JPS6152240B2 - - Google Patents

Info

Publication number
JPS6152240B2
JPS6152240B2 JP53087778A JP8777878A JPS6152240B2 JP S6152240 B2 JPS6152240 B2 JP S6152240B2 JP 53087778 A JP53087778 A JP 53087778A JP 8777878 A JP8777878 A JP 8777878A JP S6152240 B2 JPS6152240 B2 JP S6152240B2
Authority
JP
Japan
Prior art keywords
layer
copper foil
copper
arsenic
electrodeposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53087778A
Other languages
Japanese (ja)
Other versions
JPS5515216A (en
Inventor
Koji Himuro
Takashi Kato
Nobuo Kitamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP8777878A priority Critical patent/JPS5515216A/en
Priority to DE2928942A priority patent/DE2928942C2/en
Priority to SE7906252A priority patent/SE435779B/en
Priority to NL7905675A priority patent/NL7905675A/en
Priority to GB7925492A priority patent/GB2030176B/en
Priority to IE1383/79A priority patent/IE48597B1/en
Publication of JPS5515216A publication Critical patent/JPS5515216A/en
Publication of JPS6152240B2 publication Critical patent/JPS6152240B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/244Finish plating of conductors, especially of copper conductors, e.g. for pads or lands
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • C25D5/611Smooth layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/384Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0307Providing micro- or nanometer scale roughness on a metal surface, e.g. by plating of nodules or dendrites
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0703Plating
    • H05K2203/0723Electroplating, e.g. finish plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1105Heating or thermal processing not related to soldering, firing, curing or laminating, e.g. for shaping the substrate or during finish plating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、印刷回路用基板などに用いられる銅
張積層板に使用する銅箔に、常套的に用いられる
被接着面側の表面処理、特に銅箔を陰極として行
われる二次的電着付加処理を施こした銅箔及びそ
の製造方法に関するものである。 従来前記電着付加処理方法として、単に焼けメ
ツキに属するいわゆるPowdery Platingもしく
は、これの折落を防ぐ意味での、この上に更に限
界電流密度以下のいわゆる平滑メツキを重畳して
なる二段処理法、又、接着性を改良向上する為に
ヤケメツキに置換えて、合成樹脂サスペンシヨン
を加えるとか、砒素、アンチモン、ビスマス等の
有色金属塩を銅メツキ液に添加して、微細粗面を
与える方法及び、これらの若干の関連改変方法が
提案されている。 また、これら積層接着性を与えるための方法の
ほか、銅張積層板が印刷回路として用いられる不
可欠な回路パターン、エツチング工程を経ると、
屡々生ずる。積層汚点、いわゆるステイン、トラ
ンスフア、しみなど、基板素材有機物への銅の物
理的乃至錯化学的な移行に起因する欠陥から逃れ
る為に、上記接着性付加処理とともに、銅箔の被
接着面側に、真鍮層を主とする合金層を電着せし
める方法も提案されている。 しかるに近時、印刷回路板の用途が広域化し、
且つ高性能を要求されるに従い、その耐焔性など
のほか、長時間に互る加熱后の剥離強度劣化の少
いことが要求されるようになつた。世界的な権威
を有するアンダーライターズ・ラボラトリー、い
わゆるUL規格では、例えば153℃、56日間の加熱
処理という長期の加熱后の剥離強度が2ポンド/
インチ以上残存していることを要求している。こ
の長期間の加熱后の剥離強度に残存はもちろん基
材となる積層基材に用いられる有機物質の性質に
負う所も大であるが、有機物質の不可避の熱劣化
を最少限に留めたあとは、銅箔の被接着面の処理
に頼らざるを得ないものである。 発明者等は、この問題について種々実験の結
果、この長期加熱后の剥離強度残存は、従来の銅
張積層板の規格試験に採用されて来た熱的試験、
例えば半田耐熱性(solder Blister Test)や、
5〜20秒、又は数時間といつた半田浴耐熱后の剥
離強度では測定し得ない別個の特性であることを
確認した。例えば、上記する如き先行技術の使用
によつて得られる積層板においては、或るものは
その初期剥離強度や、260℃数十秒といつた熱テ
ストである半田耐熱性、又、半田浴上5〜20秒耐
熱后剥離強度といつた従来当該分野で極く一般的
に片面乃至両面銅張積層板に求められて来た。銅
箔と接着有機基材層との接着性ならびに秒乃至分
単位の熱履歴后の剥離強度などは充分に満たすも
のも多いが、前記するUL規格の例えば153℃56日
間の耐熱テストに於て、2ポンド/インチ
(0.357Kg/cm)の残存剥離強度はおろか、2週間
前後の日数で、殆どその残存強度をなくしてしま
うものが多いことが判明した。 又、近時この性質に指標される性能が実際の工
程に要求される積層板の製造方法も多用されるよ
うになつた。即ち、マルチレヤー銅張積層板であ
る。 後刻、内層となる両面板が積層され(加熱プレ
スで)、種々の回路加工(例えば回路形成及孔あ
け、スルーホールメツキなど)をうけたあと外層
材を更にその上に重ねて熱プレスが行われる。多
重積層が二、三回に及ぶと、数時間のしかも熱間
圧力が銅箔に及ぶこととなる。これはULテスト
の範囲の温度の加圧、サイクルテストといつた形
となり、従来の開放雰囲気での260゜数秒一数十
秒といつたものと全く要求される性質を異にして
いる。 これらマルチレヤー積層板の製造の際には、更
に積層有機基体との接着性保持と別して、加圧下
−熱間の影響として、多重電着による銅箔の表面
電着処理に於ては、しばしば、銅箔と二次電着
層、各銅層ならびに合金層間といつた各金属層間
の密着の緊密さが屡々問題となるようになつて来
た。 これらの最近の積層回路板製造技術に追ずいす
る為の銅箔の処理方法を考究するに当つて、本発
明者等は、金属界面の熱安定性が、上記二つの問
題、即ち二次電着多重各層相互及接着有機物基体
との長期熱安定性につながることを把え、この観
点から、長期加熱の(プレス積層時約170℃−1
時間にはじまり、ULの56日に及ぶ)際に銅箔か
ら熱的に基材有機物へ物理的乃至錯化学的に移行
してゆく銅を積極的に抑えること、及び、銅や銅
基合金層を数次に互つて重畳電着処理する際の層
間の密着保持をする両面から検討を加え、前者に
対しては、有機基材への被接着面には銅の移行バ
リヤーとして、錫、亜鉛とその浸透合金層よりな
る三元合金層が極めて、長期熱安定性に有効であ
り、第二の点に対しては、銅の電気精錬におい
て、古くから粗面や熱的に扱いにくい表面層を与
える為忌みきらわれた砒素を積極的に使用するこ
とにより、銅層同志乃至は銅層と銅合金層との密
着保持が緊密化することにより、上記UL規格や
マルチレヤー積層が要求するが如き、長期加熱后
の剥離強度の残存が可能な印刷回路板に接着積層
しうる銅箔が実現しうるとして研究したところ、
所期の効果に加えて両者の相乗効果が発揮され、
上記苛酷な長期条件乃至加工方法に耐えうる銅箔
乃びその製造方法を確立するに至つた。 本発明は銅箔の被処理面すなわち後に有機基材
や接着剤に接着される方の表面に2層以上の多段
重畳電着を連続して行う場合に極めて顕著な効果
を発揮する。すなわち複数回の銅電着層を重畳電
着せしめる比表面増大電着処理に応用する際、そ
の各回電着層間の緊密性が中間に介在する微量砒
素含有量により強化される。更に積層に際してア
クテイブにして比表面積大な二次的電着銅層が直
接積層基体有機物に熱圧着されることに起因する
銅の物理的、錯化学的移行により発現する印刷回
路作成時のステイン、しみ、トランスフア等の積
層汚点を抑制する為の例えば本出願人が先に提案
した特開昭52−74537号公報に示される銅箔に二
次合金電着層を施し、以後の加熱により三元合金
層となす技術ならびに特開昭52−111428号公報に
提案された技術などと組合せて応用することがで
きる。更にこれら技術を組合せて得られる効果を
少しも害うことなく、これら技術の重畳のみでは
必ずしも安定して果たし得なかつた長期加熱后剥
離強度残存を図ることを得、銅張積層板の応用分
野の拡大、例えば、耐熱基板への応用や、マルチ
レヤ−(多重回路)積層板の内層銅箔として使用
した場合の信頼性を向上させることを得た。 以下図面を参照し、本発明を具体的に説明す
る。図面は本発明の一実施態様の説明図である。
は第1段の電着槽であつて、供給される銅箔1
は給電コンタクトロール2で負に荷電され、酸洗
槽3によつて金属表面を清浄にされたものであ
る。4は陽極であつて銅箔は被電着面を陽極4に
向けながら電解液を通過する。陽極4は各槽毎に
別個の電源系統に接続する。この段では一般的に
限界電流密度付近以上で処理され、細い粒状のき
めが与えられ比表面積が増大する。例えば酸性硫
酸銅浴では次の条件を選ぶことができる。 CuSO4(銅分として) 12〜20g/ H2SO4 45〜120g/ 液 温 22〜35℃ 電流密度(陰極面平均換算) 6〜18A/dm2 通電時間 8〜25sec 第1段の電着槽を通過した銅箔1はしぼりロ
ール5を通過し、酸化を防ぐため最小厚さの液膜
を保つて第2段電着槽に入る。この浴での処理
は第1段電着槽で比表面積を増大するために加
えられた層が銅箔の以降の各処理工程でハンドリ
ングされる際、脱落することを防ぐためのカブセ
平滑めつきである。浴組成ならびにめつき条件と
しては CuSO4(銅分として) 40〜85g/ H2SO4 40〜120g/ 液 温 36゜〜55℃ 電流密度(陰極面積平均換算) 12〜30A/dm2 通過時間 10〜25秒である。 第1段は、その電着量が電流効率によつて大きく
影響をうけるので、遷価不純物例えば鉄、クロ
ム、砒素、アンチモン等の微量の混入にも又浴組
成・電着条件にも意を用いる必要があるが、第2
段は、かなりフロードなものであり平面に平滑メ
ツキを与える限界電流密度以下の電着が与えられ
れば、この後、本発明の方法による各層間の緊密
化が進められる。 第2段浴を出た銅箔は、次段の浴組成に大きな
変動を与えない為に、液膜が切れてしまわない程
度に液の持込みを防ぐしぼりロール5で余剰の液
を第2段浴にしぼり返しながら第3段電着槽に入
る。第3段電着槽では銅箔と各種電着層間のそ
れぞれの密着緊密度を向上する含砒銅層を与え
る。この為には先ず含砒素添加液を調整してお
く。 例えば、砒素源としては、亜砒酸を用い、有害
なアルシンガス(砒化水素AsH3)を発生しないよ
うカセイソーダに溶解した水溶液として用いる。 第3段の浴組成、電着条件としては、 CuSO4(Cuとして) 7〜10g/ H2SO4 20〜70g/ 含砒添加液(ASとして) 0.05〜0.5g/ 液 温 18〜22℃ 電流密度(陰極面平均として) 4〜6A/dm2 で通過時間5秒乃至20秒を選択設定することが出
来る。 この第3層に相当する含砒銅層は上記範囲で規
定される浴条件電着条件によつても、該含砒銅層
中の砒素量は、必ずしも単純な比例量とはなら
ず、素地となる銅層又は銅箔の表面状態によつて
若干の偏移をうけ、この電着層のみのビーカーテ
スト等によつて電着する含砒銅析出物の分析値が
示す値とは大巾に異る。又、本含砒銅層の色の変
化も、条件によつてはほとんど銅のみの電着層と
変らぬ色から針状物が折落する程の突起性となる
ために黒く見える程にまで多様に変化させうるが
このように折落するまでに成長させる必要はな
く、銅色がかなり異つた灰褐色乃至薄チヨコレー
ト色までの範囲にとどめて充分発明の目的を達す
る。 上記第1、第2の両二次的電着層を有する場合
のほか、回路板の目的種類によつては、長期加熱
后剥離強度残存のみを目的として、第1層もしく
は1,2両層を省略することも可能であるがこの
場合に於ては、淡チヨコレート色程度までの含砒
銅層を生ぜしめることが望ましく原銅箔と後段の
合金層との密着性を良好にする効果が著しい。 第3段電着槽を出た銅箔は、含砒液が次段の
還元性金属浴に混入することを避けるために水洗
槽6において充分な水量で両面の水洗を行い、更
に水洗ノズル8で両面を洗滌したのち(砒素源が
あると酸性還元雰囲気では、アルシンガス発生の
危険を伴う)第4段電着槽に入る。 第4段電着槽は、後に続く銅箔の乾燥、接着
剤の塗工乾燥更には、積層プレス接着等に際して
三元合金狭義には青銅になるよう浸透合金化を図
る目的で行われる亜鉛−錫混成合金被覆層を作る
電着浴槽である。 第4段電着槽における処理について述べるに
際して、銅箔と対応する積層板との相性ともいう
べき使用上の微小なニアンスによる適合性を勘案
して大別して上記二つの技術思想に基ずく方法が
考えられる。その第1は、銅の移行を完全に阻止
することを主眼として、合金層を目視してそれと
判る厚さに電着せしめる方法である。 例えば、浴組成として、 ZnSO4(Znとして) 0.8〜2.0g/ Sn(SO42(Snとして) 0.05〜1.0g/ に K4P2O7・3H2O 20〜40g/ を加えて、PHを10.7〜11.5の範囲内に調整する。 尚、硫酸第二錫に代えて硫酸第一錫を用いるこ
と及び、亜鉛及び錫をピロリン酸塩として用いて
も本発明の目的・効果を妨げない。 電着条件としては、浴温は高目がよく40〜48℃
とし 電流密度(対応陰極面平均) 0.5〜5.5A/dm2 で通過時間として10〜25秒の範囲で選択する。そ
の第2は、合金層を防錆方法(銅箔両面)を兼ね
て薄く施す方法であつて、浴組成 ZnSO4(Znとして) 0〜2.5g/ SnSO4(Snとして) 0.1〜2.5g/ にK4P2O7 15〜50g/ を加えてPHを10.5〜11.7の範囲内に調整する。上
記、亜鉛塩、錫塩の代替使用については前項と全
く同様である。 浴温は前記同様40゜〜48℃とし、電流密度は、
銅箔処理面側で、0.3〜3A/dm2、光沢面側は、
0.05〜2A/dm2で、通過時間1秒〜10秒の間
で、双面の比表面積、与えられる総電気量及び、
引続く工程でのZn−Snの銅面への浸透外観によ
つて選択決定することが出来る。なお、図面に示
す第4段電解槽の中央に設けた陽極7は上記第
2の方法すなわち防錆を兼ねて双面に薄く電着処
理を施す場合に用いる。 銅箔が、更に、接着剤塗工、積層といつた印刷
回路板になる為の以後の必須工程中および、工程
間のストツク期間の酸化変色防止のために、防錆
が不可欠であるが上記第4段の第二法を除いて
は、例えば、有機系酸化抑制剤(トリアゾール
系、ピラゾロン系、イミダゾール系、シランカツ
プリング系)法などの常套法が可能であり、好ま
しくは、前述の第4層に引きつづいて、第5段処
理槽として、クロメートによる重畳防錆法を組
合せると、浸透残存したZn・Snとクロメートの
防錆相乗作用を生じて、極めて有効な防錆能を得
ることが出来る。即ち、上記第4段処理された銅
箔を水洗して充分不純分の持込みを防いだのち、
第5段処理槽にてクロムメート防錆処理を行
う。具体的例としては、無水クロム酸の浸漬のみ
の方法に於ては、無水クロム酸0.3〜3g/の
溶液に10〜20秒浸漬通過せしめる法も可能であ
り、又、無水クロム酸0.2〜0.6g/で、片面当
り対極電流密度0.02〜0.2A/dm2で、通過時間5
〜15秒、銅箔の両面を陰極処理しても、上記4段
目層処理の防錆効果を図ることが出来る。 銅箔の最終工程は水洗・水切り及び乾燥工程で
あるが、最終水洗水は、脱イオン、特に塩素イオ
ンを除去した水であることが望ましい。 乾燥工程での省エネルギーの為にエアナイフ9
又はしぼりロール5を使用したのち乾燥する。 乾燥方法は、清浄された空気を用いた熱風を用
いるのが望ましい。特に銅箔を60℃以上120℃以
下で30秒以上乾燥し、この工程で第4段層の亜
鉛・錫の電着層が、既に若干の浸透合金化をはじ
める方が以降の貯蔵及び工程に際して安定した結
果が得られる。10はヒーター、11は冷却フア
ン、12は巻取りロールである。 本発明の実施にあたつては上記の5段層処理に
限定されものではなく銅箔表面に直接あるいは一
段又は二段以上の銅層電着処理を受けた表面に含
砒銅層を電着し、次いで、亜鉛・錫の少くとも1
種あるいは上記金属の少くとも1種と銅との合金
よりなる被覆層を電着して得られた多重付加的電
着層を有する銅箔であつて自然放置あるいは加熱
の結果少くとも銅層と銅基合金層との間に含砒銅
層が介在するならばこれら各種金属層間の緊密性
が保たれ本発明の目的が達成される。 以下本発明の実施例を示す。 実施例 1 巾1.1m、呼び厚1オンス/平方インチ(35
μ)厚の銅箔をコイルから供給する連続的表面処
理装置を用い、順次第1から第5段処理を行つ
た。処理条件は下記の通りである。 第一段浴組成 CuSO4(Cuとして) 14g/ H2SO4 65g/ 浴 温 26±1℃ で、陰極面平均電流密度12A/dm2で約13秒間電
着通過せしめ第2段電着槽に送る。 第二段浴組成 CuSO4(Cuとして) 50g/ H2SO4 70g/ 浴 温 48±1℃ で陰極面平均電流密度 15A/dm2 で約17秒間電着槽内を通過せしめ、しぼりロール
を通過して第3段に送る。第3段電着槽では、第
1表に示す3条件を用いた。
The present invention relates to surface treatment of the surface to be bonded which is conventionally used for copper foil used in copper-clad laminates used for printed circuit boards, etc., and in particular, secondary electrodeposition which is carried out using the copper foil as a cathode. The present invention relates to treated copper foil and its manufacturing method. Conventionally, the above-mentioned electrodeposition addition processing method includes so-called powdery plating, which simply belongs to burnt plating, or a two-stage processing method in which so-called smooth plating with a current density below the critical current density is further superimposed on this to prevent it from breaking off. Also, in order to improve adhesion, a synthetic resin suspension may be added in place of the burnt plating, or a colored metal salt such as arsenic, antimony, or bismuth may be added to the copper plating solution to give a finely roughened surface. , some related modification methods have been proposed. In addition to these methods for imparting lamination adhesion, copper-clad laminates are also subjected to an etching process, which is an essential circuit pattern used as a printed circuit.
Occurs often. In order to avoid defects caused by the physical or complex chemical transfer of copper to organic materials of the substrate, such as lamination stains, transfers, and stains, in addition to the above-mentioned adhesion treatment, the adhesive side of the copper foil is Another method has also been proposed in which an alloy layer mainly consisting of a brass layer is electrodeposited. However, in recent years, the uses of printed circuit boards have become wider.
As high performance is required, in addition to flame resistance, there is also a demand for less deterioration in peel strength after prolonged heating. According to the world-renowned Underwriters Laboratory, so-called UL standards, the peel strength after long-term heating at 153°C for 56 days is 2 lbs.
It requires that at least an inch remains. The residual peel strength after long-term heating is of course largely dependent on the properties of the organic material used in the laminated base material, but after minimizing the inevitable thermal deterioration of the organic material, In this case, it is necessary to treat the surface of the copper foil to be adhered. As a result of various experiments regarding this problem, the inventors have determined that the residual peel strength after long-term heating can be determined by thermal tests that have been adopted in conventional standard tests for copper-clad laminates.
For example, solder heat resistance (solder blister test),
It was confirmed that this is a separate property that cannot be measured by peel strength after heat resistance in a solder bath for 5 to 20 seconds or several hours. For example, in the laminates obtained by using the prior art as described above, there are some problems with respect to the initial peel strength, the solder heat resistance, which is a heat test of several tens of seconds at 260°C, and the solder bath resistance. Peel strength after heat resistance of 5 to 20 seconds has been very commonly required in this field for single-sided or double-sided copper-clad laminates. Many products meet the adhesion between the copper foil and the adhesive organic base layer as well as the peel strength after a heat cycle of seconds to minutes, but in the UL standard mentioned above, for example, in the heat resistance test at 153°C for 56 days, It has been found that many of these products, not only have a residual peel strength of 2 pounds/inch (0.357 Kg/cm), but also lose most of their residual peel strength within about two weeks. Furthermore, in recent years, methods for producing laminates that require performance as indicated by this property in actual processes have come into widespread use. That is, it is a multilayer copper-clad laminate. Later, the inner layer double-sided board is laminated (by heat pressing) and subjected to various circuit processing (e.g. circuit formation, hole drilling, through hole plating, etc.), and then the outer layer material is further layered on top and heat pressed. be exposed. When multiple layers are laminated two or three times, hot pressure is applied to the copper foil for several hours. This takes the form of pressurization and cycle tests at temperatures within the UL test range, and the required properties are completely different from the conventional open atmosphere test of 260° for several tens of seconds. In the production of these multilayer laminates, in addition to maintaining adhesion with the laminated organic substrate, in the surface electrodeposition treatment of copper foil by multiple electrodeposition, there are often The close adhesion between metal layers, such as copper foil and secondary electrodeposited layer, each copper layer, and between alloy layers, has often become a problem. In investigating copper foil processing methods to keep up with these recent laminated circuit board manufacturing technologies, the present inventors have determined that the thermal stability of the metal interface will solve the above two problems, namely the secondary voltage. Knowing that this leads to long-term thermal stability between each laminated layer and the adhesive organic substrate, from this point of view, long-term heating (approximately 170℃-1 during press lamination)
Actively suppress the physical and complex chemical migration of copper from the copper foil to the base organic matter during the 56 days of UL), and the copper and copper-based alloy layer. For the former, tin and zinc were added as a copper migration barrier on the surface to be adhered to the organic substrate. The ternary alloy layer consisting of the permeated alloy layer is extremely effective for long-term thermal stability.For the second point, in copper electrorefining, it has long been necessary to use a surface layer that is rough or thermally difficult to handle. By proactively using arsenic, which is shunned for giving We researched the possibility of creating a copper foil that can be adhesively laminated onto printed circuit boards that retains its peel strength even after long-term heating.
In addition to the desired effect, a synergistic effect between the two was demonstrated,
We have now established a copper foil and a method for producing the same that can withstand the harsh long-term conditions and processing methods mentioned above. The present invention exhibits extremely remarkable effects when two or more layers are successively deposited in multiple stages on the surface to be treated of the copper foil, that is, the surface that will be bonded to an organic substrate or adhesive later. That is, when applied to a specific surface increasing electrodeposition process in which multiple electrodeposited copper layers are deposited in a superimposed manner, the tightness between the electrodeposited layers is strengthened by the trace arsenic content interposed between them. Furthermore, during lamination, the secondary electrodeposited copper layer, which is active and has a large specific surface area, is bonded directly to the organic material of the laminated substrate by thermocompression, resulting in staining during the production of printed circuits, which is caused by physical and complex chemical transfer of copper. In order to suppress lamination stains such as stains and transfers, for example, a secondary alloy electrodeposited layer is applied to copper foil as shown in Japanese Patent Application Laid-open No. 74537/1983, which was previously proposed by the present applicant, and a secondary alloy electrodeposited layer is applied to the copper foil by subsequent heating. It can be applied in combination with the technique for forming the original alloy layer and the technique proposed in JP-A-52-111428. Furthermore, without impairing the effects obtained by combining these technologies in the slightest, we were able to maintain peel strength after long-term heating, which could not always be achieved stably by combining these technologies alone, and the application field of copper-clad laminates has been improved. For example, the reliability can be improved when applied to heat-resistant substrates or when used as an inner layer copper foil of a multilayer (multiple circuit) laminate. The present invention will be specifically described below with reference to the drawings. The drawings are explanatory diagrams of one embodiment of the present invention.
is the first stage electrodeposition tank, in which the copper foil 1 supplied is
is negatively charged by the power supply contact roll 2, and the metal surface is cleaned by the pickling bath 3. 4 is an anode, and the copper foil passes through the electrolytic solution with the electrodeposited surface facing the anode 4. The anode 4 is connected to a separate power supply system for each tank. In this stage, the material is generally processed at a current density near or above the critical current density, giving it a fine grain texture and increasing its specific surface area. For example, in an acidic copper sulfate bath, the following conditions can be selected. CuSO 4 (as copper content) 12-20g/H 2 SO 4 45-120g/Liquid temperature 22-35℃ Current density (cathode surface average conversion) 6-18A/dm 2 Current application time 8-25sec 1st stage electrodeposition The copper foil 1 that has passed through the tank passes through a squeezing roll 5 and enters the second stage electrodeposition tank while maintaining a minimum thickness liquid film to prevent oxidation. The treatment in this bath is used to cover and smooth plating to prevent the layer added to increase the specific surface area in the first stage electrodeposition bath from falling off when the copper foil is handled in subsequent processing steps. It is. The bath composition and plating conditions are CuSO 4 (as copper content) 40-85g/H 2 SO 4 40-120g/Liquid temperature 36°-55°C Current density (converted to cathode area average) 12-30A/dm 2 Passage time 10-25 seconds. In the first stage, the amount of electrodeposition is greatly affected by the current efficiency, so care must be taken to prevent trace amounts of transitional impurities such as iron, chromium, arsenic, and antimony, as well as the bath composition and electrodeposition conditions. It is necessary to use the second
The steps are fairly flowy, and if electrodeposition is applied below the critical current density to give a smooth plating on the plane, then the process of the invention will proceed to bring the layers closer together. In order to prevent the copper foil from leaving the second stage bath from causing large fluctuations in the bath composition in the next stage, excess liquid is removed from the second stage by a squeezing roll 5 that prevents the liquid from being brought in to the extent that the liquid film does not break. Return to the bath and enter the third stage electrodeposition tank. In the third stage electrodeposition bath, an arsenic-containing copper layer is applied to improve the adhesion between the copper foil and various electrodeposited layers. For this purpose, first prepare an arsenic-containing additive solution. For example, as an arsenic source, arsenous acid is used as an aqueous solution dissolved in caustic soda so as not to generate harmful arsine gas (hydrogen arsenide AsH 3 ). The bath composition and electrodeposition conditions for the third stage are as follows: CuSO 4 (as Cu) 7-10 g / H 2 SO 4 20-70 g / Arsenic additive liquid (as AS) 0.05-0.5 g / Liquid temperature 18-22°C It is possible to select and set the current density (as an average of the cathode surface) from 4 to 6 A/dm 2 and the passage time from 5 seconds to 20 seconds. The amount of arsenic in the arsenic-containing layer, which corresponds to the third layer, is not necessarily a simple proportional amount even if the bath conditions and electrodeposition conditions are specified in the above range. There is a slight deviation depending on the surface condition of the copper layer or copper foil, and the value shown by the analysis of the arsenic-containing copper precipitate electrodeposited by a beaker test of only this electrodeposited layer is quite different. It differs. In addition, depending on the conditions, the color of the arsenic-containing layer may change from being almost the same as an electrodeposited layer made only of copper to becoming so protrusive that needles can break off, making it appear black. Although it can be varied in various ways, it is not necessary to allow the copper to grow to the point where it breaks off, and the purpose of the invention can be sufficiently achieved by keeping the copper color within the range of considerably different grayish brown to light thiokolate color. In addition to having both the first and second secondary electrodeposited layers, depending on the intended type of circuit board, the first layer or both the first and second layers may be added for the sole purpose of maintaining peel strength after long-term heating. It is also possible to omit this step, but in this case, it is desirable to produce an arsenic-containing layer with a light cyokolate color, which has the effect of improving the adhesion between the raw copper foil and the subsequent alloy layer. Significant. The copper foil that has come out of the third stage electrodeposition tank is washed on both sides with a sufficient amount of water in the washing tank 6 to prevent the arsenic solution from getting mixed into the reducing metal bath in the next stage, and then the washing nozzle 8 After washing both sides with (in the presence of an arsenic source, there is a risk of arsine gas generation in an acidic reducing atmosphere), the product enters the fourth stage electrodeposition tank. The fourth stage electrodeposition tank is used for drying the copper foil that follows, coating and drying the adhesive, and for the purpose of permeation alloying to form a ternary alloy, in a narrow sense, bronze, during lamination press bonding, etc. This is an electrodeposition bath for making a tin hybrid alloy coating layer. When discussing the process in the fourth stage electrodeposition bath, we will roughly divide the process into two methods based on the above two technical ideas, taking into account the compatibility of the copper foil with the corresponding laminate due to minute nuances in use. Conceivable. The first method is to electrodeposit an alloy layer to a thickness that can be visually determined, with the main aim of completely preventing copper migration. For example, as a bath composition, add K 4 P 2 O 7・3H 2 O 20 to 40 g/ to ZnSO 4 (as Zn) 0.8 to 2.0 g/Sn(SO 4 ) 2 (as Sn) 0.05 to 1.0 g/. , adjust the PH to within the range of 10.7-11.5. Incidentally, the objects and effects of the present invention are not hindered even if stannous sulfate is used in place of stannic sulfate, and zinc and tin are used as pyrophosphates. As for electrodeposition conditions, the bath temperature should preferably be high, 40 to 48℃.
Select a current density (corresponding cathode surface average) of 0.5 to 5.5 A/ dm2 and a passage time of 10 to 25 seconds. The second method is to apply a thin alloy layer as a rust prevention method (on both sides of the copper foil), and the bath composition is ZnSO 4 (as Zn) 0 to 2.5 g/SnSO 4 (as Sn) 0.1 to 2.5 g/ Add 15-50 g of K 4 P 2 O 7 to the solution to adjust the pH within the range of 10.5-11.7. The above-mentioned alternative use of zinc salt and tin salt is exactly the same as in the previous section. The bath temperature was 40° to 48°C as above, and the current density was
0.3 to 3 A/dm 2 on the copper foil treated side, and 0.3 to 3 A/dm 2 on the glossy side.
At 0.05 to 2 A/dm 2 and a passing time of 1 to 10 seconds, the specific surface area of both sides, the total amount of electricity given, and
The selection can be determined by the appearance of Zn-Sn infiltration into the copper surface in the subsequent process. Note that the anode 7 provided at the center of the fourth stage electrolytic cell shown in the drawings is used in the second method described above, that is, when applying a thin electrodeposition treatment to both sides for rust prevention. Rust prevention is essential for copper foil to prevent oxidation and discoloration during the subsequent essential processes such as adhesive coating and lamination to become a printed circuit board, as well as during the stock period between processes. Except for the second method in the fourth stage, conventional methods such as organic oxidation inhibitors (triazole-based, pyrazolone-based, imidazole-based, silane coupling-based) methods can be used, and preferably, the above-mentioned method Continuing from the 4th layer, when the superimposed rust prevention method using chromate is combined in the 5th stage treatment tank, a synergistic rust prevention effect between the residual Zn/Sn and chromate occurs, resulting in extremely effective rust prevention ability. I can do it. That is, after washing the copper foil treated in the fourth stage with water to sufficiently prevent impurities from being brought in,
Chromate rust prevention treatment is performed in the fifth stage treatment tank. As a specific example, in a method that involves only immersion in chromic anhydride, it is also possible to immerse the solution in a solution containing 0.3 to 3 g of chromic anhydride for 10 to 20 seconds; g/, counter electrode current density 0.02 to 0.2 A/dm 2 per side, passing time 5
Even if both sides of the copper foil are subjected to cathode treatment for ~15 seconds, the rust prevention effect of the fourth layer treatment can be achieved. The final process for copper foil is washing, draining, and drying, and the final washing water is preferably deionized water, especially water from which chlorine ions have been removed. Air knife 9 to save energy in the drying process
Alternatively, use the squeeze roll 5 and then dry it. As for the drying method, it is desirable to use hot air using purified air. In particular, it is better to dry the copper foil for at least 30 seconds at a temperature above 60°C and below 120°C, and in this process, the fourth layer of zinc and tin electrodeposited layer has already begun to undergo some penetrating alloying, making it easier to carry out subsequent storage and processing. Stable results are obtained. 10 is a heater, 11 is a cooling fan, and 12 is a winding roll. In carrying out the present invention, the present invention is not limited to the above-mentioned five-layer treatment, but an arsenic-containing copper layer may be electrodeposited directly on the surface of the copper foil or on a surface that has undergone one or more layers of copper layer electrodeposition treatment. and then at least one of zinc and tin.
Copper foil having multiple additional electrodeposited layers obtained by electrodepositing a coating layer consisting of a seed or an alloy of copper and at least one of the metals mentioned above, and which is obtained by electrodepositing a coating layer made of an alloy of copper and at least one of the above-mentioned metals, and as a result of being left in nature or heated, at least a copper layer is formed. If the arsenic-containing layer is interposed between the copper-based alloy layer and the arsenic-containing layer, the tightness between these various metal layers can be maintained and the object of the present invention can be achieved. Examples of the present invention will be shown below. Example 1 Width 1.1 m, nominal thickness 1 oz/in2 (35
Using a continuous surface treatment device that supplies copper foil with a thickness of .mu.) from a coil, the first to fifth stages of treatment were sequentially performed. The processing conditions are as follows. First stage bath composition CuSO 4 (as Cu) 14g / H 2 SO 4 65g / Bath temperature 26 ± 1°C, cathode surface average current density 12A/dm 2 , passed through the electrodeposition bath for about 13 seconds. send to Second stage bath composition CuSO 4 (as Cu) 50 g / H 2 SO 4 70 g / bath temperature 48 ± 1°C, cathode surface average current density 15 A / dm 2 , passed through the electrodeposition bath for about 17 seconds, and squeezed roll. Pass through and send to the third stage. In the third stage electrodeposition bath, three conditions shown in Table 1 were used.

【表】 第3段電着槽を出た銅箔は、軽いしぼりロール
を経たのち、シヤワー水洗、水洗槽、シヤワー水
洗を経て第4段電着槽に送つた。 比較例としてそれぞれ1−A,B,C処理した
まま第4段電着槽に入ることなくクロメート処理
されたものを1−A−(0),1−B−(0),1−
C−(0)とした。他のものは、同一条件で、第
4段層以降処理を行つた。 第4段浴組成条件としては、 ZnSO4(Znとして) 1.5g/ Sn(SO42(Snとして) 0.6g/ K4P2O7 34g/ 浴 温 46℃±1℃ でPHメーターで測定したところPH10・9であつ
た。 陰極電流密度平均 4.5A/dm2 で13秒間電着処理を行つた。その結果明らかにこ
の層が存在することが目視できる電着量(被覆直
後で推定0.05〜0.15μm)が得られる。この第4
段処理后水洗槽浸漬シヤワー水洗后、防錆を両面
に行つた。 第5段処理層浴組成 無水クロム酸 2.5g/ 浴 温 20℃±1℃ 4段処理面 電 流 0 光沢面 陰極電流密度 0.03A/dm2 でクロメート処理を行つた。 しぼりロールを通してのち、これを水洗ゾーン
に導入し、1段の市水による水洗后、両面を脱イ
オン水を用いて充分水洗したのち、しぼりロール
を用いて水切り后、切上げて乾燥ゾーンに送る。
水切り后の残留水分は60〜65℃の熱風エアナイフ
を用いて更に吹き切り、赤外線ヒーターと強制対
流乾燥ゾーンに於て雰囲気温度100℃のゾーンを
1分20秒通過せしめて完全乾燥したのち、緩風扇
で空冷し、コイルに巻取つた。 別に比較例として第3段の電着のみを省略した
ものを1−(0)とした。上記により得られた各
銅箔を市販のガラスエポキシ基板用含浸ガラスク
ロスFR−4級を用いて170℃−1時間、17Kg/cm2
のプレス圧着により銅張積層板を作成し、評価テ
ストを行つた。それぞれの初期剥離強度、260℃
半田浴20秒后剥離強度、初期剥離強度測定時の移
行(トランスフア)、エツチング后ステイン状況
及び、153℃−56日間の各2週間毎の剥離強度の
変化を第2表に示した。 通常銅張積層板の規格にごく一般的に求められ
る性能は、本発明の段階を省略したものでも、ほ
ぼ同様の水準に到達せしめ得るが、長期加熱后の
剥離強度残存は、本発明が他の追随を許さないこ
とを示している。 実施例 2 第4段電着条件のみを下記に示す浴組成及び電
着条件とした他は実施例1と同一試料同一条件で
処理銅箔を得た。すなわち第4段の浴組成は ZnSO4(Znとして) 1.0g/ Sn(SO42(Snとして) 0.9g/ K4P2O7 21g/ で浴温42℃でPH11.2に調整した。この
[Table] The copper foil that came out of the third-stage electrodeposition tank was passed through a light squeezing roll, and then sent to the fourth-stage electrodeposition tank after passing through a shower wash, a water washing tank, and a shower wash. As comparative examples, 1-A-(0), 1-B-(0), 1-
It was set as C-(0). The others were treated under the same conditions from the fourth layer onwards. The fourth stage bath composition conditions are: ZnSO 4 (as Zn) 1.5g / Sn (SO 4 ) 2 (as Sn) 0.6g / K 4 P 2 O 7 34g / bath temperature 46℃±1℃ using a PH meter. When measured, the pH was 10.9. Electrodeposition was carried out at an average cathode current density of 4.5 A/dm 2 for 13 seconds. As a result, an amount of electrodeposition (estimated at 0.05 to 0.15 μm immediately after coating) is obtained that clearly indicates the presence of this layer. This fourth
After stage treatment, after rinsing with immersion shower in the rinsing tank, rust prevention was applied to both sides. 5th stage treatment layer bath composition Chromic anhydride 2.5g/bath temperature 20°C±1°C 4th stage treated surface Current 0 Glossy surface Chromate treatment was carried out at a cathode current density of 0.03A/ dm2 . After passing through a squeeze roll, it is introduced into a washing zone, and after one stage of washing with city water, both sides are thoroughly washed with deionized water, drained using a squeeze roll, and then cut up and sent to a drying zone.
After draining, the residual moisture is further blown off using a hot air knife at 60 to 65°C, and the air is completely dried by passing through an infrared heater and forced convection drying zone for 1 minute and 20 seconds at an ambient temperature of 100°C. It was cooled with a fan and wound into a coil. Separately, as a comparative example, one in which only the third stage of electrodeposition was omitted was designated as 1-(0). Each of the copper foils obtained above was heated at 170°C for 1 hour at 17Kg/cm 2 using a commercially available impregnated glass cloth for glass epoxy substrates, grade FR-4.
Copper-clad laminates were created by press crimping, and evaluation tests were conducted. Initial peel strength of each, 260℃
Table 2 shows the peel strength after 20 seconds of soldering bath, the transfer at the time of initial peel strength measurement, the stain status after etching, and the change in peel strength every two weeks at 153° C. for 56 days. The performance that is generally required by the standard for copper-clad laminates can be achieved at almost the same level even if the steps of the present invention are omitted, but the peel strength remaining after long-term heating is different from that of the present invention. This shows that the company is unrivaled. Example 2 A treated copper foil was obtained from the same sample as in Example 1 under the same conditions, except that only the fourth stage electrodeposition conditions were the bath composition and electrodeposition conditions shown below. That is, the bath composition in the fourth stage was 1.0 g of ZnSO 4 (as Zn) / 0.9 g of Sn (SO 4 ) 2 (as Sn) / 21 g of K 4 P 2 O 7 / adjusted to pH 11.2 at a bath temperature of 42°C. . this

【表】【table】

【表】 浴に第3段后水洗(シヤワー及槽浸漬)した銅箔
を導入して、電流密度(陰極面平均)1.1A/d
m2/片面 対極通過時間約3秒で、処理面及び光
沢面に防錆Sn−Zn層電着を行つた。かくして得
られた試料を第3段処理条件に対応してそれぞれ
2−A,2−B,2−Cとした。別に比較例とし
て第3段電着処理のみを省略して得られた試料を
2−(0)とした。 上記の方法で得られた各銅箔を実施例1と同一
の積層基材に積層し同様のテストを行つた。その
結果を第3表に示す。 第3表に明らかな通り本発明の効果は第4層の
厚さに依存するものでなく、第3層の含砒銅層と
第4層の被覆層との相乗作用によるものである。 実施例 3 電着銅箔(厚さ35μ平均巾1.1m)をコイルか
ら巻き出し、給電ロールを通して通電后酸洗し、
その粗面(マツト面)側を陰極とし、次の浴組成
で電着を行つた。 CuSO4(Cuとして) 9g/ H2SO4 19g/ 含砒添加液(Asとして) 0.3g/ 浴 温 18℃ にて、対陰極電流密度 4.3A/dm2 で13秒間対極通過せしめた。この銅箔をしぼりロ
ールを通したのち充分にシヤワー水洗しAsのト
レースもなくしてから、錫−亜鉛合金電着槽へ通
した。 第4層被覆層用電着浴は ZnSO4(Znとして) 2.2g/ Sn(SO42(Snとして) 0.9g/ 浴 温 45±2℃ で、対陰極電流密度 1.3A/dm2 対極通過時間約7秒にて両面に電着せしめ防錆層
を兼用せしめた。 次いで水洗槽、水洗シヤワーにより余剰のZn
塩等を流し去り、(Znの溶出中は電着金属錫は溶
失しない)エアナイフで水切り后、通常の赤外線
ヒーターで雰囲気110℃の強制対流乾燥ゾーンを
1分30秒通過せしめ、冷風冷却后コイルに巻取つ
た。この銅箔を3−Aとする。3−Bは、水洗槽
に2.5g/の無水クロム酸を添加して、更にク
ロメート防錆を重畳せしめたものである。又、比
較試料(3)は、含砒銅層電着処理のみで被覆層を省
略して直ちに、銅の変色防止剤として著名なベン
ゾトリアゾール1%溶液に15秒間浸漬后水洗乾燥
したものである。 比較試料(4)は同(3)のトリアゾール抑錆剤の代り
に上記3−Bに用いたクロメート防錆を施したも
のである。かくして得られた銅箔にそれぞれ最も
適合する市販のM社及びE社の接着剤を塗工乾燥
して接着剤付銅箔とした後、それぞれFR−2な
らびにFR−3用プリプレグにより積層板として
実施例1と類似の試験を行いその結果を第4表に
示す。 第4表に明らかな通り、本発明は未処理の電解
銅箔表面に直接適用しても充分その効果を有する
ものである。
[Table] Introducing a copper foil that has been washed after the third stage (shower and soaking) into the bath, the current density (cathode surface average) is 1.1A/d.
m 2 /one side A rust-preventing Sn-Zn layer was electrodeposited on the treated and glossy surfaces in a counter electrode passage time of approximately 3 seconds. The samples thus obtained were designated as 2-A, 2-B, and 2-C, respectively, corresponding to the third stage treatment conditions. Separately, as a comparative example, a sample obtained by omitting only the third stage electrodeposition treatment was designated as 2-(0). Each copper foil obtained by the above method was laminated on the same laminated base material as in Example 1, and the same test was conducted. The results are shown in Table 3. As is clear from Table 3, the effects of the present invention do not depend on the thickness of the fourth layer, but are due to the synergistic effect of the third arsenic-containing layer and the fourth coating layer. Example 3 Electrodeposited copper foil (thickness: 35μ, average width: 1.1m) was unwound from a coil, passed through a power supply roll, and then pickled after being energized.
Using the rough surface (matte surface) as a cathode, electrodeposition was performed using the following bath composition. 9 g of CuSO 4 (as Cu) / 19 g of H 2 SO 4 / 0.3 g of arsenic additive solution (as As) was passed through the counter electrode for 13 seconds at a bath temperature of 18° C. and an anticathode current density of 4.3 A/dm 2 . This copper foil was passed through a squeezing roll, thoroughly rinsed with water to remove traces of As, and then passed through a tin-zinc alloy electrodeposition bath. The electrodeposition bath for the fourth coating layer contained ZnSO 4 (as Zn) 2.2g/Sn(SO 4 ) 2 (as Sn) 0.9g/bath temperature 45±2℃, anticathode current density 1.3A/dm 2 counter electrode It was electrodeposited on both sides in a passing time of about 7 seconds to serve as a rust preventive layer. Next, excess Zn is removed using a washing tank and a washing shower.
After washing away salt, etc. (electrodeposited metal tin does not dissolve while eluting Zn), drain with an air knife, pass through a forced convection drying zone at 110℃ using a regular infrared heater for 1 minute and 30 seconds, and cool with cold air. I wound it into a coil. This copper foil is designated as 3-A. 3-B is one in which 2.5 g/anhydrous chromic acid is added to the washing tank, and chromate rust prevention is further applied. Comparative sample (3) was prepared by simply electrodepositing the arsenic-containing copper layer, omitting the coating layer, and immediately immersing it in a 1% solution of benzotriazole, which is well-known as a discoloration inhibitor for copper, for 15 seconds, washing with water, and drying. . Comparative sample (4) was treated with the same chromate rust inhibitor used in 3-B instead of the triazole rust inhibitor in sample (3). The copper foils thus obtained were coated with commercially available adhesives from companies M and E that were most suitable, respectively, and dried to form adhesive-coated copper foils, which were then laminated with FR-2 and FR-3 prepregs, respectively. Tests similar to those in Example 1 were conducted and the results are shown in Table 4. As is clear from Table 4, the present invention has sufficient effects even when applied directly to the surface of untreated electrolytic copper foil.

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の1実施例の説明図である。 図面中、1は銅箔、2は給電コンタクトロー
ル、4,7は陽極、は第1段電着槽、は第2
段電着槽、は第3段電着槽、は第4段電着
槽、は第5段処理槽である。
The drawings are explanatory diagrams of one embodiment of the present invention. In the drawing, 1 is a copper foil, 2 is a power supply contact roll, 4 and 7 are anodes, 1 is a first stage electrodeposition bath, and 2 is a second electrodeposition tank.
The stage electrodeposition tank is a third stage electrodeposition tank, is a fourth stage electrodeposition tank, and is a fifth stage treatment tank.

Claims (1)

【特許請求の範囲】 1 銅箔の被覆されるべき面に電着された含砒銅
層の上に亜鉛、錫の少くとも1種あるいは上記金
属の少くとも1種と銅との合金よりなる被覆層を
電着してなる多重付加的電着層の各層を構成する
金属が相互に浸透した組成を有する印刷回路用銅
箔。 2 上記被覆層が10〜100重量%の錫と残部が亜
鉛よりなる特許請求の範囲第1項に記載する印刷
回路用銅箔。 3 銅箔の被処理面を微細な粒状銅の電着面上に
薄い平滑銅電着層を重畳被覆してなる二段処理面
とする特許請求の範囲第1項又は第2項に記載す
る印刷回路用銅箔。 4 最外層にクロメート防錆処理層を有する特許
請求の範囲第1項、第2項又は第3項に記載する
印刷回路用銅箔。 5 銅箔の被覆されるべき面に微量の砒素を含む
電解液を用いて含砒銅層を電着し、次いで亜鉛、
錫の少くとも1種あるいは上記金属の少くとも1
種と銅と合金よりなる被覆層を電着した後、該被
覆層と上記含砒銅層を構成する金属を相互に浸透
せしめる印刷回路用銅箔の製造方法。 6 上記被覆層を上記含砒銅層中に浸透せしめる
にあたつて100℃以上に加熱する特許請求の範囲
第5項に記載する印刷回路用銅箔の製造方法。 7 被覆層を電着した後クロメート又は有機系酸
化抑制剤による防錆処理をほどこす特許請求の範
囲第5項又は第6項に記載する印刷回路用銅箔の
製造方法。
[Scope of Claims] 1. On the arsenic-containing copper layer electrodeposited on the surface of the copper foil to be coated, at least one of zinc, tin, or an alloy of at least one of the above metals and copper is formed. A copper foil for printed circuits having a composition in which metals constituting each layer of multiple additional electrodeposited layers formed by electrodepositing a covering layer interpenetrate with each other. 2. The copper foil for printed circuits according to claim 1, wherein the coating layer comprises 10 to 100% by weight of tin and the balance zinc. 3. The treated surface of the copper foil is a two-stage treated surface formed by superimposing and coating a thin smooth copper electrodeposited layer on the electrodeposited surface of fine granular copper, as described in claim 1 or 2. Copper foil for printed circuits. 4. A copper foil for printed circuits as set forth in claim 1, 2, or 3, which has a chromate antirust treatment layer as the outermost layer. 5 Electrodeposit an arsenic-containing copper layer on the surface of the copper foil to be coated using an electrolytic solution containing a trace amount of arsenic, and then apply zinc,
At least one type of tin or at least one of the above metals
A method for producing copper foil for printed circuits, which comprises electrodepositing a coating layer made of seeds, copper, and an alloy, and then allowing the coating layer and the metal constituting the arsenic-containing layer to penetrate into each other. 6. The method for manufacturing a copper foil for a printed circuit according to claim 5, wherein the coating layer is heated to 100° C. or higher to infiltrate the arsenic-containing layer. 7. The method for manufacturing a copper foil for printed circuits as set forth in claim 5 or 6, wherein after electrodepositing the coating layer, antirust treatment is performed using chromate or an organic oxidation inhibitor.
JP8777878A 1978-07-20 1978-07-20 Printed circut copper foil and method of manufacturing same Granted JPS5515216A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP8777878A JPS5515216A (en) 1978-07-20 1978-07-20 Printed circut copper foil and method of manufacturing same
DE2928942A DE2928942C2 (en) 1978-07-20 1979-07-18 Copper foil for printed circuits and processes for their manufacture
SE7906252A SE435779B (en) 1978-07-20 1979-07-20 COATED COPPER FILM COMPREHENSIVE ARSENIC CONTENT LAYER AND SET TO MAKE FILM
NL7905675A NL7905675A (en) 1978-07-20 1979-07-20 COPPER FOIL FOR PRINTED CIRCUITS AND METHOD OF MANUFACTURING THESE.
GB7925492A GB2030176B (en) 1978-07-20 1979-07-20 Copper foil suitable for use in making printed circuits
IE1383/79A IE48597B1 (en) 1978-07-20 1979-08-08 Copper foil suitable for use in making printed circuits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8777878A JPS5515216A (en) 1978-07-20 1978-07-20 Printed circut copper foil and method of manufacturing same

Publications (2)

Publication Number Publication Date
JPS5515216A JPS5515216A (en) 1980-02-02
JPS6152240B2 true JPS6152240B2 (en) 1986-11-12

Family

ID=13924430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8777878A Granted JPS5515216A (en) 1978-07-20 1978-07-20 Printed circut copper foil and method of manufacturing same

Country Status (6)

Country Link
JP (1) JPS5515216A (en)
DE (1) DE2928942C2 (en)
GB (1) GB2030176B (en)
IE (1) IE48597B1 (en)
NL (1) NL7905675A (en)
SE (1) SE435779B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2716329A1 (en) * 1994-02-15 1995-08-18 Mitsui Mining & Smelting Co Copper foil for PCB and its process
CN100344445C (en) * 2003-04-30 2007-10-24 美格株式会社 Bonding layer for bonding resin on copper surface
CN100363175C (en) * 2003-04-30 2008-01-23 美格株式会社 Bonding layer forming solution, method of producing copper-to-resin bonding layer using the solution, and layered product obtained thereby

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045349A (en) * 1983-08-23 1985-03-11 馬渕 健一 Beating tool driving circuit
US4549950A (en) * 1984-11-13 1985-10-29 Olin Corporation Systems for producing electroplated and/or treated metal foil
US4568431A (en) * 1984-11-13 1986-02-04 Olin Corporation Process for producing electroplated and/or treated metal foil
US4532014A (en) * 1984-11-13 1985-07-30 Olin Corporation Laser alignment system
US4552627A (en) * 1984-11-13 1985-11-12 Olin Corporation Preparation for improving the adhesion properties of metal foils
US4549941A (en) * 1984-11-13 1985-10-29 Olin Corporation Electrochemical surface preparation for improving the adhesive properties of metallic surfaces
US4551210A (en) * 1984-11-13 1985-11-05 Olin Corporation Dendritic treatment of metallic surfaces for improving adhesive bonding
US4647315A (en) * 1985-07-01 1987-03-03 Olin Corporation Copper stainproofing technique
US5057193A (en) * 1989-04-05 1991-10-15 Olin Corporation Anti-tarnish treatment of metal foil
US4961828A (en) * 1989-04-05 1990-10-09 Olin Corporation Treatment of metal foil
US4952285A (en) * 1989-04-14 1990-08-28 Olin Corporation Anti-tarnish treatment of metal foil
US5098796A (en) * 1989-10-13 1992-03-24 Olin Corporation Chromium-zinc anti-tarnish coating on copper foil
US5250363A (en) * 1989-10-13 1993-10-05 Olin Corporation Chromium-zinc anti-tarnish coating for copper foil having a dark color
US5230932A (en) * 1989-10-13 1993-07-27 Olin Corporation Chromium-zinc anti-tarnish coating for copper foil
US5022968A (en) * 1990-09-20 1991-06-11 Olin Corporation Method and composition for depositing a chromium-zinc anti-tarnish coating on copper foil
US5071520A (en) * 1989-10-30 1991-12-10 Olin Corporation Method of treating metal foil to improve peel strength
US5164235A (en) * 1990-03-06 1992-11-17 Olin Corporation Anti-tarnish treatment of metal foil
CA2086512A1 (en) * 1990-07-02 1992-01-03 Chung-Yao Chao Rinsing of copper foil after anti-tarnish treatment
US6861159B2 (en) * 1992-03-27 2005-03-01 The Louis Berkman Company Corrosion-resistant coated copper and method for making the same
US5332486A (en) * 1993-01-29 1994-07-26 Gould Electronics Inc. Anti-oxidant coatings for copper foils
KR20000011746A (en) * 1998-07-17 2000-02-25 미야무라 심뻬이 Method of drying copper foil and copper foil drying apparatus
JP3142259B2 (en) * 1998-11-30 2001-03-07 三井金属鉱業株式会社 Copper foil for printed wiring board excellent in chemical resistance and heat resistance and method for producing the same
US6342308B1 (en) * 1999-09-29 2002-01-29 Yates Foil Usa, Inc. Copper foil bonding treatment with improved bond strength and resistance to undercutting
US6579568B2 (en) 1999-11-29 2003-06-17 Mitsui Mining & Smelting Co., Ltd. Copper foil for printed wiring board having excellent chemical resistance and heat resistance
JP3306404B2 (en) * 2000-01-28 2002-07-24 三井金属鉱業株式会社 Method for producing surface-treated copper foil and copper-clad laminate using surface-treated copper foil obtained by the method
JP3670185B2 (en) * 2000-01-28 2005-07-13 三井金属鉱業株式会社 Method for producing surface-treated copper foil for printed wiring board
JP3661763B2 (en) * 2000-01-28 2005-06-22 三井金属鉱業株式会社 Method for producing surface-treated copper foil for printed wiring board
JP3670186B2 (en) * 2000-01-28 2005-07-13 三井金属鉱業株式会社 Method for producing surface-treated copper foil for printed wiring board
JP5406278B2 (en) * 2009-03-27 2014-02-05 Jx日鉱日石金属株式会社 Copper foil for printed wiring board and method for producing the same
JP2011162860A (en) * 2010-02-12 2011-08-25 Furukawa Electric Co Ltd:The Surface-roughened copper foil, method of producing the same and copper-clad laminate plate
EP2644753B1 (en) * 2010-11-22 2016-05-11 Mitsui Mining & Smelting Co., Ltd. Surface-treated copper foil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845466A (en) * 1971-10-08 1973-06-29
JPS4916863A (en) * 1972-06-12 1974-02-14
JPS4925539A (en) * 1972-07-04 1974-03-07
JPS5274537A (en) * 1975-12-17 1977-06-22 Mitsui Anakonda Dohaku Kk Surface treating method of copper foil

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2511189C2 (en) * 1975-03-14 1976-10-21 Heinz Bungard METHOD FOR MANUFACTURING SURFACE-CLAD BASE MATERIAL FOR MANUFACTURING PRINTED CIRCUITS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845466A (en) * 1971-10-08 1973-06-29
JPS4916863A (en) * 1972-06-12 1974-02-14
JPS4925539A (en) * 1972-07-04 1974-03-07
JPS5274537A (en) * 1975-12-17 1977-06-22 Mitsui Anakonda Dohaku Kk Surface treating method of copper foil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2716329A1 (en) * 1994-02-15 1995-08-18 Mitsui Mining & Smelting Co Copper foil for PCB and its process
CN100344445C (en) * 2003-04-30 2007-10-24 美格株式会社 Bonding layer for bonding resin on copper surface
CN100363175C (en) * 2003-04-30 2008-01-23 美格株式会社 Bonding layer forming solution, method of producing copper-to-resin bonding layer using the solution, and layered product obtained thereby

Also Published As

Publication number Publication date
NL7905675A (en) 1980-01-22
DE2928942C2 (en) 1982-04-08
JPS5515216A (en) 1980-02-02
GB2030176A (en) 1980-04-02
GB2030176B (en) 1982-10-20
SE7906252L (en) 1980-01-21
DE2928942A1 (en) 1980-02-07
IE791383L (en) 1980-01-20
SE435779B (en) 1984-10-15
IE48597B1 (en) 1985-03-20

Similar Documents

Publication Publication Date Title
JPS6152240B2 (en)
KR100547513B1 (en) Electrolyte copper foil having carrier foil,manufacturing method thereof, and layered plate using the electrolyte copper foil having carrier foil
TW442395B (en) Composite copper foil, process for preparing the same, and copper-clad laminate and printed wiring board using the same
US7771841B2 (en) Ultrathin copper foil with carrier and printed circuit board using same
US5356528A (en) Copper foil for printed circuits and method of producing same
JPS5856758B2 (en) Douhakuhiyoumenshiyorihouhou
JPH05235542A (en) Copper foil for printed circuit board and manufacture thereof
US20010014408A1 (en) Surface -treated copper foil, method of producing the surface-treated copper foil, and copper-clad laminate employing the surface-treated copper foil
JPH0447038B2 (en)
US5447619A (en) Copper foil for the manufacture of printed circuit boards and method of producing the same
US6585877B2 (en) Method of producing a surface-treated copper foil
US7037597B2 (en) Copper foil for printed-wiring board
US6524723B2 (en) Copper foil for printed circuit boards and its surface treatment method
JP2517503B2 (en) Surface treatment method for copper foil for printed circuits
JPS6133908B2 (en)
EP0839440B1 (en) Copper foil for the manufacture of printed circuits and method of producing same
JPH04284690A (en) Copper foil for inner layer circuit of multilayer printed circuit board and manufacture thereof
JPH0732307B2 (en) Surface treatment method for copper foil for printed circuits
JP2000501142A (en) Copper foil for printed circuit manufacturing and its manufacturing method.
JP2739507B2 (en) Copper foil electrolytic treatment method
JPH04338694A (en) Copper foil for printed circuit and manufacture thereof
JP3406743B2 (en) Copper foil for printed wiring board and surface treatment method thereof
JPH05299834A (en) Copper foil for printed wiring board
JPH05275817A (en) Manufacture of copper foil
JPS6133907B2 (en)