100334676C (en) * 2002-12-02 2007-08-29 鸿富锦精密工业(深圳)有限公司 Field emission display unit having sealing arrangement

Also Published As

Publication number Publication date
JPS6411097B2 (en) 1989-02-23

Similar Documents

Publication Publication Date Title
US8808475B2 (en) Iron-nickel alloy
EP1862560A1 (en) Copper alloy and method for production thereof
US20110094635A1 (en) Copper alloy
JPS60255953A (en) Seal bonding fe-ni alloy having high suitability to blanking
JPS616251A (en) Seal bonding fe-ni-co alloy with superior suitability to blanking
GB2178448A (en) Copper-chromium-titanium-silicon alloy and application thereof
JP4875772B2 (en) Copper alloy sheet for electrical and electronic parts and method for producing the same
JPS619552A (en) Seal bonding fe-ni-co alloy having high suitability to blanking and high resistance to stress corrosion cracking
JPS6411098B2 (en)
JPS6144157A (en) Fe-ni alloy having superior suitability to press blanking
JP3450711B2 (en) Fe-Ni lead frame alloy with excellent punching characteristics
JPS6244526A (en) Manufacture of alloy for sealing glass
JPS6245298B2 (en)
JPH04180542A (en) High strength material reduced in thermal expansion
JPS6337177B2 (en)
JP3531814B2 (en) Fe-Ni-Co alloy sheet excellent in press punching property and sealing material excellent in press punching property
JPH0364433A (en) Fe-ni series alloy for lead frame
JP2000017371A (en) MANUFACTURE OF Fe-Ni ALLOY EXCELLENT IN BLANKABILITY
JPS61143558A (en) Fe-ni or fe-ni-co alloy having superior corrosion resistance
JPH02170935A (en) Copper alloy having superior direct bonding property
CN113005364A (en) Piezoelectric actuator, iron-nickel-chromium alloy material, and preparation method and application thereof
JP2724418B2 (en) High-strength sealing alloy with excellent Ag braze flowability and method for producing the same
JPH04337052A (en) Ni-fe alloy and ni-cr-fe alloy excellent in blankability
JPS6227550A (en) Alloy for sealing glass
JPS62287047A (en) Ferrous alloy for semiconductor device lead

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term