JPS6158495B2 - - Google Patents

Info

Publication number
JPS6158495B2
JPS6158495B2 JP58058529A JP5852983A JPS6158495B2 JP S6158495 B2 JPS6158495 B2 JP S6158495B2 JP 58058529 A JP58058529 A JP 58058529A JP 5852983 A JP5852983 A JP 5852983A JP S6158495 B2 JPS6158495 B2 JP S6158495B2
Authority
JP
Japan
Prior art keywords
copolymer
weight
water
parts
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58058529A
Other languages
Japanese (ja)
Other versions
JPS59184241A (en
Inventor
Takao Yoshikawa
Yukari Shibata
Shinji Yamada
Isao So
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP58058529A priority Critical patent/JPS59184241A/en
Publication of JPS59184241A publication Critical patent/JPS59184241A/en
Publication of JPS6158495B2 publication Critical patent/JPS6158495B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Colloid Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Paper (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は比較的高分子量の重合体を平均粒子
径0.01〜0.1μmの範囲で水中に安定に分散させ
てなるヒドロゾルの製造方法、特に乳化剤を使用
せず、しかも溶剤を全くもしくはほとんど用いな
いで上記ヒドロゾルを製造する方法に関する。 従来、ヒドロゾルの製造方法としては、たとえ
ば特公昭46−22343号公報、特開昭50−19842号公
報などにみられる如く、乳化重合法により得たカ
ルボキシル基を有する重合体粒子(粒径約0.3〜
0.7μm)を苛性カリ、苛性ソーダ、水酸化アン
モニウムなどのアルカリを用いて高速撹拌下粒子
表面を削り取り、粒径約0.01〜0.1μmの微細粒
子にするという、いわゆるストリツパブルの手法
が一般的に採用されてきた。 ところが、上記従来法によると、微粒子化に基
づく皮膜形成能の向上は認められるが、ヒドロゾ
ル中に乳化剤が混入してくるため、これより得ら
れる塗膜その他の成形物の耐水性が悪くなる。ま
た、ヒドロゾル化しうる重合体の分子量に制限が
あり、一般に重量平均分子量が104(1万)以上
になるとヒドロゾル化が難しくなる。このため、
各種用途への応用面で自ずと限界を生じ、主に塗
料分野や紙サイズ処理分野への応用展開しかなさ
れていない。 一方、塗料分野において、上述のストリツパブ
ルな手法によらないで、親水性有機溶剤を用いた
溶液重合物にアルカリと水とを加えて撹拌混合す
ることによりヒドロゾルを得る方法が、特公昭52
−47489号公報などに提案されている。 この方法によれば、乳化剤を用いないことから
塗膜の耐水性は改善されるが、その反面有機溶剤
を多量に使用するものであるため環境衛生および
公害さらには材料コストの面で問題があり、また
アルコールの如き多量の親水性有機溶剤を用いた
重合のため重合体の分子量は低くなり、高度の膜
特性が要求されるような接着剤、フイルムなどの
用途には応用しにくいという難点がある。 この発明は、上記観点から、接着剤やフイルム
などへの応用が可能な比較的高分子量の重合体の
ヒドロゾルであつて、このヒドロゾルを乳化剤を
使用せず、しかも大量の有機溶剤を用いることな
く製造しうる工業的有用な方法を提供せんとする
ものであり、さらに得られるヒドロゾルが経時的
安定であつて、しかもかかる安定化ヒドロゾルを
再現性良好に製造しうる上記方法を提供せんとす
るものである。 すなわち、この発明は、(A) アクリル酸エステ
ルないしメタクリル酸エステルを主体とした主モ
ノマー80〜98重量%と酸性基を有する共重合性不
飽和モノマー20〜2重量%とからなる重量平均分
子量104〜106のアクリル系共重合体を主成分とし
て溶剤含有量が上記共重合体との合計量中0〜20
重量%の割合とされた原料を調製する工程と、(B)
上記原料に上記共重合体分子中の酸性基の少な
くとも20%当量に相当するアルカリと上記共重合
体100重量部に対して100〜400重量部の割合の水
とを加えて上記共重合体分子中の酸性基の一部ま
たは全部を中和すると共に上記共重合体が平均粒
子径0.01〜0.1μmの範囲で水中で安定に分散さ
れたヒドロゾルを得る工程とを含み、かつ上記B
工程を少なくとも2段に分割して、第1段目の工
程を、(a) A工程で調製された原料に上記共重合
体分子中の酸性基の少なくとも15%当量に相当す
るアルカリと上記共重合体100重量部に対して10
〜40重量部の割合の水との混合物を加えて撹拌混
合する工程で構成し、第2段目以降の工程を、(b)
前工程の撹拌混合物にさらに上記共重合体分子
中の酸性基の少なくとも5%当量に相当するアル
カリと前工程までの所要量との合計量が前記割合
(上記共重合体100重量部に対して100〜400重量部
となる割合)となる量の水との混合物を加えて撹
拌混合する工程で構成したことを特徴とするヒド
ロゾルの製造方法に係るものである。 このように、この発明においては、まずA工程
にて溶剤を全く含まないかあるいは溶剤量が非常
に少なくされた比較的高分子量の共重合体を出発
原料として調製し、これをB工程で所要のアルカ
リと水とによつてヒドロゾル化するものである
が、この方法においてA工程で用いる上記高分子
量の共重合体を前記単量体組成からなるアクリル
系の共重合体に限定したことにひとつの意義があ
る。 すなわち、上記アクリル系の共重合体は一般に
ガラス転移点(Tg)が低い樹脂であるため、溶
剤量が少ない状態でもアルカリと水との中和処理
時に高い剪断力を要することなく均一かつ安定に
撹拌混合でき、これがヒドロゾルの安定性および
ヒドロゾル化の再現性に非常に好結果をもたらす
ものである。 この発明のもうひとつの意義は、かかるアクリ
ル系の共重合体を中和処理するB工程を少なくと
も2段に分割して、第1段目のa工程で共重合体
分子中の酸性基の相当量を中和するのに必要なア
ルカリと少量の水とを加えて撹拌混合し、これに
より少量の水を均一に包含した安定な含水組成物
を得、これを第2段目以降のb工程で水単独では
なく水と所要のアルカリとを加えて撹拌混合し、
これにより油相と水相との転相現象を生じさせて
目的とするヒドロゾルを得ることである。 すなわち、上記a工程で生成する含水組成物
は、共重合体分子中の酸性基の一部を中和するこ
とにより水を均一に吸収した透明な組成物とされ
たものであるか、あるいは水が共重合体中に均一
に分散した微白色のW/O型のエマルジヨンとさ
れたものであり、かかる含水組成物とすることに
より、共重合体の粘度が低下すると共に第2段目
以降のb工程での中和を均一に行うことができ、
これによつてヒドロゾル化の再現性が大巾に向上
し、生成ヒドロゾルの安定性も改良される。 また、第2段目以降のb工程において、水を単
独で加えると、たとえa工程で共重合体を中和す
るに充分な量のアルカリが加えられていたとして
も吸水、転相に長時間を要しヒドロゾル化の再現
性にも劣る結果となる。この原因は、共重合体の
分子量が高くなると中和されるべき酸性基がポリ
マー鎖中に取り込まれるといつた立体的因子によ
つて上記酸性基が中和されにくくなるためであ
り、また水が多量に在する系ではポリマー鎖が収
縮し、これにより酸性基が内部に取り込まれるた
めに充分な量のアルカリを加えても有効に中和さ
れず、つまり中和に関与するアルカリの絶対量が
少なくなつて共重合体粒子の安定性が損なわれる
ためであると思われる。 しかるに、この発明においては、上記第2段目
以降のb工程を所要のアルカリと水との混合物を
加えて撹拌混合することとしたから、上記アルカ
リによつて共重合体を徐々に中和しながら水吸収
させることができ、これによつて上述の如き中和
不足をきたすことなく再現性および安定性良好な
ヒドロゾルを得ることが可能となる。 以上のように、この発明においては、比較的高
分子量のアクリル系共重合体を出発原料とすると
共にこれを少量の水と所要のアルカリとの混合物
で中和処理しかつこの中和処理後さらに所要のア
ルカリと水とを加えて撹拌混合するという特定の
多段階中和手段を採用することによつて初めて安
定性良好なヒドロゾルを再現性良く製造しえたも
のであり、上記特定の手段に代えてたとえば上記
共重合体に対して水とアルカリとの混合物を一挙
に加えて撹拌混合する方法や、上記共重合体に対
してアルカリのみを加えて中和処理したのち水を
単独で加えて撹拌混合する方法などでは、上述の
如き効果は到底得られない。 そして、上記この発明法によつて得られる安定
性良好なヒドロゾルは、大量の溶剤を用いたもの
でないため環境衛生上などの問題がなく、また乳
化剤の混入をさけたものであるため塗膜その他の
成形物としたときに従来のヒドロゾルに較べては
るかに改善された耐水性を示し、さらにアクリル
系共重合体の分子量が比較的高いものであること
から各種物理特性も良好で、一般の有機溶剤溶液
から形成される塗膜などと変らないすぐれた性能
を発揮する。 このため、この発明のヒドロゾルは、従来のヒ
ドロゾルよりも応用範囲が広くなり、塗料や紙サ
イズ処理剤のほかに、特に粘着剤、接着剤、オー
バーコート材、外装材、内装材、包装剤、フイル
ムなどの各種分野に極めて有効に適用することが
できる。 この発明においては、まずA工程で溶液重合
法、乳化重合法、パール重合法、バルク重合法な
どの従来公知の方法により、アクリル酸エステル
ないしメタクリル酸エスチルを主体とした主モノ
マー80〜98重量%と酸性基を有する共重合性不飽
和モノマーとからなる重量平均分子量104〜106
アクリル系共重合体を合成し、この共重合体を主
成分とした溶剤含有量が0〜20重量%の原料を調
製する。 バルク重合法および20重量%以下の溶剤を用い
た溶液重合法では重合後の反応物をそのまま上記
原料とすることができるが、大量の有機溶剤を用
いた通常の溶液重合法や乳化重合法およびパール
重合法では、重合反応後適宜の手段によつて溶剤
や重合媒体としての水を取り除いて上記原料を調
製する。すなわち、溶液重合法では蒸留により、
乳化重合法では塩析により、またパール重合法で
はろ過により溶剤ないし水を除去する。 なお、乳化重合法やパール重合法では重合時に
用いた乳化剤が重合体粒子表面に1部付着してく
るが、この乳化剤は上記の除去操作時に一緒に取
り除かれ、また必要なら洗浄を行つて除去すれば
よい。 なおまた、上記各除去操作時に未反応の単量体
成分が一緒に除去されたときには後の工程でのヒ
ドロゾル化に好結果が得られる。この観点からバ
ルク重合法および少量の溶剤を用いた溶液重合法
においても、重合後蒸留などの処理を施して未反
応物を除去することが望ましい。 アクリル系共重合体の合成に当たつて用いられ
る主モノマーとしては、アクリル酸エチル、アク
リル酸ブチル、アクリル酸2−エチルヘキシル、
アクリル酸イソオクチル、メタクリル酸エチル、
メタクリル酸ブチルなどのアルキル基の炭素数が
2〜15のアクリル酸エステルないしメタクリル酸
エスチルを主体とし、これと共重合可能な他のモ
ノマーを併用したものであつてもよい。 上記他のモノマーとしては、アクリル酸メチル
やメタクリル酸メチルの如きアルキル基の炭素数
が前記範囲外のアクリル酸ないしメタクリル酸の
アルキルエステル、酢酸ビニル、アクリロニトリ
ル、スチレン、アクリル酸2−メトキシエチル、
ビニルエーテルなどのほか、アクリル酸グリシジ
ル、メタクリル酸グリシジル、ヒドロキシエチル
メタクリレート、アクリルアミド、メチロールア
クリルアミドなどの各種の官能性モノマーが広く
含まれる。これら他のモノマーは一般に主モノマ
ー中50重量%以下の割合とされる。 上記主モノマーと併用される酸性基を有する共
重合性不飽和モノマーとしては、たとえばアクリ
ル酸、メタクリル酸、クロトン酸、イタコン酸、
マレイン酸、フマル酸などの酸性基としてカルボ
キシル基を有する不飽和カルボン酸、スチレンス
ルホン酸、アリルスルホン酸、スルホプロピルア
クリレート、2−アクリロイルオキシナフタレン
−2−スルホン酸、2−メタクリロイルオキシナ
フタレン−2−スルホン酸、2−アクリルアミド
−2−メチルプロパンスルホン酸、2−アクリロ
イルオキシベンゼンスルホン酸などの酸性基とし
てスルホン基を有する不飽和スルホン酸などを挙
げることができ、またその他の酸性基を有するも
のであつてもよく、これらの1種もしくは2種以
上を使用する。 主モノマーと酸性基を有する共重合性不飽和モ
ノマーとの使用割合は、前者が80〜90重量%、後
者が20〜2重量%とする必要があり、特に好適に
は前者が85〜97重量%、後者が15〜3重量%とな
るようにするのがよい。後者のモノマーが2重量
%未満の場合はアルカリ中和によるヒドロゾル化
が難しくなり、逆に20重量%を超えると塗膜など
の耐水性を損なう結果となり、いずれも不適当で
ある。 上記モノマー組成からなるアクリル系共重合体
は、一般に0℃以下のガラス転移点を有するもの
であり、その重量平均分子量が104〜106、好まし
くは105〜106の範囲に設定されていることが必要
である。この理由は、分子量が低くなりすぎては
所期の目的である塗膜その他の成形物としたとき
の物性たとえば凝集力や物理的強度などを改善で
きず、またあまりに高くなりすぎると高粘度とな
つてその後のアルカリ処理に支障をきたし、ヒド
ロゾルを生成しにくくなるからである。 かかる分子量を有するアクリル系共重合体を主
成分として前記手法により溶剤含有量が20重量%
以下とされ、また好ましくは未反応物が除去され
た原料は、つぎのB工程に供される。なお、上記
の溶剤としては、メタノール、エタノール、n−
プロパノール、イソプロピルアルコール、Sec−
ブタノールなどのアルコール系水溶性溶媒である
のが望ましい。 この発明のB工程は、上記原料にアクリル系共
重合体分子中の酸性基の少なくとも20%当量に相
当するアルカリと上記共重合体100重量部に対し
て100〜400重量部の割合の水とを加えて上記共重
合体分子中の酸性基の一部または全部を中和する
と共に上記共重合体が平均粒子径0.01〜0.1μm
の範囲で安定に分散されたヒドロゾルを得る工程
であり、特にこの工程を以下の少なくとも2段階
に分割して行うことを大きな特徴とする。 すなわち、まずa工程として、上記原料に共重
合体分子中の酸性基の少なくとも15%当量に相当
するアルカリと共重合体100重量部に対して10〜
40重量部の水との混合物を加えて撹拌混合し、酸
性基の一部を中和することにより上記少量の水を
均一に吸収させる。ついで、b工程として、酸性
基の少なくとも5%当量に相当するアルカリと所
要の水との混合物を撹拌下徐々に加えることによ
り、残りの酸性基を中和する。このb工程におい
て転相現象がみられ水が連続相となりこの中に共
重合体粒子が平均粒子径0.01〜0.1μmの範囲で
分散されたO/W型の分散体、つまりヒドロゾル
が生成する。 上記a工程において、アルカリの使用量が酸性
基の15%当量未満であると中和量が不足して系の
親水性が低下しその後水とアルカリとを添加して
も吸収せず分離してしまう。また水の量が40重量
部を超えてしまうとアルカリ濃度が低下して酸性
基の中和が不完全となり上記同様の問題を生じ、
一方10重量部未満ではアルカリを重合体中に均一
に浸透させるに充分でなく中和が不均一となつて
粒子径の小さなヒドロゾルとはなりにくい。 また、上記b工程では残存する酸性基の一部ま
たは全部を中和するに必要なアルカリと適度の最
終固型分濃度(20〜50重量%の範囲)となる量の
水とを添加するものであり、この際水を単独で加
えたときには、すでに詳述したように、ヒドロゾ
ル化の再現性に劣り、また生成したヒドロゾルの
経日的安定性にも劣るから、共重体分子中の酸性
基に対し少なくとも5%当量のアルカリを用いる
ことが必要である。このアルカリの量は、アクリ
ル系共重合体の性状、酸性基の量などに応じて決
められ、酸性基の量が少ないときには当量以上に
加えることが好ましい。しかし、あまりに多くな
りすぎると共重合体の膜特性などに悪影響をおよ
ぼすから、一般には、a工程で用いるアルカリと
の合計量がアクリル系共重合体分子の酸性基の20
〜200%当量に相当する割合とするのが好まし
い。 なお、このb工程は、必要に応じて2段以上に
分割して行つてもよく、この場合アルカリの使用
量は各段において共重合体の酸性基の少なくとも
5%当量に相当する割合とする。アルカリ濃度に
ついては各段で適宜変化させることができる。た
とえば酸性基の絶対量が少ないアクリル系共重合
体にあつては、前の工程から次の工程に進むにし
たがつてアルカリ濃度が低くなるような複数段に
分割することにより、上記酸性基を効率よく中和
することができ、ヒドロゾル化に好結果が得られ
る。上記a工程およびb工程からなる中和処理の
温度としては、アクリル系共重合体の種類、性状
などに応じて一定温度下に保たれるが、一般には
30〜95℃である。また、上記中和処理に用いるア
ルカリとしては、アンモニア、苛性ソーダ、苛性
カリなどの苛性アルカリ、α−アミノエチルアル
コール、エチルアミン、プロピレンアミンなどが
あり、塗膜あるいはフイルム中にアルカリが残存
することによる悪影響を防止するためには、アン
モニアやα−アミノエチルアルコールなどの容易
に飛散可能なものが好ましい。 かくして得られるこの発明に係るヒドロゾル
は、平均粒子径が0.01〜0.1μmの微粒子状のア
クリル系共重合体を含み、非常に造膜性にすぐれ
ていると共に乳化剤の混入をさけたものであるた
め従来のストリツパブルタイプのものに較べはる
かに改良された高耐水性を示す。しかも溶剤を全
く用いないかあるいはごく少量に抑えているため
溶剤使用に伴なう諸種の問題を解消できる。その
上、アクリル系共重合体の分子量が比較的高いも
のであるため、各種物理特性が良好あり、従来の
ヒドロゾル以外の用途、たとえば粘着剤、接着
剤、フイルム、オーバーコート材などの各種用途
にも有効に適用でき、これら用途に対していずれ
もすぐれた性能を発揮させることができる。 以下に、この発明の実施例を記載してより具体
的に説明する。以下において、部および%とある
はそれぞれ重量部および重量%を意味するものと
する。 実施例 1 アクリル酸n−ブチル 60g アクリル酸エチル 50g メタクリル酸 15g アゾビスイソブチロニトリル 0.1g ラウリルメルカプタン 0.09g 上記の組成物のうち15gを1の四つ口フラス
コに仕込み、撹拌しながら40分間窒素置換した。
そのご滴下ロートから残量を滴下しながら85℃で
4時間反応させ、重量平均分子量5×105(GPC
による)の共重合体を合成した。 つぎに、撹拌下で上記アクリル系共重合体のカ
ルボキシル基に対して25%当量のアンモニアを含
む水38gを加え、80℃の温度下で1時間中和処理
し、充分均一に水を吸収させた後、さらに撹拌し
ながらカルボキシル基に対して10%当量のアンモ
ニアを含む375gの水を約2時間要して徐々に滴
下した。120gの水を滴下した時点で、連続層が
水となる転相現象が生じた。 このようにして得られたヒドロゾルは、半透明
でありその粘度(25℃)が280ポイズ、固形分濃
度が24.3%で、平均粒子径が0.04μm(ナノサイ
ザーによる)であり1ケ月室温放置してもほとん
ど変化がみられず安定であつた。 実施例 2 アクリル酸n−オクチル 65g メタクリル酸メチル 35g アクリル酸 8g ベンゾイルパーオキシド 0.1g sec−ブタノール 5g 上記組成のうち、モノマー混合物の10gとsec
−ブタノール5gとを1の四つ口フラスコに仕
込み、撹拌しながら40℃で40分間窒素置換した。
そのご、アゾビスイソブチロニトリル0.1gを添
加し、完全に溶解してから80℃に昇温した。つい
で、残りのモノマー混合物を滴下ロートから約
0.87g/分の速度で2時間要して滴下し、85±5
℃で4時間反応させ、重量平均分子量4×105
(GPCによる)の共重合体を合成した。 つぎに、共重合体のカルボキシル基に対して6
%当量のα−アミノエチルアルコール4.6gと水
25gとの混合物を加え、70±5℃の温度下で中和
処理し、そのごさらに撹拌しながらカルボキシル
基に対して20%当量のα−アミノエチルアルコー
ル1.3gと水200gとの混合液を徐々に滴下した。
約100gの水を滴下した時点で連続相が水となる
転相現象が生じた。 このようにして得られたヒドロゾルは、その粘
度(25℃)が470ポイズ、固形分濃度が34.9%
で、平均粒子径が0.06μmであり、1ケ月室温放
置しても変化なく安定あつた。 実施例 3 アクリル酸2−エチルヘキシル 75g アクリル酸エチル 20g 2−ヒドロキシエチルメタクリレート 3g メタクリル酸 3g アゾビスイソブチロニトリル 0.1g sec−ブタノール 5g からなるモノマー組成物から、実施例2と同様に
重合し、重量平均分子量3.5×105(GPCによる)
の共重合体を合成した。この共重合体に、第1段
階として共重合体のカルボキシル基に対して80%
当量のα−アミノエチルアルコール1.7gと水15
gの混合物を添加し、十分に中和処理したのち、
第2段階ではカルボキシル基に対して50%当量の
α−アミノエチルアルコール1.1gと水100gの混
合物を徐々に滴下した。この時に転相現象がみら
れた。さらに第3段階としてカルボキシル基に対
して30%当量のα−アミノエチルアルコール0.6
gと水115gの混合物を滴下し、撹拌を続けると
液の透明性が増し、安定なヒドロゾルが得られ
た。 この様にして得られたヒドロゾルは、その粘度
(25℃)が85ポイズ、固型分濃度が29.6%で、平
均粒子径が0.05μmであつた。また室温にて1ケ
月放置後も変化なく安定であつた。 比較例 1 実施例2と全く同様に重合した共重合体に、そ
のカルボキシル基に対して80%当量のα−アミノ
エチルアルコール5.9gを加え中和処理を行なつ
た後、水225gを徐々に添加したが、水を分離さ
せることなく吸水させるのに長時間要した。水を
約70g添加した時点で転相現象が生じた。 この様にして得られたヒドロゾルは、平均粒子
径が0.08μmであり、固型分濃度が33.7%、粘度
(25℃)が410ポイズであつた。これを室温で1週
間放置したところ、乳白色となり、安定性の低下
が認められた。 比較例 2 実施例3と全く同様に重合した共重合体に、カ
ルボキシル基に対して160%当量のα−アミノエ
チルアルコール3.4gを加え中和処理を行なつた
後、230gの水を徐々に添加したところ、水約90
gに添加した時点で転相現象が生じた。 この様にして得られたヒドロゾルは、平均粒子
径が0.09μmであり、固型分濃度が30.0%、粘度
(25℃)が60ポイズであつた。これを室温で1週
間放置したところ、少量の水の分離が認められ
た。 比較例 3 実施例1と同組成の単量体混合物を、連鎖移動
剤としてチオグリコール酸を、重合開始剤として
過硫酸カリウムを、乳化剤としてハイテノール
N17(第一工業製薬(株)製)を用いて乳化重合して
重量平均分子量3×105の重合体のエマルジヨン
を得た。 実施例1〜3および比較例3で得られたヒドロ
ゾルおよびエマルジヨンをそのままガラス板上に
コーテイングロツドによりコーテイングし、110
℃で10分間加熱乾燥を行なつて、50μm厚の皮膜
を形成した。これらはいずれも皮膜形成時にすぐ
れており、良好な皮膜が得られた。この皮膜の耐
水性およびその他の特性を調べた結果は、つぎの
表に示されるとおりであつた。
This invention relates to a method for producing a hydrosol made by stably dispersing a relatively high molecular weight polymer with an average particle size in the range of 0.01 to 0.1 μm in water, in particular, without using an emulsifier and without using any or almost no solvent. The present invention relates to a method for producing the above hydrosol. Conventionally, methods for producing hydrosols include polymer particles having carboxyl groups (particle size of approximately 0.3 ~
The so-called strippable method is generally adopted, in which the surface of particles (0.7 μm) is scraped off under high-speed stirring using an alkali such as caustic potash, caustic soda, or ammonium hydroxide to make fine particles with a particle size of approximately 0.01 to 0.1 μm. Ta. However, according to the above-mentioned conventional method, although the film-forming ability is improved due to fine particle formation, since the emulsifier is mixed into the hydrosol, the water resistance of the coating film and other molded products obtained therefrom deteriorates. Furthermore, there is a limit to the molecular weight of a polymer that can be converted into a hydrosol, and generally, when the weight average molecular weight is 10 4 (10,000) or more, it becomes difficult to form a hydrosol. For this reason,
This naturally limits its application to various uses, and its applications have only been developed mainly in the paint field and paper size processing field. On the other hand, in the field of paints, a method of obtaining a hydrosol by adding an alkali and water to a solution polymer using a hydrophilic organic solvent and stirring and mixing the mixture without using the above-mentioned strippable method was proposed in the Japanese Patent Publication No. 52
This is proposed in Publication No. 47489, etc. According to this method, the water resistance of the paint film is improved because no emulsifier is used, but on the other hand, it uses a large amount of organic solvent, which poses problems in terms of environmental hygiene, pollution, and material cost. In addition, because polymerization uses a large amount of a hydrophilic organic solvent such as alcohol, the molecular weight of the polymer is low, making it difficult to apply it to applications such as adhesives and films that require high film properties. be. From the above viewpoint, the present invention provides a relatively high molecular weight polymer hydrosol which can be applied to adhesives, films, etc., and which can be produced without using an emulsifier or a large amount of organic solvent. The object of the present invention is to provide an industrially useful method for producing the hydrosol, and furthermore, to provide the above-mentioned method in which the resulting hydrosol is stable over time, and the stabilized hydrosol can be produced with good reproducibility. It is. That is, the present invention provides (A) a material having a weight average molecular weight of 10, consisting of 80 to 98% by weight of a main monomer mainly composed of acrylic ester or methacrylic ester and 20 to 2% by weight of a copolymerizable unsaturated monomer having an acidic group. The main component is an acrylic copolymer of 4 to 10 6 , and the solvent content is 0 to 20 in the total amount of the above copolymer.
(B) a step of preparing raw materials in proportions of % by weight;
To the above raw material, add an alkali equivalent to at least 20% equivalent of the acidic group in the copolymer molecule and water in an amount of 100 to 400 parts by weight based on 100 parts by weight of the copolymer to form the copolymer molecule. A step of neutralizing some or all of the acidic groups in the copolymer and obtaining a hydrosol in which the copolymer is stably dispersed in water with an average particle size in the range of 0.01 to 0.1 μm, and
The process is divided into at least two stages, and the first stage is performed by: (a) adding an alkali equivalent to at least 15% of the acidic groups in the copolymer molecule to the raw material prepared in step A; 10 per 100 parts by weight of polymer
It consists of a step of adding a mixture with water at a ratio of ~40 parts by weight and stirring and mixing, and the second and subsequent steps are (b)
The stirred mixture of the previous step was further added with an alkali equivalent to at least 5% of the acidic groups in the above copolymer molecule, and the total amount of the amount required up to the previous step in the above proportion (based on 100 parts by weight of the above copolymer). The present invention relates to a method for producing a hydrosol, comprising a step of adding a mixture with water in an amount of 100 to 400 parts by weight and stirring and mixing. As described above, in this invention, first, in step A, a relatively high molecular weight copolymer containing no solvent or with a very small amount of solvent is prepared as a starting material, and this is used as a starting material in step B. One of the features of this method is that the high molecular weight copolymer used in step A of this method is limited to an acrylic copolymer having the above monomer composition. There is a significance. In other words, the above-mentioned acrylic copolymers are generally resins with low glass transition points (Tg), so they can be uniformly and stably processed during neutralization with alkali and water without requiring high shearing force even when the amount of solvent is small. Stirring mixing is possible, which has very good results for hydrosol stability and hydrosolization reproducibility. Another significance of this invention is that step B, which neutralizes the acrylic copolymer, is divided into at least two stages, and in step A of the first stage, the acidic groups in the copolymer molecules are Add the alkali necessary to neutralize the amount and a small amount of water and mix with stirring to obtain a stable water-containing composition that uniformly contains a small amount of water, which is used in the second and subsequent steps b. Add water and the required alkali instead of water alone and stir and mix.
This causes a phase inversion phenomenon between the oil phase and the aqueous phase to obtain the desired hydrosol. That is, the water-containing composition produced in step a above is either a transparent composition that uniformly absorbs water by neutralizing some of the acidic groups in the copolymer molecules, or It is a slightly white W/O type emulsion in which the copolymer is uniformly dispersed in the copolymer, and by forming such a water-containing composition, the viscosity of the copolymer is reduced and the viscosity of the copolymer is reduced. Neutralization in step b can be performed uniformly,
This greatly improves the reproducibility of hydrosolization and also improves the stability of the hydrosol produced. In addition, if water is added alone in the second and subsequent steps b, even if sufficient alkali is added in step a to neutralize the copolymer, water absorption and phase inversion will take a long time. This results in poor reproducibility of hydrosolization. The reason for this is that as the molecular weight of the copolymer increases, the acidic groups that should be neutralized become more difficult to neutralize due to steric factors such as being incorporated into the polymer chain. In systems where a large amount of This seems to be because the stability of the copolymer particles is impaired due to a decrease in the amount of copolymer particles. However, in this invention, since the step b from the second stage onwards is performed by adding a mixture of the required alkali and water and stirring and mixing, the copolymer is gradually neutralized by the alkali. This makes it possible to obtain a hydrosol with good reproducibility and stability without causing insufficient neutralization as described above. As described above, in this invention, a relatively high molecular weight acrylic copolymer is used as a starting material, and this is neutralized with a mixture of a small amount of water and the required alkali, and after this neutralization, further By adopting a specific multi-step neutralization method in which the required alkali and water are added and mixed with stirring, a hydrosol with good stability can be produced with good reproducibility. For example, you can add a mixture of water and alkali all at once to the above copolymer and stir and mix, or add only alkali to the above copolymer and neutralize it, then add water alone and stir. The above-mentioned effects cannot be obtained by methods such as mixing. The highly stable hydrosol obtained by the above-mentioned method of this invention does not use a large amount of solvent, so it does not cause problems in terms of environmental hygiene, and since it avoids contamination with emulsifiers, it can be used for coatings, etc. When molded into a molded product, it shows much improved water resistance compared to conventional hydrosols, and since the molecular weight of the acrylic copolymer is relatively high, various physical properties are also good, and compared to general organic hydrosols. It exhibits the same excellent performance as coatings formed from solvent solutions. Therefore, the hydrosol of the present invention has a wider range of applications than conventional hydrosols, and in addition to paints and paper sizing agents, it can also be used in adhesives, adhesives, overcoat materials, exterior materials, interior materials, packaging materials, etc. It can be extremely effectively applied to various fields such as film. In this invention, first, in Step A, 80 to 98% by weight of the main monomer mainly composed of acrylic ester or methacrylate is prepared by conventionally known methods such as solution polymerization, emulsion polymerization, pearl polymerization, and bulk polymerization. An acrylic copolymer with a weight average molecular weight of 10 4 to 10 6 consisting of a copolymerizable unsaturated monomer having an acidic group is synthesized, and the solvent content of this copolymer as the main component is 0 to 20% by weight. Prepare raw materials. In the bulk polymerization method and the solution polymerization method using 20% by weight or less of solvent, the reactant after polymerization can be used as the above raw material as it is, but in the case of ordinary solution polymerization method using a large amount of organic solvent, emulsion polymerization method and In the pearl polymerization method, the above raw material is prepared by removing the solvent and water as a polymerization medium by appropriate means after the polymerization reaction. In other words, in the solution polymerization method, by distillation,
In the emulsion polymerization method, the solvent or water is removed by salting out, and in the pearl polymerization method, the solvent or water is removed by filtration. In addition, in the emulsion polymerization method and pearl polymerization method, a portion of the emulsifier used during polymerization adheres to the surface of the polymer particles, but this emulsifier is removed together with the above removal operation, and can be removed by washing if necessary. do it. Furthermore, when unreacted monomer components are removed together during each of the above-mentioned removal operations, good results can be obtained in hydrosolization in the subsequent steps. From this point of view, even in bulk polymerization methods and solution polymerization methods using a small amount of solvent, it is desirable to perform a treatment such as distillation after polymerization to remove unreacted substances. The main monomers used in the synthesis of acrylic copolymers include ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate,
isooctyl acrylate, ethyl methacrylate,
It is mainly composed of acrylic ester or ester methacrylate having an alkyl group having 2 to 15 carbon atoms, such as butyl methacrylate, and may also contain other monomers copolymerizable therewith. Examples of the other monomers include alkyl esters of acrylic acid or methacrylic acid in which the number of carbon atoms in the alkyl group is outside the above range, such as methyl acrylate and methyl methacrylate, vinyl acetate, acrylonitrile, styrene, 2-methoxyethyl acrylate,
In addition to vinyl ethers, various functional monomers such as glycidyl acrylate, glycidyl methacrylate, hydroxyethyl methacrylate, acrylamide, and methylolacrylamide are widely included. These other monomers generally account for 50% by weight or less of the main monomers. Examples of copolymerizable unsaturated monomers having acidic groups used in combination with the above main monomers include acrylic acid, methacrylic acid, crotonic acid, itaconic acid,
Unsaturated carboxylic acids with carboxyl groups as acidic groups such as maleic acid and fumaric acid, styrene sulfonic acid, allyl sulfonic acid, sulfopropyl acrylate, 2-acryloyloxynaphthalene-2-sulfonic acid, 2-methacryloyloxynaphthalene-2- Examples of acidic groups such as sulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, and 2-acryloyloxybenzenesulfonic acid include unsaturated sulfonic acids having a sulfonic group, and other acids having an acidic group. One or more of these may be used. The ratio of the main monomer to the copolymerizable unsaturated monomer having an acidic group should be 80 to 90% by weight for the former and 20 to 2% by weight for the latter, and particularly preferably 85 to 97% by weight for the former. %, and the latter is preferably 15 to 3% by weight. If the latter monomer is less than 2% by weight, it becomes difficult to form a hydrosol by alkali neutralization, whereas if it exceeds 20% by weight, the water resistance of the coating film etc. will be impaired, and both are unsuitable. The acrylic copolymer having the above monomer composition generally has a glass transition point of 0°C or lower, and its weight average molecular weight is set in the range of 10 4 to 10 6 , preferably 10 5 to 10 6 . It is necessary to be present. The reason for this is that if the molecular weight becomes too low, it will not be possible to improve the desired physical properties such as cohesive force and physical strength when used as a coating or other molded product, and if the molecular weight becomes too high, it will result in high viscosity. This is because it will interfere with the subsequent alkali treatment and make it difficult to generate a hydrosol. The solvent content is 20% by weight by the above method using an acrylic copolymer having such a molecular weight as the main component.
The raw material having the following properties and preferably from which unreacted substances have been removed is subjected to the next step B. Note that the above solvents include methanol, ethanol, n-
Propanol, isopropyl alcohol, Sec-
Preferably, it is an alcohol-based water-soluble solvent such as butanol. Step B of the present invention includes adding an alkali equivalent to at least 20% of the acidic group in the acrylic copolymer molecule to the raw materials and water in a proportion of 100 to 400 parts by weight based on 100 parts by weight of the copolymer. is added to neutralize some or all of the acidic groups in the copolymer molecules, and the copolymer has an average particle size of 0.01 to 0.1 μm.
This is a process for obtaining a hydrosol that is stably dispersed in the following range, and is particularly characterized in that this process is divided into at least two stages as follows. That is, first, in step a, the above raw materials are mixed with an alkali equivalent to at least 15% of the acidic group in the copolymer molecule and 10 to 10 parts by weight of the copolymer.
A mixture with 40 parts by weight of water is added and stirred to neutralize some of the acidic groups, thereby uniformly absorbing the small amount of water. Then, as step b, the remaining acidic groups are neutralized by gradually adding, under stirring, a mixture of an alkali equivalent to at least 5% of the acidic groups and the required water. In this step b, a phase inversion phenomenon occurs, and water becomes a continuous phase, producing an O/W type dispersion, that is, a hydrosol, in which copolymer particles are dispersed with an average particle size in the range of 0.01 to 0.1 μm. In step a above, if the amount of alkali used is less than 15% equivalent of the acidic group, the amount of neutralization will be insufficient and the hydrophilicity of the system will decrease, and even if water and alkali are added afterwards, they will not be absorbed and will separate. Put it away. Furthermore, if the amount of water exceeds 40 parts by weight, the alkali concentration will decrease and neutralization of acidic groups will be incomplete, resulting in the same problem as above.
On the other hand, if it is less than 10 parts by weight, it is not sufficient to uniformly permeate the alkali into the polymer, and neutralization becomes uneven, making it difficult to form a hydrosol with small particle size. In addition, in step b, an alkali necessary to neutralize some or all of the remaining acidic groups and water in an amount that provides an appropriate final solid content concentration (in the range of 20 to 50% by weight) are added. At this time, when water is added alone, the reproducibility of hydrosolization is poor and the stability of the generated hydrosol over time is poor, as described in detail above, so acidic groups in the copolymer molecules are It is necessary to use at least 5% equivalent of alkali. The amount of alkali is determined depending on the properties of the acrylic copolymer, the amount of acidic groups, etc., and when the amount of acidic groups is small, it is preferable to add an equivalent amount or more. However, if the amount is too large, it will adversely affect the film properties of the copolymer, so generally, the total amount of the alkali used in step a is 20% of the acidic group of the acrylic copolymer molecule.
Preferably, the proportion corresponds to ~200% equivalent. Note that this step b may be carried out in two or more stages if necessary, and in this case, the amount of alkali used in each stage is equivalent to at least 5% equivalent of the acidic groups of the copolymer. . The alkali concentration can be changed appropriately at each stage. For example, in the case of an acrylic copolymer with a small absolute amount of acidic groups, the acidic groups can be removed by dividing the copolymer into multiple stages in which the alkali concentration decreases from the previous step to the next step. It can be neutralized efficiently and good results can be obtained in hydrosolization. The temperature of the neutralization treatment consisting of steps a and b above is kept at a constant temperature depending on the type and properties of the acrylic copolymer, but in general
The temperature is 30-95℃. In addition, the alkali used in the above neutralization treatment includes ammonia, caustic soda, caustic alkali such as caustic potash, α-aminoethyl alcohol, ethylamine, propylene amine, etc., and the residual alkali in the paint film or film may have an adverse effect. In order to prevent this, it is preferable to use something that can be easily dispersed, such as ammonia or α-aminoethyl alcohol. The thus obtained hydrosol according to the present invention contains a finely divided acrylic copolymer with an average particle size of 0.01 to 0.1 μm, has excellent film-forming properties, and avoids contamination with emulsifiers. It exhibits much improved water resistance compared to conventional strippable types. Moreover, since no solvent is used or only a small amount is used, various problems associated with the use of solvents can be solved. Furthermore, since the molecular weight of the acrylic copolymer is relatively high, it has good physical properties and can be used for various purposes other than conventional hydrosols, such as adhesives, adhesives, films, and overcoat materials. can also be effectively applied, and all can exhibit excellent performance for these applications. EXAMPLES Below, examples of the present invention will be described in more detail. In the following, parts and % mean parts by weight and % by weight, respectively. Example 1 60 g of n-butyl acrylate 50 g of ethyl acrylate 15 g of methacrylic acid 0.1 g of azobisisobutyronitrile 0.09 g of lauryl mercaptan 15 g of the above composition was placed in a four-necked flask (No. 1) and stirred for 40 minutes. The atmosphere was replaced with nitrogen.
While dropping the remaining amount from the dropping funnel, the reaction was carried out at 85℃ for 4 hours, and the weight average molecular weight was 5×10 5 (GPC
) was synthesized. Next, while stirring, 38 g of water containing 25% equivalent ammonia to the carboxyl group of the acrylic copolymer was added, and neutralization was carried out for 1 hour at a temperature of 80°C to absorb water sufficiently and uniformly. Then, while stirring, 375 g of water containing ammonia in an amount equivalent to 10% based on the carboxyl group was gradually added dropwise over a period of about 2 hours. When 120 g of water was dropped, a phase inversion phenomenon occurred in which the continuous layer became water. The hydrosol thus obtained is translucent, has a viscosity (at 25°C) of 280 poise, a solids concentration of 24.3%, and an average particle size of 0.04 μm (according to Nanosizer), and can be left at room temperature for one month. It remained stable with almost no change observed. Example 2 n-octyl acrylate 65 g Methyl methacrylate 35 g Acrylic acid 8 g Benzoyl peroxide 0.1 g sec-butanol 5 g Of the above composition, 10 g of the monomer mixture and sec
-butanol (5 g) was charged into a four-necked flask (No. 1), and the flask was purged with nitrogen at 40° C. for 40 minutes while stirring.
Then, 0.1 g of azobisisobutyronitrile was added, and after completely dissolving, the temperature was raised to 80°C. Then add the remaining monomer mixture through the addition funnel to approx.
Dropped at a rate of 0.87g/min over 2 hours, 85±5
Reacted at ℃ for 4 hours, weight average molecular weight 4×10 5
A copolymer of (by GPC) was synthesized. Next, 6 for the carboxyl group of the copolymer.
% equivalent of α-aminoethyl alcohol 4.6g and water
Add a mixture of 25 g of α-aminoethyl alcohol and 200 g of water and neutralize at a temperature of 70 ± 5°C. It was dripped gradually.
When approximately 100 g of water was dropped, a phase inversion phenomenon occurred in which the continuous phase became water. The hydrosol thus obtained has a viscosity (at 25°C) of 470 poise and a solid content concentration of 34.9%.
The average particle diameter was 0.06 μm, and it remained stable without any change even after being left at room temperature for one month. Example 3 A monomer composition consisting of 75 g of 2-ethylhexyl acrylate, 20 g of ethyl acrylate, 3 g of 2-hydroxyethyl methacrylate, 3 g of methacrylic acid, 0.1 g of azobisisobutyronitrile, and 5 g of sec-butanol was polymerized in the same manner as in Example 2, Weight average molecular weight 3.5×10 5 (by GPC)
A copolymer was synthesized. As a first step, 80% of the carboxyl groups in the copolymer are added to this copolymer.
Equivalent amounts of 1.7 g of α-aminoethyl alcohol and 15 g of water
After adding a mixture of g and thoroughly neutralizing it,
In the second step, a mixture of 1.1 g of α-aminoethyl alcohol and 100 g of water, equivalent to 50% relative to the carboxyl group, was gradually added dropwise. At this time, a phase inversion phenomenon was observed. Furthermore, as a third step, 30% equivalent of α-aminoethyl alcohol 0.6 to the carboxyl group
When a mixture of g and 115 g of water was added dropwise and stirring was continued, the liquid became more transparent and a stable hydrosol was obtained. The hydrosol thus obtained had a viscosity (at 25° C.) of 85 poise, a solids concentration of 29.6%, and an average particle size of 0.05 μm. Moreover, it remained stable with no change even after being left at room temperature for one month. Comparative Example 1 To a copolymer polymerized in exactly the same manner as in Example 2, 5.9 g of α-aminoethyl alcohol, equivalent to 80% of the carboxyl group, was added for neutralization, and then 225 g of water was gradually added. However, it took a long time to absorb the water without separating it. A phase inversion phenomenon occurred when approximately 70 g of water was added. The hydrosol thus obtained had an average particle diameter of 0.08 μm, a solid content concentration of 33.7%, and a viscosity (at 25° C.) of 410 poise. When this was left for one week at room temperature, it became milky white and a decrease in stability was observed. Comparative Example 2 To a copolymer polymerized in exactly the same manner as in Example 3, 3.4 g of α-aminoethyl alcohol equivalent to 160% of the carboxyl group was added for neutralization, and then 230 g of water was gradually added. When added, water approximately 90%
A phase inversion phenomenon occurred at the time of addition to g. The hydrosol thus obtained had an average particle diameter of 0.09 μm, a solid content concentration of 30.0%, and a viscosity (at 25° C.) of 60 poise. When this was left at room temperature for one week, separation of a small amount of water was observed. Comparative Example 3 A monomer mixture having the same composition as in Example 1 was mixed with thioglycolic acid as a chain transfer agent, potassium persulfate as a polymerization initiator, and hightenol as an emulsifier.
Emulsion polymerization was performed using N17 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) to obtain a polymer emulsion with a weight average molecular weight of 3×10 5 . The hydrosols and emulsions obtained in Examples 1 to 3 and Comparative Example 3 were directly coated onto a glass plate using a coating rod, and 110
It was heated and dried at ℃ for 10 minutes to form a film with a thickness of 50 μm. All of these were excellent in film formation, and good films were obtained. The results of examining the water resistance and other properties of this film are shown in the table below.

【表】 上記の表に示した如く、この発明によれば比較
的高分子量のポリマーを微粒子状の安定なヒドロ
ゾルとすることができる。しかも、上記の試験結
果から明らかなように、この発明法により得たヒ
ドロゾルによれば、耐水性にすぐれる皮膜を形成
でき、また高分子量体であることから皮膜の機械
的特性も充分に満足できるものであることが判
る。
[Table] As shown in the above table, according to the present invention, a relatively high molecular weight polymer can be made into a stable hydrosol in the form of fine particles. Moreover, as is clear from the above test results, the hydrosol obtained by the method of this invention can form a film with excellent water resistance, and since it is a high molecular weight substance, the mechanical properties of the film are also fully satisfactory. It turns out that it is possible.

Claims (1)

【特許請求の範囲】 1 (A) アクリル酸エステルないしメタクリル酸
エステルを主体とした主モノマー80〜98重量%
と酸性基を有する共重合性不飽和モノマー20〜
2重量%とからなる重量平均分子量104〜106
アクリル系共重合体を主成分として溶剤含有量
が上記共重合体との合計量中0〜20重量%の割
合とされた原料を調製する工程と、 (B) 上記原料に上記共重合体分子中の酸性基の少
なくとも20%当量に相当するアルカリと上記共
重合体100重量部に対して100〜400重量部の割
合の水とを加えて上記共重合体分子中の酸性基
の一部または全部を中和すると共に上記共重合
体が平均粒子径0.01〜0.1μmの範囲で水中に
安定に分散されたヒドロゾルを得る工程 とを含み、かつ上記B工程を少なくとも2段に分
割して、第1段目の工程を、 (a) A工程で調製された原料に上記共重合体分子
中の酸性基の少なくとも15%当量に相当するア
ルカリと上記共重合体100重量部に対して10〜
40重量部の割合の水との混合物を加えて撹拌混
合する工程 で構成し、第2段目以降の工程を、 (b) 前工程の撹拌混合物にさらに上記共重合体分
子中の酸性基の少なくとも5%当量に相当する
アルカリと前工程までの所要量との合計量が前
記割合(上記共重合体100重量部に対して100〜
400重量部となる割合)となる量の水との混合
物を加えて撹拌混合する工程 で構成したことを特徴とするヒドロゾルの製造方
法。
[Claims] 1 (A) 80 to 98% by weight of main monomers mainly consisting of acrylic esters or methacrylic esters
Copolymerizable unsaturated monomer with acidic group 20~
2% by weight of an acrylic copolymer with a weight average molecular weight of 10 4 to 10 6 as the main component, and the solvent content is 0 to 20% by weight based on the total amount of the above copolymer. (B) adding an alkali equivalent to at least 20% of the acidic groups in the copolymer molecule to the raw material and water in an amount of 100 to 400 parts by weight based on 100 parts by weight of the copolymer; In addition, it includes the step of neutralizing some or all of the acidic groups in the copolymer molecules and obtaining a hydrosol in which the copolymer is stably dispersed in water with an average particle size in the range of 0.01 to 0.1 μm. , and the step B is divided into at least two stages, and the first step is performed by: (a) adding to the raw material prepared in step A an amount equivalent to at least 15% of the acidic groups in the copolymer molecules; 10 to 100 parts by weight of alkali and the above copolymer
It consists of a step of adding a mixture with 40 parts by weight of water and stirring and mixing, and (b) adding the acidic groups in the copolymer molecules to the stirred mixture of the previous step. The total amount of alkali equivalent to at least 5% equivalent and the amount required up to the previous step is in the above ratio (100 to 100 parts by weight per 100 parts by weight of the above copolymer).
A method for producing a hydrosol, comprising the step of adding and stirring and mixing a mixture with water in an amount of 400 parts by weight.
JP58058529A 1983-04-02 1983-04-02 Production of hydrosol Granted JPS59184241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58058529A JPS59184241A (en) 1983-04-02 1983-04-02 Production of hydrosol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58058529A JPS59184241A (en) 1983-04-02 1983-04-02 Production of hydrosol

Publications (2)

Publication Number Publication Date
JPS59184241A JPS59184241A (en) 1984-10-19
JPS6158495B2 true JPS6158495B2 (en) 1986-12-11

Family

ID=13086953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58058529A Granted JPS59184241A (en) 1983-04-02 1983-04-02 Production of hydrosol

Country Status (1)

Country Link
JP (1) JPS59184241A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717807B2 (en) * 1989-07-31 1995-03-01 ヘキスト合成株式会社 Internally cross-linked acrylic copolymer aqueous dispersion composition and method for producing the same
BR112019004592B1 (en) 2016-10-05 2023-03-21 Rohm And Haas Company FLOOR COATING COMPOSITION COMPRISING ACRYLIC POLYMER

Also Published As

Publication number Publication date
JPS59184241A (en) 1984-10-19

Similar Documents

Publication Publication Date Title
DE69406294T2 (en) PRODUCTION OF POLYMER EMULSIONS
US4839413A (en) Resin-fortified emulsion polymers and methods of preparing the same
DE68906002T2 (en) Polymer compositions curing at room temperature.
JPS61185505A (en) Permeable hollow particle dispersant having hard or fixed base
US4954558A (en) Resin-fortified emulsion polymers and methods of preparing the same
EP0257567B2 (en) Resin-fortified emulsion polymers and methods of preparing the same
JPS6158495B2 (en)
JPS6150482B2 (en)
JPS6031329B2 (en) Hydrosol production method
CN112534021A (en) Resin composition for vibration damping material
JPS59179676A (en) Preparation of pressure-sensitive adhesive tape
JPH0339522B2 (en)
JPS58164669A (en) Preparation of pressure-sensitive adhesive tape
JPS61254627A (en) Production of hydrosol
JPS61264075A (en) Hydrosol type pressure-sensitive adhesive composition
JP2670953B2 (en) Method for producing emulsion having super water resistance
JPH0155673B2 (en)
JPS58168602A (en) Production of hydrosol
JPS6245885B2 (en)
US8273933B2 (en) Functionalized latex polymer and method of forming the same
JPS58136671A (en) Preparation of pressure-sensitive adhesive tape
JPS59184273A (en) Production of pressure-sensitive adhesive tape
JPH0649108A (en) Production of core-sheel emulsion
JPS62225501A (en) Aqueous emulsion resin composition
JPS6037135B2 (en) aqueous composition