JPS6154804B2 - - Google Patents

Info

Publication number
JPS6154804B2
JPS6154804B2 JP52026817A JP2681777A JPS6154804B2 JP S6154804 B2 JPS6154804 B2 JP S6154804B2 JP 52026817 A JP52026817 A JP 52026817A JP 2681777 A JP2681777 A JP 2681777A JP S6154804 B2 JPS6154804 B2 JP S6154804B2
Authority
JP
Japan
Prior art keywords
addition reaction
parts
resistance
reactive unsaturated
olefin interpolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52026817A
Other languages
Japanese (ja)
Other versions
JPS53111390A (en
Inventor
Okimasa Yamamuro
Masatoshi Hiragoori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP2681777A priority Critical patent/JPS53111390A/en
Publication of JPS53111390A publication Critical patent/JPS53111390A/en
Publication of JPS6154804B2 publication Critical patent/JPS6154804B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はエチレン−プロピレン−ジエンター
ポリマーのようなエチレン−α−オレフインおよ
び非共役二重結合を有する環状もしくは非環状ポ
リエンからなるオレフインターポリマー(以下、
単にオレフインターポリマーという)の改質方法
に関する。 オレフインターポリマーは一般に耐油性(耐溶
剤性)および接着性に劣る欠点があり、この欠点
を解消し、さらにこの種のポリマーの特徴とされ
る比較的良好な耐候性、耐熱性、耐疲労性、耐オ
ゾン性などの諸特性をより一段と向上させて、そ
の有用性ないし用途面での多様化を図る試みが古
くから行なわれている。たとえばこの種のポリマ
ーに他のポリマーをブレンドする方法、アクリル
酸やキノンジオキシムを混合して過酸化物で架橋
する方法などが知られており、これら方法は簡易
的にシーリング材などに応用するときの混練工程
や加硫工程で同時に行なわれている。 しかるに、前者のブレンド法では特性上のばら
つきを生じやすいという欠点があり、また後者の
方法では耐油性ないし接着性の改善効果は認めら
れるものの、ターポリマー本来の前記特性に関し
てはこの種ポリマーの主鎖が用いる過酸化物によ
つてラジカル的に切断されやすいことに起因して
その向上をほとんど期待できず、極端には改質前
のものに較べてむしろ低下する場合があつた。し
かも、後者の方法には過酸化物の取扱いに危険性
を伴なう問題すらあつた。 この発明は、このような事情に照らして鋭意研
究を重ねた結果、特定の反応性不飽和化合物を使
用し、これをオレフインターポリマー中に含まれ
る環状もしくは非環状ポリエンに基づくところの
二重結合に、過酸化物の如きラジカル開始剤の助
けをかりないでただ単に加熱によつて付加させた
ところ、ターポリマー本来の特性である耐熱性、
耐候性、耐疲労性などを大きく向上させることが
でき、しかもこの種ポリマーの欠点である耐油性
および接着性を充分に改善できることが判り、な
されたものである。 すなわち、この発明は、オレフインターポリマ
ーに、水酸基、カルボキシル基、ニトリル基およ
びエポキシ基のなかから選ばれた少なくとも1種
の官能基を持つた分子量が10000以下の反応性不
飽和化合物を混合し、ラジカル開始剤の非存在下
で加熱により付加反応を行なわせることを特徴と
するオレフインターポリマーの改質方法に係るも
のである。 この発明において適用されるオレフインターポ
リマーの代表的なものはエチレン、プロピレンも
しくはブテン−1および以下に列挙するポリエン
モノマーからなるターポリマーであり、これらタ
ーポリマーには1部天然ゴム、スチレン−ブタジ
エンゴム、ブチルゴムなどの通常のゴムが含まれ
たものであつてもよい。 ポリエンモノマーの具体例としては、ジシクロ
ペンタジエン、1・5−シクロオクタジエン、
1・1−シクロオクタジエン、1・6−シクロド
デカジエン、1・7−シクロドデカジエン、1・
5・9−シクロドデカトリエン、1・4−シクロ
ヘプタジエン、1・4−シクロヘキサジエン、ノ
ルボルナジエン、メチレンノルボルネン、2−メ
チルペンタジエン−1・4、1・5−ヘキサジエ
ン、1・6−ヘプタジエン、メチル−テトラヒド
ロインデン、1・4−ヘキサジエンなどがある。 この発明における反応性不飽和化合物として
は、分子内好ましくは分子未端に少なくとも1個
の反応性炭素−炭素二重結合を有し、しかも極性
の大きい官能基としてとくに水酸基、カルボキシ
ル基、ニトリル基およびエポキシ基のなかから選
ばれた少なくとも1個の官能基を有しかつ分子量
が10000以下のものが用いられる。 上記の官能基はいずれもその比分極
(specificpolarization)が8〜13の範囲にある極
性の大なるものであるが、このような官能基を選
択することによつて始めて接着性および耐油性の
改善と共に耐熱性、耐候性などのターポリマー本
来の特性の向上を期待することができる。比分極
が上記範囲に入るような極性の大きい官能基とし
てはその他酸無水物基(たとえば無水マレイン
酸)やハロゲン、アミノ基などがある。しかし、
これら官能基では上記諸特性の両立を図りにく
く、たとえば酸無水物基ではターポリマー本来の
特性である耐熱性、耐候性などの特性は改善され
るが、接着性および耐油性の改善効果は非常に小
さいものとなつてしまう。 分子量に関してはこれがあまり大きすぎると反
応性や均一な混合に支障をきたすおそれがあり、
通常は前述した10000以下とくに好ましくは1000
以下のものがよい。この範囲内であれば単量体状
のものでもあるいは縮合物、付加物、重合物(共
重合物)などの任意の形態にされたものでもよ
い。 代表的な反応性不飽和化合物を挙げれば、アリ
ルアルコール、ヒドロキシエチル(メタ)アクリ
レート、(メタ)アクリル酸もしくはそのホモポ
リマーないしコポリマー、マレイン酸、フマル酸
アクリロニトリル、グリシジル(メタ)アクリレ
ートなどがある。 この発明においては、まずこのような反応性不
飽和化合物をオレフインターポリマーに配合して
好ましくは剪断力が加わるような混合機たとえば
加圧型ニーダー、ミキシングロール、バンバリー
ミキサーなどで混合する。 配合割合はオレフインターポリマーの種類とく
にターポリマー中に含まれる二重結合の割合、反
応性不飽和化合物の種類などによつて異なるが、
通常はオレフインターポリマー100重量部に対し
て1〜40重量部好ましくは5〜20重量部とするの
がよく、あまりに過剰に配合するとターポリマー
本来の特性が損なわれる。 反応性不飽和化合物は分子量が比較的低いもの
であり、前記従来のポリマーブレンド法とは異な
つて上述した方法で均一に混合でき、これは引き
続く付加反応ひいては特性上のばらつきの解消に
好結果をもたらす。 この混合後場合により混合中に加熱して反応性
不飽和化合物とオレフインターポリマーとの付加
反応を行なわせる。加熱条件は通常80〜150℃で
2〜12時間程度とすれば充分であるが、必要に応
じてより高温ないしより長時間の条件で行なつて
も差し支えない。 このようにして得られる改質ポリマーは主とし
て付加された反応性不飽和化合物の前記特定の官
能基によつて耐油性および接着性が向上し、しか
も前記付加反応が過酸化物の如きラジカル開始剤
を使用しないで単に加熱するという手段によつて
のみ行なわれかつその加熱条件が比較的穏やかな
ものでよいために付加反応中にターポリマーの主
鎖が切断するなどの弊害をほとんど持たず、ター
ポリマー本来の優れた耐候性、耐熱性、耐オゾン
性、耐疲労性などが一段と改善されたものとな
る。 以上の通り、この発明法によればオレフインタ
ーポリマーのもつとも大きな欠点とされていた耐
油性および接着性を向上できる一方、ターポリマ
ー本来の耐熱性、耐候性などの特性をより一段と
向上できるから、その有用性が高まり用途面での
多様化を図ることができ、シーリング材、接着
剤、ライニング材、シート成形材などの各種用途
に適した改質ポリマーを提供できる。 次にこの発明の実施例を記載する。なお以下に
おいて部とあるは重量部を表わすものとする。 実施例 1 三井石油化学社製EPT1045(エチレン−プロ
ピレン−ジシクロペンタジエンターポリマー)
100部にアクリロニトリル10部を配合し、これを
ミキシングロールで水冷しながら10分間混合し
た。その後取り出して120℃の熱風恒温槽中で1
時間加熱して付加反応を行なわせた。 得られた改質ポリマーを100℃で真空乾燥して
アクリロニトリルの反応率を測定したところ75%
であつた。 実施例 2 EPT1045(前出)100部に下記構造式のエポキ
シ−ジアクリルエステル20部を配合し、これを加
圧型ニーダーで水冷しながら約10分間混合し、そ
の後120℃に昇温した。この温度で30分間混合を
続けながら付加反応を行なわせた。 <エポキシ−ジアクリルエステルの構造式> この付加反応のエポキシ−ジアクリルエステル
の反応率は85%であつた。なお反応率は付加反応
物の1部を取り出して極性溶剤(エタノール−
水)により未反応物を分離し、100℃で3時間乾
燥して加熱残分を測定し、下記式にしたがつて算
出した。 反応率(%)=加熱残分−〔試料採取量×100/110)/試料採取量×10/110×100 実施例 3 EPT1045(前出)100部にヒドロキシメタアク
リレート10部を配合し、これを密閉した加圧型ニ
ーダ中で水冷しながらよく混合した。混合後、そ
のままの状態でかきまぜながら温度を120℃に上
げ、30分間加熱して付加反応を行なわせた。この
付加反応のヒドロキシメタアクリレートの反応率
は72%であつた。 実施例 4 EPT1045(前出)100部にアクリル酸とアクリ
ル酸エチルとの10:90の共重合物(分子量3000)
20部を配合し、これを密閉した加圧型ニーダ中で
水冷しながらよく混合したのち、110℃で60分間
加熱して付加反応を行なわせた。この付加反応の
上記共重合物の反応率は63%であつた。 実施例 5 EPT1045(前出)100部に、グリシジルメタア
クリレート30部を配合し、これを密閉した加圧型
ニーダ中で水冷しながら30分間混合したのち、
100〜120℃で60分間付加反応を行なわせた。この
付加反応のグリシジルメタアクリレートの反応率
は90%であつた。 比較例 1 EPT1045(前出)100部に無水マレイン酸10部
を配合し、これを加圧型ニーダーで水冷しながら
10分間混合した。その後取り出して100℃の熱風
恒温槽中で1時間加熱して付加反応を行なわせ
た。 この付加反応の無水マレイン酸の反応率は55%
であつた。なお反応率は付加反応物の1部をトル
オールで膨潤させた後熱湯により未反応マレイン
酸を抽出し、100℃で3時間乾燥して加熱残分を
測定し、以下実施例2に準じて測定した。 比較例 2 EPT1045(前出)100部に無水マレイン酸10部
と共に過酸化ベンゾイル0.2部を配合し、これを
加圧型ニーダで水冷しながらよく混合したのち、
80〜100℃で2時間加熱して付加反応を行なわせ
た。この付加反応の無水マレイン酸の反応率を比
較例1と同様にして測定した結果は、85%であつ
た。 比較例 3 EPT1045(前出)100部にアクリロニトリル10
部と過酸化ベンゾイル0.3部を配合し、以下比較
例2と同様にして付加反応を行なわせた。この付
加反応のアクリロニトリルの反応率を実施例1と
同様にして測定した結果は80%であつた。 上記実施例1〜5および比較例1〜3で得られ
た改質ポリマーの接着性、耐油性、耐熱性および
耐候性を調べるために次の方法で試験した。結果
は後記表の通りである。なお同表には無処理のも
のに付き比較例4として示した。 (1) 接着性試験 改質したポリマーをEPT加硫ゴムシート
に、その厚さが約0.5mmになるように熱圧した
のち、これをアルミ板にポリマー面がアルミ板
に当るように熱圧して接着する。熱圧条件は80
℃×10分とし、このように圧着したものを25mm
幅に切り300mm/分の速度で180゜引きはがし接
着力を測定した。 (2) 耐油性試験 改質したポリマーを厚さ約1mmのシート状に
したのち、これをたて、よこ、それぞれ50mmの
長さに切り、20℃中でマシン油1号中に24時間
浸漬後表面の油をふきとつて重量変化量を測定
した。 (3) 耐熱性試験 JISK−6001にしたがつて、改質ポリマーか
ら得た試験片(ダンベル1号、厚さ2mm)を80
℃で30日間放置したのちの伸びを測定し、放置
前の同伸びに対する変化率(%)を算出した。
表中、+とは伸びの増加を、−とは伸びの減少を
意味する。 (4) 耐候性試験 JISK−6001にしたがつて、改質ポリマーか
ら得た試験片(ダンベル1号、厚さ2mm)をサ
ンシヤインウエザーメータにて2000時間暴露し
たのちの伸びを測定し、暴露前の同伸びに対す
る変化率(%)を算出した。表中、+とは伸び
の増加を、−とは伸びの減少を意味する。
This invention relates to an olefin interpolymer (hereinafter referred to as
(simply referred to as olefin interpolymer). Olef interpolymers generally have the drawback of poor oil resistance (solvent resistance) and adhesion, but this drawback has been overcome, and in addition, this type of polymer has relatively good weather resistance, heat resistance, and fatigue resistance. Attempts have been made for a long time to further improve various properties such as ozone resistance and to diversify their usefulness and applications. For example, methods of blending this type of polymer with other polymers, methods of mixing acrylic acid or quinone dioxime and cross-linking with peroxide are known, and these methods can be easily applied to sealants, etc. This is done at the same time as the kneading process and the vulcanization process. However, the former blending method has the disadvantage of easily causing variations in properties, and although the latter method can improve oil resistance and adhesion, the above-mentioned properties inherent to the terpolymer are not the main characteristics of this type of polymer. Due to the fact that the chains are easily radically cleaved by the peroxide used, hardly any improvement can be expected, and in extreme cases, the properties actually deteriorate compared to those before modification. Moreover, the latter method even had the problem of dangerous handling of peroxide. As a result of extensive research in light of the above circumstances, this invention uses a specific reactive unsaturated compound to form double bonds based on cyclic or acyclic polyenes contained in olefin interpolymers. When the terpolymer was added simply by heating without the aid of a radical initiator such as peroxide, the heat resistance, which is the inherent property of the terpolymer, was improved.
This was done based on the finding that weather resistance, fatigue resistance, etc. can be greatly improved, and oil resistance and adhesiveness, which are disadvantages of this type of polymer, can be sufficiently improved. That is, this invention mixes an olefin interpolymer with a reactive unsaturated compound having at least one functional group selected from hydroxyl group, carboxyl group, nitrile group and epoxy group and having a molecular weight of 10,000 or less, The present invention relates to a method for modifying an olefin interpolymer, which is characterized by carrying out an addition reaction by heating in the absence of a radical initiator. Typical olefin interpolymers to be applied in this invention are terpolymers made of ethylene, propylene or butene-1 and the polyene monomers listed below. Ordinary rubber such as butyl rubber may be included. Specific examples of polyene monomers include dicyclopentadiene, 1,5-cyclooctadiene,
1,1-cyclooctadiene, 1,6-cyclododecadiene, 1,7-cyclododecadiene, 1.
5,9-cyclododecatriene, 1,4-cycloheptadiene, 1,4-cyclohexadiene, norbornadiene, methylenenorbornene, 2-methylpentadiene-1,4,1,5-hexadiene, 1,6-heptadiene, methyl -Tetrahydroindene, 1,4-hexadiene, etc. The reactive unsaturated compound in this invention has at least one reactive carbon-carbon double bond in the molecule, preferably at the end of the molecule, and has highly polar functional groups such as hydroxyl group, carboxyl group, and nitrile group. and epoxy groups, and a molecular weight of 10,000 or less. All of the above functional groups are highly polar with specific polarization in the range of 8 to 13, but it is only by selecting such functional groups that it is possible to improve adhesion and oil resistance. At the same time, improvements in the inherent properties of the terpolymer such as heat resistance and weather resistance can be expected. Other highly polar functional groups whose specific polarization falls within the above range include acid anhydride groups (for example, maleic anhydride), halogens, and amino groups. but,
It is difficult to achieve both of the above properties with these functional groups.For example, acid anhydride groups improve the properties inherent to terpolymers such as heat resistance and weather resistance, but the effect of improving adhesion and oil resistance is very low. It becomes a small thing. Regarding the molecular weight, if it is too large, it may interfere with reactivity and uniform mixing.
Usually less than 10,000 as mentioned above, preferably 1,000
The following are good. Within this range, it may be in the form of a monomer or in any form such as a condensate, an adduct, or a polymer (copolymer). Typical reactive unsaturated compounds include allyl alcohol, hydroxyethyl (meth)acrylate, (meth)acrylic acid or its homopolymer or copolymer, maleic acid, acrylonitrile fumarate, glycidyl (meth)acrylate, and the like. In the present invention, such a reactive unsaturated compound is first blended into an olefin interpolymer and preferably mixed using a mixer that applies shearing force, such as a pressure kneader, mixing roll, Banbury mixer, or the like. The blending ratio varies depending on the type of olefin interpolymer, especially the ratio of double bonds contained in the terpolymer, the type of reactive unsaturated compound, etc.
Usually, the amount is preferably 1 to 40 parts by weight, preferably 5 to 20 parts by weight, per 100 parts by weight of the olefin interpolymer; if it is blended in too much, the original properties of the terpolymer will be impaired. The reactive unsaturated compounds have relatively low molecular weights, and unlike the conventional polymer blending methods, they can be mixed uniformly by the method described above, which has good results in subsequent addition reactions and in eliminating variations in properties. bring. After this mixing, heating is optionally performed during mixing to effect an addition reaction between the reactive unsaturated compound and the olefin interpolymer. It is usually sufficient to heat the heating at 80 to 150°C for about 2 to 12 hours, but it may be heated at a higher temperature or for a longer time if necessary. The modified polymer obtained in this way has improved oil resistance and adhesive properties mainly due to the specific functional group of the added reactive unsaturated compound, and furthermore, the addition reaction is carried out using radical initiators such as peroxides. Since it is carried out only by heating without using a terpolymer, and the heating conditions can be relatively mild, there is almost no problem such as cleavage of the main chain of the terpolymer during the addition reaction. The excellent weather resistance, heat resistance, ozone resistance, fatigue resistance, etc. inherent to polymers are further improved. As described above, according to the method of this invention, it is possible to improve the oil resistance and adhesiveness, which were considered to be major drawbacks of olefin interpolymers, and it is also possible to further improve the inherent properties of the terpolymer, such as heat resistance and weather resistance. Its usefulness increases and it becomes possible to diversify its uses, making it possible to provide modified polymers suitable for various uses such as sealing materials, adhesives, lining materials, and sheet forming materials. Next, examples of this invention will be described. In addition, in the following, parts represent parts by weight. Example 1 EPT1045 manufactured by Mitsui Petrochemicals (ethylene-propylene-dicyclopentadiene terpolymer)
10 parts of acrylonitrile was added to 100 parts, and mixed for 10 minutes while cooling with water on a mixing roll. After that, take it out and put it in a hot air constant temperature bath at 120℃.
The addition reaction was carried out by heating for a certain period of time. The resulting modified polymer was vacuum dried at 100°C and the reaction rate of acrylonitrile was measured to be 75%.
It was hot. Example 2 20 parts of epoxy diacrylic ester having the following structural formula was blended with 100 parts of EPT1045 (mentioned above), mixed for about 10 minutes while cooling with water in a pressure kneader, and then heated to 120°C. The addition reaction was allowed to continue at this temperature for 30 minutes with continued mixing. <Structural formula of epoxy diacrylic ester> The conversion rate of epoxy-diacryl ester in this addition reaction was 85%. The reaction rate is calculated by taking out a part of the addition reaction product and adding it to a polar solvent (ethanol-
The unreacted substances were separated using water), dried at 100° C. for 3 hours, and the heating residue was measured, and calculated according to the following formula. Reaction rate (%) = heating residue - [amount of sample collected x 100/110)/amount of sample collected x 10/110 x 100 Example 3 10 parts of hydroxy methacrylate was mixed with 100 parts of EPT1045 (mentioned above), and this were thoroughly mixed in a closed pressurized kneader while cooling with water. After mixing, the temperature was raised to 120° C. while stirring, and the mixture was heated for 30 minutes to carry out an addition reaction. The conversion rate of hydroxymethacrylate in this addition reaction was 72%. Example 4 100 parts of EPT1045 (mentioned above) and a 10:90 copolymer of acrylic acid and ethyl acrylate (molecular weight 3000)
20 parts were mixed well in a closed pressurized kneader while cooling with water, and then heated at 110° C. for 60 minutes to carry out an addition reaction. The reaction rate of the above copolymer in this addition reaction was 63%. Example 5 30 parts of glycidyl methacrylate was blended with 100 parts of EPT1045 (mentioned above), and this was mixed for 30 minutes while cooling with water in a closed pressurized kneader.
The addition reaction was carried out at 100-120°C for 60 minutes. The reaction rate of glycidyl methacrylate in this addition reaction was 90%. Comparative Example 1 10 parts of maleic anhydride was mixed with 100 parts of EPT1045 (mentioned above), and this was mixed with water cooling in a pressure kneader.
Mixed for 10 minutes. Thereafter, it was taken out and heated in a hot air constant temperature bath at 100°C for 1 hour to carry out an addition reaction. The conversion rate of maleic anhydride in this addition reaction is 55%
It was hot. The reaction rate was determined by swelling a portion of the addition reaction product with toluene, extracting unreacted maleic acid with hot water, drying at 100°C for 3 hours, and measuring the heating residue, and the following measurements were performed according to Example 2. did. Comparative Example 2 100 parts of EPT1045 (mentioned above) was blended with 10 parts of maleic anhydride and 0.2 parts of benzoyl peroxide, and after mixing well with water cooling in a pressure kneader,
The addition reaction was carried out by heating at 80-100°C for 2 hours. The conversion rate of maleic anhydride in this addition reaction was measured in the same manner as in Comparative Example 1, and the result was 85%. Comparative example 3 100 parts of EPT1045 (mentioned above) and 10 parts of acrylonitrile
1 part and 0.3 part of benzoyl peroxide, and an addition reaction was carried out in the same manner as in Comparative Example 2. The conversion rate of acrylonitrile in this addition reaction was measured in the same manner as in Example 1 and was found to be 80%. The modified polymers obtained in Examples 1 to 5 and Comparative Examples 1 to 3 were tested for adhesion, oil resistance, heat resistance, and weather resistance using the following methods. The results are shown in the table below. In addition, in the same table, the untreated sample is shown as Comparative Example 4. (1) Adhesion test The modified polymer was hot-pressed onto an EPT vulcanized rubber sheet to a thickness of approximately 0.5 mm, and then hot-pressed onto an aluminum plate so that the polymer surface was in contact with the aluminum plate. Glue. Heat and pressure conditions are 80
℃ x 10 minutes, and the crimped product in this way is 25mm
It was cut into widths and peeled off at 180 degrees at a speed of 300 mm/min to measure the adhesive strength. (2) Oil resistance test After the modified polymer was made into a sheet with a thickness of approximately 1 mm, this was cut into lengths of 50 mm both vertically and horizontally, and immersed in machine oil No. 1 at 20°C for 24 hours. The oil on the rear surface was wiped off and the weight change was measured. (3) Heat resistance test According to JISK-6001, a test piece (dumbbell No. 1, thickness 2 mm) obtained from the modified polymer was
The elongation was measured after being left at ℃ for 30 days, and the rate of change (%) with respect to the same elongation before being left was calculated.
In the table, + means an increase in elongation, and - means a decrease in elongation. (4) Weather resistance test In accordance with JISK-6001, a test piece (dumbbell No. 1, thickness 2 mm) obtained from the modified polymer was exposed for 2000 hours using a sunshine weather meter, and then the elongation was measured. The rate of change (%) with respect to the same elongation before exposure was calculated. In the table, + means an increase in elongation, and - means a decrease in elongation.

【表】 上表から明らかなように、この発明法にしたが
つて特定の反応性不飽和化合物をラジカル開始剤
の助けをかりないでただ単に加熱するだけでオレ
フインターポリマーに付加反応させて得られる改
質ポリマーは、接着性および耐油性が大きく改善
されたものとなると共に、耐熱性や耐候性が一層
向上してくることがわかる。 これに対しこの発明に係るものとは異なる反応
性不飽和化合物を用いたもの(比較例1)では耐
油性や接着性の顕著な向上が認められず、一方上
記比較例1の反応性不飽和化合物を用いてこれを
過酸化物によつて付加反応させたもの(比較例
2)では上述の耐油性や接着性の向上は認められ
るが、反面耐熱性や耐候性の改善効果に非常に乏
しいものとなつてしまう。 また、この発明の特定の反応性不飽和化合物を
用いたときでもこれを過酸化物によつて付加反応
させたもの(比較例3)では、上記比較例2の場
合と同様に耐油性や接着性の面で好結果が得られ
ても耐熱性、耐候性の向上効果がほとんど認めら
れなくなる。
[Table] As is clear from the above table, according to the method of this invention, a specific reactive unsaturated compound can be added to an olefin interpolymer by simply heating without the aid of a radical initiator. It can be seen that the modified polymer obtained has significantly improved adhesion and oil resistance, as well as further improved heat resistance and weather resistance. On the other hand, in the case of using a reactive unsaturated compound different from that according to the present invention (Comparative Example 1), no remarkable improvement in oil resistance or adhesion was observed; In the case of using a compound and subjecting it to an addition reaction with peroxide (Comparative Example 2), the above-mentioned improvements in oil resistance and adhesion were observed, but on the other hand, the effect of improving heat resistance and weather resistance was very poor. It becomes a thing. In addition, even when using the specific reactive unsaturated compound of this invention, when it was subjected to an addition reaction with a peroxide (Comparative Example 3), oil resistance and adhesion were improved as in the case of Comparative Example 2. Even if good results are obtained in terms of properties, the effect of improving heat resistance and weather resistance will hardly be recognized.

Claims (1)

【特許請求の範囲】 1 エチレン、α−オレフインおよび非共役二重
結合を有する環状もしくは非環状ポリエンからな
るオレフインターポリマーに、水酸基、カルボキ
シル基、ニトリル基およびエポキシ基のなかから
選ばれた少なくとも1種の官能基を持つた分子量
が10000以下の反応性不飽和化合物を混合し、ラ
ジカル開始剤の非存在下で加熱により付加反応を
行なわせることを特徴とするオレフインターポリ
マーの改質方法。 2 反応性不飽和化合物の分子量が1000以下であ
る特許請求の範囲第1項記載のオレフインターポ
リマーの改質方法。
[Scope of Claims] 1. An olefin interpolymer consisting of ethylene, α-olefin and a cyclic or non-cyclic polyene having a non-conjugated double bond, at least one selected from a hydroxyl group, a carboxyl group, a nitrile group and an epoxy group. A method for modifying an olefin interpolymer, which comprises mixing a reactive unsaturated compound with a molecular weight of 10,000 or less and carrying out an addition reaction by heating in the absence of a radical initiator. 2. The method for modifying an olefin interpolymer according to claim 1, wherein the reactive unsaturated compound has a molecular weight of 1000 or less.
JP2681777A 1977-03-10 1977-03-10 Modification of olefin terpolymer Granted JPS53111390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2681777A JPS53111390A (en) 1977-03-10 1977-03-10 Modification of olefin terpolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2681777A JPS53111390A (en) 1977-03-10 1977-03-10 Modification of olefin terpolymer

Publications (2)

Publication Number Publication Date
JPS53111390A JPS53111390A (en) 1978-09-28
JPS6154804B2 true JPS6154804B2 (en) 1986-11-25

Family

ID=12203823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2681777A Granted JPS53111390A (en) 1977-03-10 1977-03-10 Modification of olefin terpolymer

Country Status (1)

Country Link
JP (1) JPS53111390A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4842044A (en) * 1971-09-23 1973-06-19
JPS4874591A (en) * 1972-01-10 1973-10-08
JPS524299A (en) * 1975-06-20 1977-01-13 Nippon Signal Co Ltd:The Automatic ticket examining and collecting method and magnetic card for automatic ticket examination and collection
JPS531288A (en) * 1973-01-10 1978-01-09 Du Pont Process for producing thermoplastic elastomer form epdm copolymerssanhydrous maleic acid adducts
JPS5350292A (en) * 1976-10-18 1978-05-08 Shell Int Research Improver of dispersion properties and viscosity index for modified terpolymers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4842044A (en) * 1971-09-23 1973-06-19
JPS4874591A (en) * 1972-01-10 1973-10-08
JPS531288A (en) * 1973-01-10 1978-01-09 Du Pont Process for producing thermoplastic elastomer form epdm copolymerssanhydrous maleic acid adducts
JPS524299A (en) * 1975-06-20 1977-01-13 Nippon Signal Co Ltd:The Automatic ticket examining and collecting method and magnetic card for automatic ticket examination and collection
JPS5350292A (en) * 1976-10-18 1978-05-08 Shell Int Research Improver of dispersion properties and viscosity index for modified terpolymers

Also Published As

Publication number Publication date
JPS53111390A (en) 1978-09-28

Similar Documents

Publication Publication Date Title
JP2521807B2 (en) Ionomer composition
US5109064A (en) Curable composition
KR920000800B1 (en) Rubber blends
EP2920266B1 (en) Crosslinkable and crosslinked compositions
EP0202782A2 (en) Process for the production of a thermoplastic elastomer composition
JP3323276B2 (en) High molecular weight acrylic polymer and its use
JPH02502653A (en) high performance pressure sensitive adhesive polymer
JPH0229484A (en) Material for rubber-coated gasket
JPS59115351A (en) Production of crosslinked propylene resin
JPH0588845B2 (en)
KR910005571B1 (en) Good adhesive thermo plastic elastomer composition
JP2603173B2 (en) Water-based polyolefin resin composition and method for producing the same
JP2603174B2 (en) Aqueous resin composition and method for making polyolefin aqueous
Kole et al. Studies of in-situ compatibilized blend of silicone and EPDM rubbers
JPS6154804B2 (en)
WO1991017192A1 (en) Modified polyolefin polymer, production thereof, and resin composition containing the same
CN1082533C (en) Chloroprene bi-alkene rubber adheresive
JPS5821923B2 (en) Method for modifying rubbery polymers
JP3200749B2 (en) Synthetic resin emulsion
JPS5935943B2 (en) Sealing material
JPS6057458B2 (en) rubber composition
JPS58129006A (en) Preparation of thermoplastic elastomer
Gadhave Synthesis and characterization of starch stabilized polyvinyl acetate-Vinyl neodecanoate-Methyl methacrylate copolymer-based wood adhesive
JP2000344969A (en) Adhesive olefinic thermoplastic elastomer composition
JPS5949246A (en) Polyamide-nitrile rubber blend composition