JPS615523A - Method of dry etching - Google Patents

Method of dry etching

Info

Publication number
JPS615523A
JPS615523A JP12524884A JP12524884A JPS615523A JP S615523 A JPS615523 A JP S615523A JP 12524884 A JP12524884 A JP 12524884A JP 12524884 A JP12524884 A JP 12524884A JP S615523 A JPS615523 A JP S615523A
Authority
JP
Japan
Prior art keywords
gas
gaas
etching method
tungsten silicide
dry etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12524884A
Other languages
Japanese (ja)
Inventor
Masaru Miyazaki
勝 宮崎
Takeshi Yasuda
武 安田
Jiyunji Masuki
舛木 順二
Tetsukazu Hashimoto
哲一 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Microcomputer System Ltd
Hitachi Ltd
Renesas Eastern Japan Semiconductor Inc
Hitachi Iruma Electronic Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Tohbu Semiconductor Ltd
Hitachi Microcomputer Engineering Ltd
Hitachi Iruma Electronic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Tohbu Semiconductor Ltd, Hitachi Microcomputer Engineering Ltd, Hitachi Iruma Electronic Co Ltd filed Critical Hitachi Ltd
Priority to JP12524884A priority Critical patent/JPS615523A/en
Publication of JPS615523A publication Critical patent/JPS615523A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • H01L21/32137Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas of silicon-containing layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To machine a high melting point metal in a directional property without damaging a GaAs substrate by using NF3 gas for reactive gas in the step of ultrafinely machining the metal formed on a compound semiconductor by a reactive ion etching method. CONSTITUTION:NF3 gas is used for reactive gas in the step of ultrafinely machining a high melting point metal formed on a compound semiconductor by a reactive ion etching method. For example, tungsten silicide 2 is coated by sputtering on a crystal formed with an N type active layer 10 on a semi-insulating GaAs substrate 1. A gate pattern 20 of the desired size is formed of photoresist, a tungsten silicide 3 is machined by reactive ion etching method using mixture gas of NF3 gas and N2 with it as a mask. Thus, since the metal can be machined with good controllability without damaging the GaAs, an integrated circuit using GaAs semiconductor can be performed in high performance.

Description

【発明の詳細な説明】 〔発明の利用分野〕 発明は半導体集積回路に用いる高融点金属のドライエツ
チング方法番;係り、特にGaAs半導体用に好適なド
ライエツチング方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a dry etching method for refractory metals used in semiconductor integrated circuits, and particularly to a dry etching method suitable for GaAs semiconductors.

【発明の背景〕[Background of the invention]

従来のGaAs −ICに用いられている高融点金属で
あるタングステン・シリサイド系金属のドライエツチン
グはCF、と02ガスによる反応性イオンエツチング法
が用いられていた。こうした例はたとえばYokoya
ma et al : IEHE Transacti
ons onElectron Devices p1
541 vol、 HD−29,&IOOct。
For dry etching of tungsten silicide metal, which is a high melting point metal used in conventional GaAs-ICs, a reactive ion etching method using CF and 02 gas has been used. An example of this is Yokoya
ma et al: IEHE Transacti
ons onElectron Devices p1
541 vol, HD-29, &IOOct.

1982等にみられる。この素子の作製手順を第1図に
示す。まず、GaAs基板1のn形能助層lo上に高融
点であるタングステン・シリサイド系金属2を被着する
(同図(a))、次に、ホトレジストをマスクとしてゲ
ート電極3を形成する(同図(b))。
Seen in 1982 etc. The manufacturing procedure for this device is shown in FIG. First, a tungsten silicide metal 2 having a high melting point is deposited on the n-type active layer lo of the GaAs substrate 1 (see figure (a)). Next, a gate electrode 3 is formed using photoresist as a mask ( Figure (b)).

従来のドライエツチング方法では、ゲート電極3を形成
するとき、GaAs基板とタングステン・シリサイドの
選択性が小さいため、GaAs層の一部4がエツチング
されて結晶に誘起されるドライエツチング損傷により、
デバイスが性能低下する主要因になっていると考えられ
ていた。このためGaAsをドライエツチングで削らな
くするにはエッチング時間2条件を最適化する必要があ
ったが、C1”4ガス系ではプロセス上のマージンに乏
しい欠点があった。
In the conventional dry etching method, when forming the gate electrode 3, the selectivity between the GaAs substrate and tungsten silicide is low, so a part of the GaAs layer 4 is etched and dry etching damage is induced in the crystal.
It was thought that the device was the main cause of performance degradation. Therefore, in order to prevent GaAs from being removed by dry etching, it was necessary to optimize the two etching time conditions, but the C1''4 gas system had the drawback of poor process margin.

(発明の目的〕 本発明の目的はGaAs半導体集積回路に用いる高融点
金属を反応性イオンエツチング法で微細加工する場合、
GaAs基板に損傷を与えず、かつ高融点金属を方向性
に加工できるドライエツチングの方法を提供することに
ある。
(Objective of the Invention) The object of the present invention is to microfabricate a high melting point metal used in a GaAs semiconductor integrated circuit by reactive ion etching.
It is an object of the present invention to provide a dry etching method that can process a high melting point metal directionally without damaging a GaAs substrate.

〔発明の概要〕[Summary of the invention]

GaAsがCF 4ガスのドライエツチングで削れるこ
とは一1化学的というよりはイオン衝撃によってスパッ
タされたと考えた。そこで数種類のフッ素系ガスについ
てイオン衝撃エネルギーを調べた結果CF4>NF3に
なることが分った。そこで、両者のガスでGaAsがエ
ツチングされる程度を比較した。第2図はCF4ガスと
NF、ガスについてRFパワー、ガス流量一定にしてG
aAsエツチング速度のガス圧依存性を示す。N F 
zガスではCF4ガスに比べてほとんどエツチングされ
ないことがわかる。この結果はイオン衝撃エネルギーの
関係と一致している。GaAs以外にホトレジストとタ
ングステン・シリサイド(WSi)のエツチング速度を
調べた。これらを表1にそれぞれのガスについてエツチ
ング速度比として示す。同表かられか゛るように、WS
iを加工する場合には、これらのエツチング速度比でみ
てもN F 3ガスが優表  1 x=0.5〜0.7 れていることがわかる。第3図と表1では純CF4ガス
を用いて比較したが、Gapsのエツチング速度CF、
に02を混ぜた方が大きいことがわかった。NF、に0
2を混ぜるとレジストのエツチング速度が上がり好まし
いくないが、NF、にN2を混ぜると改善効果がある。
The fact that GaAs can be etched by dry etching with CF 4 gas suggests that sputtering was caused by ion bombardment rather than chemically. Therefore, as a result of investigating the ion impact energy of several types of fluorine-based gases, it was found that CF4>NF3. Therefore, the degree to which GaAs is etched by both gases was compared. Figure 2 shows CF4 gas and NF, with constant RF power and gas flow rate.
Figure 3 shows gas pressure dependence of aAs etching rate. NF
It can be seen that z gas causes almost no etching compared to CF4 gas. This result is consistent with the relationship of ion bombardment energy. In addition to GaAs, the etching rates of photoresist and tungsten silicide (WSi) were investigated. These are shown in Table 1 as etching rate ratios for each gas. As you can see from the same table, WS
It can be seen that in the case of processing i, NF3 gas is superior even when looking at these etching speed ratios. In Figure 3 and Table 1, the comparison was made using pure CF4 gas, but the etching rate CF of Gaps,
It was found that the difference was larger when 02 was mixed with. NF, ni0
Mixing N2 with NF increases the etching speed of the resist, which is not desirable, but mixing N2 with NF has an improving effect.

第3図はNF。Figure 3 is NF.

ガスにNzを混ぜた場合のタングステン・シリサイドと
GaAsのエツチング速度の関係を示す。N2が増加す
るにしたがってタングステン・シリサイドのエツチング
速度が減少しており、N2の混合はタングステン・シリ
サイドのエツチング速度の制御性を向上させる上で効果
がある。また、GaAsエツチング速度jよN2最には
依存せずほぼゼロのままである。第4図にN2混合効果
によるタングステン・シリサイドの断面形状を示す。N
F、ガスだけの場合、 GaAs基板1上に加工された
タングステン・シリサイド3は若干サイドエツチング5
が見られる(第4図(a))、NF3+N2ガスの場合
には、 GaAs基板1上に加工したタングステン・シ
リサイド3はほぼ方向性にエツチングされる(第4図(
b))。これはN2混合により中性粒子が減少して、サ
イドエツチングを防ぐ効果があるためと考えられる。
The relationship between the etching rate of tungsten silicide and GaAs when Nz is mixed in the gas is shown. The tungsten silicide etching rate decreases as N2 increases, and the addition of N2 is effective in improving the controllability of the tungsten silicide etching rate. Furthermore, the GaAs etching rate j does not depend on N2 and remains almost zero. FIG. 4 shows the cross-sectional shape of tungsten silicide due to the N2 mixing effect. N
In the case of F, gas only, the tungsten silicide 3 processed on the GaAs substrate 1 is slightly side etched 5.
In the case of NF3+N2 gas, the tungsten silicide 3 processed on the GaAs substrate 1 is etched almost directionally (Fig. 4(a)).
b)). This is considered to be because the N2 mixture reduces the number of neutral particles and has the effect of preventing side etching.

NF2ガスとN2=スの混合ガスにHeを混ぜた場合に
も第3図で示した関係は保持され、Heを混ぜることに
よってウェーハ面内の均一性が改善された。
Even when He was mixed into the mixed gas of NF2 gas and N2=S, the relationship shown in FIG. 3 was maintained, and uniformity within the wafer surface was improved by mixing He.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第5図により説明する。半絶
縁性GaAsの基板1にn形能助層1oが形成された結
晶上にタングステン・シリサイド2をスパッタにより被
着した(厚さ〜400nm)。
An embodiment of the present invention will be described below with reference to FIG. Tungsten silicide 2 was deposited by sputtering on a crystal on which an n-type active layer 1o was formed on a semi-insulating GaAs substrate 1 (thickness: 400 nm).

所望の寸法のゲートパターン2oをホトレジで形成して
(同図(a)L これをマスクにタングステン・シリサ
イド3を本発明によるドライエツチングの方法で加工し
た。エツチング条件は次のようである。
A gate pattern 2o of desired dimensions was formed by photoresist (FIG. 6(a)). Using this as a mask, the tungsten silicide 3 was processed by the dry etching method of the present invention. The etching conditions were as follows.

周波数方式:13.56 MHz、平行平板形RFパワ
ー密度: 0.10 W/、dガス種: N、F s 
十N z 混合比: 0.2  (NFi /NFi +N2 )
全流量:20mA/win ガス圧: 5Pa 加工断面はほぼ垂直の形状になり、サイドエツチング量
も0.1  μm以下となった(同図(b))。
Frequency method: 13.56 MHz, parallel plate type RF power density: 0.10 W/, d Gas type: N, F s
10Nz Mixing ratio: 0.2 (NFi /NFi +N2)
Total flow rate: 20 mA/win Gas pressure: 5 Pa The processed cross section was almost vertical, and the amount of side etching was less than 0.1 μm (FIG. 2(b)).

第3図で示した如く、このエツチング条件ではGaAs
が削られず一従来、問題となっていたGaAsのエツチ
ングと損傷が全面的に解決することができた。つづいて
ゲートを加工した後に、高濃度n形層30となるStイ
オンを表面から打込んだ(同図(C))、この工程によ
ってタングステン・シリサイドのゲート3周りは高濃度
n形層30でセルファラインされて、直列抵抗の低下に
効果がある。
As shown in Figure 3, under these etching conditions, GaAs
The etching and damage of GaAs, which had been a problem in the past, could be completely solved. After processing the gate, St ions, which will become the highly doped n-type layer 30, are implanted from the surface (FIG. 3(C)). Through this process, the area around the tungsten silicide gate 3 becomes the highly doped n-type layer 30. Self-lined, effective in reducing series resistance.

つづいて800℃、10分の熱処理をした後、ソース4
1.ドレイン42電極につけてGaAsのFET素子を
作った(同図(d))。本発明の方法で製作したGaA
s −FETやダイオード、抵抗、容量の各素子は、ド
ライエツチングによってGaAsの表面が削れたり、耐
傷をうけたりの不良がなくなったので、FETの性能が
向上したばかりか、集積回路を構成している抵抗、容量
などを設計値通りに制御して製作できるようになり、素
子歩留りが大幅に向上できたことをつけ加えておく。
Next, after heat treatment at 800℃ for 10 minutes, sauce 4
1. A GaAs FET element was made by attaching it to the drain 42 electrode (FIG. 4(d)). GaA produced by the method of the present invention
S-FETs, diodes, resistors, and capacitors are free from defects such as scratches and scratches on the GaAs surface due to dry etching, which not only improves the performance of FETs but also improves the ability to form integrated circuits. I would like to add that this has enabled us to control and manufacture the resistors, capacitances, etc. in accordance with the design values, which has led to a significant improvement in device yield.

以上、実施例ではタングステン・シリサイド−の加工マ
スクとしてホトレジストを用いた例で述べてきたが、こ
のマスク機としてはSiO□、PSGなどエツチング速
度の遅い材質を用いても良い。
In the above embodiments, a photoresist is used as a processing mask for tungsten silicide, but a material with a slow etching rate such as SiO□ or PSG may also be used for this mask machine.

また高融点金属の例としてタングステン°シリサイドを
述べたが、本発明では限定されるものでなく、例えば、
W単体、W−Ti合金、W−T i・St金合金Mo、
Mo−8i合金などの材料にも適用が可能である。
Furthermore, although tungsten silicide has been described as an example of a high melting point metal, the present invention is not limited to it; for example,
W alone, W-Ti alloy, W-Ti/St gold alloy Mo,
It can also be applied to materials such as Mo-8i alloy.

また、Gaps半導体上の高融点金属の加工法を実施例
として述べてきたが、本発明によるドライエツチング法
では他の化合物半導体(例えばInP。
Further, although the method of processing high melting point metal on Gaps semiconductor has been described as an example, the dry etching method according to the present invention can be applied to other compound semiconductors (for example, InP).

GaA Q Asなど)上に形成されたものにも適用が
可能でGaAsに限定されるものではない。
It can also be applied to materials formed on materials such as GaA Q As, and is not limited to GaAs.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、GaAs基板結晶を削ることなくかつ
GaA+へ損傷を与えることなく、高融点金属を制御性
よく加工することができるので、GaAs半導体を用い
た集積回路を高性能に実現でき、素子歩留りの向上がは
かれる効果がある。
According to the present invention, it is possible to process a high melting point metal with good controllability without cutting the GaAs substrate crystal and without damaging GaA+, so it is possible to realize a high-performance integrated circuit using a GaAs semiconductor. This has the effect of improving device yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の集積回路のゲート加工の断面図、第2図
はGaAsエツチング速度のガス圧依存性を示す図、第
3図はエツチング速度のN2混合依存性を示す図、第4
図はN2混合によるゲート加工断面図、第5図は本発明
の実施例によるGaAs −FETの製作工程順の断面
図である。 1・・・半導体性GaAs基板、2・・・高融点金属、
3・・・ゲートパターン、4・・・GaAs基板の損傷
部、5・・・ゲートのサイドエッチ部、10・・・n形
GaAa層。
Figure 1 is a cross-sectional view of conventional integrated circuit gate processing, Figure 2 is a diagram showing the dependence of GaAs etching rate on gas pressure, Figure 3 is a diagram showing the dependence of etching rate on N2 mixture, and Figure 4 is a diagram showing the dependence of etching rate on N2 mixture.
The figure is a cross-sectional view of gate processing using N2 mixture, and FIG. 5 is a cross-sectional view of the order of manufacturing steps of a GaAs-FET according to an embodiment of the present invention. 1... Semiconductor GaAs substrate, 2... High melting point metal,
3... Gate pattern, 4... Damaged portion of GaAs substrate, 5... Side etched portion of gate, 10... N-type GaAa layer.

Claims (1)

【特許請求の範囲】 1、化合物半導体上に形成された高融点金属を反応性イ
オンエッチング法により微細加工する工程において、反
応性ガスにNF_3ガスを用いることを特徴とするドラ
イエッチングの方法。 2、上記ガスにN_2ガスを混合することを特徴とする
特許請求の範囲第1項記載のドライエッチングの方法。 3、特許請求の範囲第2項記ハドライエツチングの方法
において、混合ガスに更にHeを加えたことを特徴とす
るドライエッチングの方法。 4、前記化合物半導体としてGaAsを用いたことを特
徴とする特許請求の範囲第1項〜第3項記載のドライエ
ッチングの方法。
[Claims] 1. A dry etching method characterized in that NF_3 gas is used as a reactive gas in the step of finely processing a high melting point metal formed on a compound semiconductor by a reactive ion etching method. 2. The dry etching method according to claim 1, characterized in that N_2 gas is mixed with the above gas. 3. A dry etching method according to claim 2, characterized in that He is further added to the mixed gas. 4. The dry etching method according to claims 1 to 3, characterized in that GaAs is used as the compound semiconductor.
JP12524884A 1984-06-20 1984-06-20 Method of dry etching Pending JPS615523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12524884A JPS615523A (en) 1984-06-20 1984-06-20 Method of dry etching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12524884A JPS615523A (en) 1984-06-20 1984-06-20 Method of dry etching

Publications (1)

Publication Number Publication Date
JPS615523A true JPS615523A (en) 1986-01-11

Family

ID=14905427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12524884A Pending JPS615523A (en) 1984-06-20 1984-06-20 Method of dry etching

Country Status (1)

Country Link
JP (1) JPS615523A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142916A (en) * 1984-07-30 1986-03-01 エイ・ティ・アンド・ティ・コーポレーション Method of forming semiconductor device
JPS63168A (en) * 1986-06-19 1988-01-05 Fujitsu Ltd Manufacture of semiconductor device
JPS63171A (en) * 1986-06-19 1988-01-05 Fujitsu Ltd Manufacture of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142916A (en) * 1984-07-30 1986-03-01 エイ・ティ・アンド・ティ・コーポレーション Method of forming semiconductor device
JPS63168A (en) * 1986-06-19 1988-01-05 Fujitsu Ltd Manufacture of semiconductor device
JPS63171A (en) * 1986-06-19 1988-01-05 Fujitsu Ltd Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
US4484979A (en) Two-step anisotropic etching process for patterning a layer without penetrating through an underlying thinner layer
US5229323A (en) Method for manufacturing a semiconductor device with Schottky electrodes
JPS615523A (en) Method of dry etching
US6475915B1 (en) Ono etch using CL2/HE chemistry
JPH03280532A (en) Manufacture of semiconductor device
JPH07130680A (en) Method of fabricating semiconductor device
JPH05343363A (en) Dry etching method
JP3348542B2 (en) Method for patterning silicon-based material layer
JP3271373B2 (en) Dry etching method
JP3104298B2 (en) Dry etching method
JPH04142737A (en) Dry-etching method
EP0304073A2 (en) Method for manufacturing semiconductor device with schottky electrodes
JPH02302034A (en) Manufacture of semiconductor device
JPH01248522A (en) Formation of high-melting point metal wiring layer
JP3445141B2 (en) Method of forming aluminum alloy wiring
JPS59150421A (en) Manufacture of semiconductor device
JPS6161423A (en) Dry etching method
JPS6043829A (en) Dry etching method
JPH04105320A (en) Manufacture of semiconductor device
JPS60115255A (en) Semiconductor device and manufacture thereof
JP3028306B2 (en) Dry etching method for multilayer film of semiconductor device
JPS6098626A (en) Surface treating method of semiconductor layer
JPS6068662A (en) Semiconductor device and manufacture thereof
JPS62124741A (en) Manufacture of semiconductor device
JPH0429316A (en) Dry etching method