【発明の詳細な説明】
(産業上の利用分野)
本発明は鋼帯の溶接接続方法に係わり、鋼帯の
板厚が薄くても溶接が容易でかつすぐれた溶接継
手性能が得られる鋼帯のレーザー溶接方法に関す
る。
珪素鋼板、冷延鋼板等の鋼板の製造ライン例え
ば酸洗ライン、冷間圧延ライン、焼鈍ライン等に
おいては、先行の鋼帯と後行の鋼帯は溶接接続さ
れ連続的に通板され処理される。
各ラインでの処理を円滑に行なうには溶接部に
起因する板破断等のトラブルを発生させないこと
が重要である。また例えば鋼帯がコイル状に捲か
れたとき、溶接部が他に押圧力を与え押し疵等の
欠陥を生じせしめないようにする必要もある。
(従来技術)
従来の鋼帯の溶接方法としては、例えばTIG溶
接がある。これはタングステン電極と鋼帯との間
にアークを発生させて溶接接続するものであり、
入熱が比較的大きいため熱延鋼帯の如く板厚の厚
いものには問題は少ないが、一方低入熱コントロ
ールが難しく、薄い鋼帯では溶け落ちが発生し、
溶接接続不良となつたり、あるいは溶接はできて
も熱影響部大で曲げ力が作用したとき折れが発生
しやすい。また溶接部厚みも大となり、後手入に
手間を要する。さらに溶接前の鋼帯の突合せ溶接
該当部は、機械的な剪断精度をよくし、かつ精度
よく突合せる必要があり、この点の作業に熟練と
時間を要する。
この他に例えば特開昭54−32154号にみられる
ようにレーザー溶接がある。レーザー溶接はレー
ザーの高エネルギー密度という特性を活用して鋼
帯を低入熱で溶接接続するもので、CO2レーザー
溶接法が一般的である。前記公開公報によると溶
接部の余盛なしに溶接接続できるという利点があ
るが、一方、レーザービームは高エネルギー密度
を得るため、非常に小さく絞り込んだ状態で鋼帯
の突合せ部に投射されるので、この突合せ面は隙
間(ギヤツプ)が生じないように剪断と突合せ精
度は厳しく要求され、この点の作業性の問題が依
然としてある。この剪断と突合せ精度の緩和を図
るために、レーザービームの焦点を突合せ面から
ずらすと、エネルギー密度が減少し溶接不良とな
る。
このようなレーザー溶接の問題の対策として、
例えば特開昭57−106487号に提案されている如
く、突合せ溶接を行なうにあたり、突合せ部の開
先間隙に鉄粉末の如き強磁性体粉末を充填し、次
いで磁場を印加しレーザー溶接する方法がある。
これによると溶接不良は減少するであろうが、溶
接作業が繁雑になり、装置的にも複雑化する。
(発明の目的)
本発明は前記実情に鑑みてなされたもので、鋼
帯の突合せ溶接該当部の剪断精度、突合せ精度が
緩和され、溶接が容易でかつ鋼帯は薄物であつて
もすぐれた溶接継手性能が得られ、例えば冷延破
断等が少ない鋼帯のレーザー溶接方法を目的とす
る。
(発明の構成・作用)
本発明者達はレーザービームによる鋼帯の突合
せ溶接について詳細な検討を行ない、前記目的を
達成するすぐれたレーザー溶接方法を発明した。
以下に詳細に述べる。
本発明者達はレーザービームによる鋼帯の突合
せ溶接について検討した。これを鋼帯の突合せ溶
接断面を説明の便宜上大して示す第1図を参照し
て述べる。第1図に於いてt=板厚、d=突合わ
せギヤツプ、l=溶融ゾーン(レーザービーム投
射範囲)である。いま、dのギヤツプを持つて突
き合わされた鋼帯Sを溶融ゾーンlの範囲で溶融
し、突合わせ溶接した後のビード断面形状が破線
の状態になつたとする。これを以後の説明を簡単
にする為に斜線を施こした形状になつたと仮定す
る。この場合、下記の式が成り立つ。
d×(t−2Δt)=(l−d)×2Δt
………(1)
ここで、2Δtは母材板厚と溶接後のビードの
板厚の差である。上記(1)式を溶融ゾーンlについ
て解くと
l=d×t/2Δt ………(2)
となる。いま、板厚tがt≦0.30mmの薄い鋼帯を
溶接する場合を想定し、溶接後の継手性能(曲げ
強度、引張強度等)が劣化しない片側の前記板厚
差Δtの値を経験上1/10tとすれば、(2)式より
l=5dの式が導かれる。更に溶接該当部の剪断
精度、突合わせ精度の緩和を考慮し突合せギヤツ
プdを、d=1/2tとすれば、溶融ゾーンlはl
=5/2tが必要となる。ちなみに板厚t=0.30mm
の鋼帯であれば、溶融ゾーンlはl=0.75mm必要
である。
ところが、現状のCO2レーザー発振器ではその
波長特性・レンズ焦点距離・レンズ前ビーム径等
から集光スポツト径φはφ0.20mm以下が一般的で
あり、そのゆえに溶融ゾーンlに相当するφ0.75
mmの集光スポツト径を得る為に、焦点位置よりレ
ンズ側或は反レンズ側の位置に溶接面をもつてく
る、いわゆる面溶接法をとることになる。
しかしこの方法を採用した場合、溶接面でレン
ズの焦点がズレ(Defocus)ているので溶接面に
於けるレーザービームのエネルギー密度が低下す
ることになる。そこでレーザーの発振出力パワー
を上げるか、溶接速度を低下させ鋼帯を溶融に至
らしめなければならないが、これには次の問題が
生じることをつきとめた。即ち、CO2レーザーは
波長が10.6μmである為、溶融する前の鋼帯への
吸収率が非常に小(約10%)さく、なかなか溶融
に至らしめられないこと、又溶融に至らしめた後
に於いては、溶融状態の金属に対するビームの吸
収率が100%に近い値になることから、溶融する
前に投入していたパワーでは大きすぎ(溶融する
前の溶接速度では遅すぎ、結果としてパワー過大
の状態となる)溶融部が溶け落ち、溶接欠陥を生
じることになる。これは特に板厚の薄い例えば
0.40mm未満で生じる。
そこで本発明者達は溶融前の鋼帯に対するビー
ム吸収率向上について検討した。その結果、鋼帯
の突合わせ部のレーザービームを投射する表面に
研削加工を施こし、表面粗さ(表面の凹凸度)を
10μmから板厚の10%以下の粗さとすることによ
り、何も施工しない鋼帯に対しレーザービームの
吸収率を向上でき、本発明の目的が達成されるこ
とを種々の実験より見出した。
本発明はこの知見に基づきなされたもので、以
下に詳細に説明する。
第2図は本発明に使用した鋼帯表面の研削機を
備えたレーザー溶接機の略図である。ここで1は
研削機で例えば鋼帯Sの巾方向に細長いグライン
ダー砥石であり、モーター2で駆動され、回転数
を自由に制御できる機構となつている。グライン
ダー砥石1は、通常鋼帯Sの突合わせ部S−1,
S−2から鋼帯の通板方向或は反通板方向にシフ
トした位置(図中ではイの位置)にあり、突合せ
部S−1,S−2の表面を研削する場合に、移動
装置、例えば油圧シリンダー3により突合わせ部
S−1,S−2の上(図中では破線で示すロの位
置)に移動し、更に上下することにより突合わせ
部S−1,S−2の表面を研削する機構となつて
いる。油圧シリンダー3に代えてエアシリンダ
ー、又は手動移動、ウオームによる移動等でも良
い。
鋼帯Sはシヤー4によつて切断され、その後突
合わされ、クランプ5によつてクランプされる。
この様にして形成された突合わせ部S−1,S−
2の表面を前記グラインダー砥石1により研削加
工した後、該突合わせ部S−1,S−2の上をレ
ーザー溶接機の加工ヘツド8が板巾方向に移動
し、移動と共にレーザービーム発振器6より発振
されたレーザービームがビーム搬送ダクト7を通
り、加工ヘツド8より鋼帯Sの突合わせ部S−
1,S−2に投射され溶接がなされる。ここでビ
ーム搬送ダクト7は加工ヘツド8の移動に合わせ
て板巾方向に伸縮できる機構となつている。鋼帯
Sはシヤー4によつて切断され、その後突合わさ
れクランプ5によつてクランプされる。この様に
して形成された突合わせ部S−1,S−2の上
を、加工ヘツド8が板巾方向に移動し、移動と共
にレーザービームが加工ヘツド8より投射され鋼
帯Sの溶接がなされる。
本発明者達は、前記グラインダー砥石1を使用
して砥石の回転数、押付力、押付時間、粒度を変
化させ、表面粗度の異なる鋼帯を製作し、その
各々の鋼帯に前記レーザー溶接機を使用して、次
の溶接条件にてCO2ビームを投射し、得られた溶
接継手の破壊に至るまでの繰り返し曲げ回数を調
査した。なお供試材は板厚0.40mmの冷延鋼板であ
り、溶接条件はレーザー出力パワー600W、溶接
速度4mpm、突合わせ部のギヤツプ60〜70μmで
行ない、繰り返し曲げ試験は曲げ曲率R=5mm、
90゜曲げにて行なつた。その結果、砥石の回転
数、押付力、押付時間、粒度を制御して鋼帯の突
合わせ部S−1,S−2の表面粗さを所定の粗さ
とすると、レーザービームの吸収率が向上し第3
図に示すように継手性能の優れた溶接継手が得ら
れることを見出した。表面粗さとしては、破壊に
至る迄の繰り返し曲げ回数を5回以上確保し、そ
の後の冷延或はライン通板等においてトラブルを
回避する為に10μm以上とする必要がある。
一方、その表面粗さが余りも粗となると溶接継
手強度が劣化するので、被溶接鋼帯の板厚の10%
以下例えば板厚0.40mm材では40μm以下、0.30mm
材では30μm以下とする。この第3図において
は、供試材の板厚は前述のように0.40mmである
が、他の板厚の場合にもこの図と同様な傾向が得
られている。
前述の説明では、研削をグラインダー砥石を回
転させる装置にて鋼帯の突合わせ部の表面粗さ加
工を施こしたが、勿論これに限ることなくハンド
グラインダー、或はベルトサンダー、ヤスリの様
な一般研削用機器であれば何でも良い。
(実施例)
以下に実施例を示す。
板厚0.200〜0.400mmの冷延鋼板を供試材とし
て、その突合わせ部の表面粗さを第1表に示すよ
うにし、次いでCO2レーザーにより突合わせ溶接
した。溶接条件は次の通りである。
レーザービーム出力:600W
レーザービームの焦点位置:板表面上2mm
溶接速度:6m/min
突合わせ部のギヤツプ:60〜70μm
溶接の後、溶接継手の破壊に至るまでの繰り返
し曲げ回数を調査した。なお曲げ曲率Rは5mmで
90゜曲げにて行なつた。その結果は第1表にあわ
せて示すが、本発明により表面粗さとし、次いで
レーザー溶接したものは突合せギヤツプが60〜70
μmと大きいにもかかわらず、破壊に至るまでの
繰返し曲げ回数が多く比較法にくらべすぐれた溶
接継手が得られることがわかる。
【表】[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for welding and connecting steel strips, and the present invention relates to a method for welding and connecting steel strips, which enables easy welding and provides excellent welded joint performance even if the steel strip is thin. This invention relates to a laser welding method. In manufacturing lines for steel plates such as silicon steel plates and cold-rolled steel plates, such as pickling lines, cold rolling lines, annealing lines, etc., the leading steel strip and the trailing steel strip are connected by welding and are continuously threaded and processed. Ru. In order to perform processing smoothly on each line, it is important to avoid problems such as plate breakage due to welded parts. Furthermore, when a steel strip is wound into a coil, for example, it is necessary to prevent the welded portion from applying pressing force to other parts and causing defects such as pressing flaws. (Prior Art) A conventional method for welding steel strips is, for example, TIG welding. This creates an arc between a tungsten electrode and a steel strip to make a welded connection.
Because the heat input is relatively large, there are few problems with thick plates such as hot-rolled steel strips, but on the other hand, it is difficult to control low heat input, and thin steel strips may burn through.
This may result in a poor weld connection, or even if welding is successful, the heat affected zone is large and bending is likely to occur when bending force is applied. In addition, the thickness of the welded portion becomes large, and subsequent maintenance is labor-intensive. Furthermore, the butt-welded portions of the steel strips before welding must have good mechanical shearing accuracy and butt-welding with high precision, and this work requires skill and time. In addition to this, there is laser welding, as seen, for example, in Japanese Patent Application Laid-Open No. 54-32154. Laser welding utilizes the high energy density of the laser to weld and connect steel strips with low heat input, and CO 2 laser welding is common. According to the above-mentioned publication, there is an advantage that the weld connection can be made without excess welding, but on the other hand, in order to obtain a high energy density, the laser beam is focused to a very small size and is projected onto the butt part of the steel strip. This abutment surface requires strict shearing and butt precision so that no gaps occur, and there is still a problem with workability in this respect. If the focus of the laser beam is shifted from the butt surface in order to alleviate this shearing and the butt accuracy, the energy density will decrease, resulting in poor welding. As a countermeasure for such laser welding problems,
For example, as proposed in JP-A-57-106487, when performing butt welding, there is a method in which ferromagnetic powder such as iron powder is filled into the groove gap of the butt part, and then a magnetic field is applied and laser welding is performed. be.
This will reduce the number of welding defects, but the welding work will become more complicated and the equipment will also become more complicated. (Object of the Invention) The present invention has been made in view of the above-mentioned circumstances, and it is possible to ease the shearing precision and butt precision of the butt welding part of the steel strip, to facilitate welding, and to achieve excellent results even when the steel strip is thin. The object of the present invention is to provide a laser welding method for steel strips that provides good welded joint performance and reduces, for example, cold rolling fractures. (Structure and Effect of the Invention) The present inventors conducted a detailed study on butt welding of steel strips using a laser beam, and invented an excellent laser welding method that achieves the above object. This will be described in detail below. The present inventors investigated butt welding of steel strips using a laser beam. This will be described with reference to FIG. 1, which shows a butt-welded cross section of a steel strip in an enlarged manner for convenience of explanation. In FIG. 1, t=plate thickness, d=butt gap, and l=melting zone (laser beam projection range). Now, assume that the steel strips S, which are butted together with a gap of d, are melted in a melting zone 1 and the cross-sectional shape of the bead after butt welding becomes a broken line. In order to simplify the explanation that follows, it is assumed that the shape is shaded. In this case, the following formula holds. d×(t-2Δt)=(ld)×2Δt
......(1) Here, 2Δt is the difference between the base metal plate thickness and the bead plate thickness after welding. Solving the above equation (1) for the melting zone l yields l=d×t/2Δt (2). Now, assuming that a thin steel strip with a plate thickness t≦0.30 mm is to be welded, the value of the plate thickness difference Δt on one side that will not deteriorate the joint performance (bending strength, tensile strength, etc.) after welding is determined from experience. If it is 1/10t, the equation l=5d is derived from equation (2). Furthermore, if the butt gap d is set to d = 1/2t in consideration of relaxation of the shear accuracy and butt accuracy of the welding part, the molten zone l will be l.
=5/2t is required. By the way, plate thickness t=0.30mm
For a steel strip of , the melting zone l needs to be l = 0.75 mm. However, in current CO 2 laser oscillators, the focal spot diameter φ is generally φ0.20 mm or less due to its wavelength characteristics, lens focal length, beam diameter in front of the lens, etc.
In order to obtain a focal spot diameter of mm, a so-called surface welding method is used in which the welding surface is placed on the lens side or on the opposite side of the focal point. However, when this method is adopted, the energy density of the laser beam at the welding surface decreases because the lens is defocused at the welding surface. Therefore, it was necessary to increase the laser oscillation output power or reduce the welding speed to melt the steel strip, but it was discovered that this would cause the following problems. In other words, since the CO 2 laser has a wavelength of 10.6 μm, its absorption rate into the steel strip before melting is very small (approximately 10%), making it difficult to melt the steel strip. Later on, the absorption rate of the beam to the molten metal approaches 100%, so the power input before melting is too high (the welding speed before melting is too slow, and as a result (This will result in a state of excessive power) The molten part will melt through, resulting in weld defects. This is especially true for thin plates, e.g.
Occurs below 0.40mm. Therefore, the present inventors investigated ways to improve the beam absorption rate of steel strips before melting. As a result, the surface where the laser beam is projected at the butt part of the steel strip was ground, and the surface roughness (surface irregularity) was reduced.
It has been found through various experiments that by setting the roughness from 10 μm to 10% or less of the plate thickness, the laser beam absorption rate can be improved compared to a steel strip that is not coated with anything, and the object of the present invention can be achieved. The present invention was made based on this knowledge, and will be explained in detail below. FIG. 2 is a schematic diagram of a laser welding machine equipped with a steel strip surface grinder used in the present invention. Here, 1 is a grinding machine, for example, a grinder whetstone elongated in the width direction of the steel strip S, which is driven by a motor 2 and has a mechanism in which the number of revolutions can be freely controlled. The grinder whetstone 1 usually has a butt part S-1 of a steel strip S,
It is located at a position shifted from S-2 in the threading direction or anti-striping direction of the steel strip (position A in the figure), and when grinding the surfaces of the butt parts S-1 and S-2, the moving device , for example, by moving the hydraulic cylinder 3 to the top of the butt portions S-1 and S-2 (position B indicated by the broken line in the figure) and further moving it up and down to improve the surface of the butt portions S-1 and S-2. It has a mechanism for grinding. Instead of the hydraulic cylinder 3, an air cylinder, manual movement, movement using a worm, etc. may be used. The steel strip S is cut by a shear 4, then butted and clamped by a clamp 5.
Butt portions S-1, S- formed in this way
After grinding the surface of 2 with the grinder whetstone 1, the processing head 8 of the laser welding machine moves in the board width direction over the butt portions S-1 and S-2, and as it moves, the laser beam oscillator 6 The oscillated laser beam passes through the beam conveying duct 7, and is sent from the processing head 8 to the butt part S- of the steel strip S.
1, S-2 and welding is performed. Here, the beam conveyance duct 7 has a mechanism that can expand and contract in the width direction in accordance with the movement of the processing head 8. The steel strip S is cut by a shear 4, then butted and clamped by a clamp 5. The processing head 8 moves in the width direction over the butt portions S-1 and S-2 formed in this way, and as it moves, a laser beam is projected from the processing head 8 to weld the steel strip S. Ru. The present inventors used the grinder whetstone 1 to change the rotational speed, pressing force, pressing time, and grain size of the grinding wheel to produce steel strips with different surface roughness, and applied the laser welding to each of the steel strips. Using a machine, a CO 2 beam was projected under the following welding conditions, and the number of repeated bending cycles until failure of the resulting welded joint was investigated. The sample material was a cold-rolled steel plate with a thickness of 0.40 mm, and the welding conditions were a laser output power of 600 W, a welding speed of 4 mpm, and a gap of 60 to 70 μm at the butt part.The repeated bending test was performed with a bending curvature R = 5 mm.
This was done with a 90° bend. As a result, when the surface roughness of the butt parts S-1 and S-2 of the steel strips is set to a predetermined roughness by controlling the rotation speed of the grindstone, pressing force, pressing time, and grain size, the laser beam absorption rate improves. 3rd
As shown in the figure, we have found that welded joints with excellent joint performance can be obtained. The surface roughness needs to be 10 μm or more in order to ensure that the number of times of repeated bending before breaking is at least 5 and to avoid trouble during subsequent cold rolling or line threading. On the other hand, if the surface roughness becomes too rough, the strength of the welded joint will deteriorate, so 10% of the thickness of the steel strip to be welded
For example, for plate thickness 0.40mm material, 40μm or less, 0.30mm
For materials, the thickness shall be 30 μm or less. In FIG. 3, the thickness of the sample material is 0.40 mm as described above, but the same tendency as in this figure is obtained for other thicknesses as well. In the above explanation, the surface roughness of the butt part of the steel strip was processed using a device that rotates a grinder whetstone, but of course, the surface roughness of the butt part of the steel strip is not limited to this, and other methods such as a hand grinder, belt sander, and file can also be used. Any general grinding equipment may be used. (Example) Examples are shown below. A cold-rolled steel plate with a thickness of 0.200 to 0.400 mm was used as a test material, and the surface roughness of the butt portion was set as shown in Table 1, and then butt welding was performed using a CO 2 laser. Welding conditions were as follows. Laser beam output: 600 W Laser beam focal position: 2 mm above the plate surface Welding speed: 6 m/min Gap at the butt part: 60 to 70 μm After welding, the number of repeated bending until the welded joint broke was investigated. The bending curvature R is 5 mm.
This was done with a 90° bend. The results are shown in Table 1, and the surface roughness according to the present invention was then laser welded, and the butt gap was 60 to 70.
It can be seen that although the method is large (μm), the welded joint can be repeatedly bent many times before breaking and is superior to the comparative method. 【table】
【図面の簡単な説明】[Brief explanation of the drawing]
第1図:レーザービームによる鋼帯の突合せ溶
接の検討を説明するための図。第2図:本発明の
一実施に使用したレーザー溶接装置の図。第3
図:突合わせ部の表面粗さが破壊に至る繰返し曲
げ回数に及ぼす影響を示す図。
S……鋼帯、S−1,S−2……突合わせ部、
1……研削機、2……モーター、3……油圧シリ
ンダー、4……シヤー、5……クランプ、6……
レーザービーム発振器、7……ビーム搬送ダク
ト、8……加工ヘツド。
Figure 1: A diagram for explaining the study of butt welding of steel strips using a laser beam. Figure 2: A diagram of a laser welding device used in one implementation of the present invention. Third
Figure: Diagram showing the influence of the surface roughness of the butt part on the number of repeated bendings leading to fracture. S... steel strip, S-1, S-2... butt part,
1... Grinding machine, 2... Motor, 3... Hydraulic cylinder, 4... Shear, 5... Clamp, 6...
Laser beam oscillator, 7...beam conveyance duct, 8...processing head.