JPS6147830B2 - - Google Patents

Info

Publication number
JPS6147830B2
JPS6147830B2 JP54156838A JP15683879A JPS6147830B2 JP S6147830 B2 JPS6147830 B2 JP S6147830B2 JP 54156838 A JP54156838 A JP 54156838A JP 15683879 A JP15683879 A JP 15683879A JP S6147830 B2 JPS6147830 B2 JP S6147830B2
Authority
JP
Japan
Prior art keywords
cuprous chloride
nitrobenzonitrile
reaction
yield
post
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54156838A
Other languages
Japanese (ja)
Other versions
JPS5679662A (en
Inventor
Hiroshi Yoshikawa
Takashi Fuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP15683879A priority Critical patent/JPS5679662A/en
Publication of JPS5679662A publication Critical patent/JPS5679662A/en
Publication of JPS6147830B2 publication Critical patent/JPS6147830B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は、ニトロ基のオルソ位にハロゲン原子
を持つ、一般式() (式中、Xはハロゲン原子を示し、nは0〜3
の整数を示す。) で示されるハロゲノニトロベンゼン誘導体(但
し、2,3―ジクロルニトロベンゼンを除く。)
と、シアン化アルカリとを非プロント性極性溶剤
又は塩基性溶剤中で、塩化第一銅又は、塩化第一
銅と第二銅塩の存在下に反応させることを特徴と
する一般式() (式中、X及びnは上記のものを示す。)で示
されるO―ニトロベンゾニトリル誘導体の製造方
法に関するものである。特に、非プロント性極性
溶剤としてN―メチルピロリドン、N,N′―ジ
メチルイミダゾリドンを、ハロゲノニトロベンゼ
ン誘導体1重量部に対して0.05重量部から1.0重
量部使用することが好ましい。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides compounds of the general formula () having a halogen atom at the ortho position of the nitro group. (In the formula, X represents a halogen atom, and n is 0 to 3
indicates an integer. ) Halogenonitrobenzene derivatives (excluding 2,3-dichloronitrobenzene)
and an alkali cyanide in an aprontic polar solvent or a basic solvent in the presence of cuprous chloride or cuprous chloride and a cupric salt (2) The present invention relates to a method for producing an O-nitrobenzonitrile derivative represented by the formula (wherein X and n are as shown above). In particular, it is preferable to use 0.05 to 1.0 parts by weight of N-methylpyrrolidone or N,N'-dimethylimidazolidone as the aprontic polar solvent per 1 part by weight of the halogenonitrobenzene derivative.

従来、芳香族ハロゲン化合物のハロゲン基をシ
アノ基に置換する方法は芳香族ハロゲン化合物を
非プロトン性極性溶剤、もしくは塩基性溶剤中、
芳香族ハロゲン化合物に対して等モル以上のシア
ン化銅と反応させる方法が一般的であつた。
Conventionally, the method for substituting the halogen group of an aromatic halogen compound with a cyano group is to place the aromatic halogen compound in an aprotic polar solvent or a basic solvent.
A common method was to react an aromatic halogen compound with copper cyanide in an amount equal to or more than the same molar amount.

本発明者は、シアン化銅によるシアノ置換反応
は、試薬が高価であるばかりでなく、反応後の銅
の回収、再使用が困難であることから、工業的に
安価に入手出来、回収、再使用が容易に出来る塩
化第一銅又は塩化第一銅と第二銅塩の存在下にシ
アン化アルカリによるシアノ置換反応を検討した
ところ、塩化第一銅を原料の2―ハロゲノニトロ
ベンゼン誘導体に対して0.1〜0.4倍モル使用して
も、シアン化銅を使用した場合と同等あるいはそ
れ以上の収率で2―ハロゲノニトロベンゼン誘導
体から0―ニトロベンゾニトリル誘導体が得られ
ることを見い出し本発明を完成した。特に、非プ
ロトン性極性溶剤として、N―メチルピロリドン
又はN,N′―ジメチルイミダゾリドンを、2―
ハロゲノニトロベンゼン誘導体1重量部に対して
0.05重量部から1.0重量部使用した場合、反応の
選択率を特に向上させることが出来、良い収率で
目的の0―ニトロベンゾニトリル誘導体が得られ
る。
The present inventors believe that the cyano substitution reaction using copper cyanide not only requires expensive reagents but also makes it difficult to recover and reuse copper after the reaction. When we investigated the cyano substitution reaction with alkali cyanide in the presence of easily available cuprous chloride or cuprous chloride and cupric salt, we found that cuprous chloride was used as a raw material for 2-halogenonitrobenzene derivatives. The present invention has been completed based on the discovery that even when using 0.1 to 0.4 times the molar amount, 0-nitrobenzonitrile derivatives can be obtained from 2-halogenonitrobenzene derivatives at a yield equivalent to or higher than when copper cyanide is used. In particular, N-methylpyrrolidone or N,N'-dimethylimidazolidone is used as the aprotic polar solvent.
For 1 part by weight of halogenonitrobenzene derivative
When 0.05 parts by weight to 1.0 parts by weight is used, the selectivity of the reaction can be particularly improved, and the desired 0-nitrobenzonitrile derivative can be obtained in good yield.

本発明の方法では、シアン化銅を使用する方法
に比較して廃棄物の銅量が少ない。又、反応時に
おけるN―メチルピロリドンやN,N′―ジメチ
ルイミダゾリドン等の溶剤の損失は殆んど無く反
応終了後蒸留操作により分離回収し、再使用出来
ることからこの溶剤は工業的にも非常に有利な溶
剤である。
The method of the present invention produces less copper waste than the method using copper cyanide. In addition, there is almost no loss of solvents such as N-methylpyrrolidone and N,N'-dimethylimidazolidone during the reaction, and they can be separated and recovered by distillation after the reaction and reused, making this solvent industrially suitable. It is a very advantageous solvent.

本発明で使用されるハロゲノニトロベンゼン誘
導体としては、2―クロルニトロベンゼン、2,
4―ジクロルニトロベンゼン、2,5―ジクロル
ニトロベンゼン、2,3,4―トリクロルニトロ
ベンゼン、2,3,4,5―テトラクロルニトロ
ベンゼン、2―ブロモニトロベンゼン、2,3―
ジブロモニトロベンゼン、2,4―ジブロモニト
ロベンゼン、2,5―ジブロモニトロベンゼン、
2,3,4―トリブロモニトロベンゼン等ニトロ
基のオルソ位にハロゲン原子を持つものが使用さ
れる。ハロゲン原子としては、フツ素、塩素、臭
素及びヨウ素が挙げられる。
The halogenonitrobenzene derivatives used in the present invention include 2-chloronitrobenzene, 2,
4-dichloronitrobenzene, 2,5-dichloronitrobenzene, 2,3,4-trichloronitrobenzene, 2,3,4,5-tetrachloronitrobenzene, 2-bromonitrobenzene, 2,3-
Dibromonitrobenzene, 2,4-dibromonitrobenzene, 2,5-dibromonitrobenzene,
Those having a halogen atom at the ortho position of the nitro group, such as 2,3,4-tribromonitrobenzene, are used. Examples of halogen atoms include fluorine, chlorine, bromine and iodine.

シアン化アルカリとしては例えば工業的に安価
に入手出来るシアン化ナトリウム又はシアン化カ
リウム等が使用される。シアン化アルカリは、原
料の2―ハロゲノニトロベンゼン誘導体に対して
通常1.0〜2.0倍モル使用されるが、過剰に使用し
ても特に有利な点はなく、実用的には1.0〜1.2倍
が適当である。
As the alkali cyanide, for example, sodium cyanide or potassium cyanide, which can be obtained industrially at low cost, is used. Alkali cyanide is usually used in a molar range of 1.0 to 2.0 times the amount of the raw material 2-halogenonitrobenzene derivative, but there is no particular advantage in using it in excess, and 1.0 to 1.2 times is suitable in practice. be.

塩化第一銅の使用量は、通常原料の2―ハロゲ
ノニトロベンゼン誘導体に対して0.05〜1.0倍モ
ルであるが、シアノ化反応成績及び塩化第一銅の
価格を考えて実用的には0.1〜0.4倍モルが適当で
ある。塩化第一銅は空気中で徐々に酸化されて、
第二銅塩になることが知られているが、本反応で
は塩化第一銅は特に精製する必要は無く、本発明
者の実験によると塩化第一銅中に第二銅塩が共存
している方が反応を穏やかに進行させる点で有利
であることが判つた。塩化第一銅中に第二銅塩が
0〜70モルパーセント含有していても良いが、好
ましくは0.5〜30モルパーセントが適当である。
第二銅塩として、硫酸第二銅、硝酸第二銅、塩化
第二銅等を添加しても良い。使用した銅は回収し
た無機物より塩酸等で銅を溶出し、常法により、
塩化第一銅として回収し、使用することが出来
る。
The amount of cuprous chloride used is usually 0.05 to 1.0 times the mole of the raw material 2-halogenonitrobenzene derivative, but in consideration of the cyanation reaction results and the price of cuprous chloride, it is practically 0.1 to 0.4. Double molar ratio is appropriate. Cuprous chloride is gradually oxidized in the air,
Although it is known that cuprous chloride becomes cupric salt, there is no need to particularly purify cuprous chloride in this reaction, and according to the inventor's experiments, cuprous salt coexists in cuprous chloride. It has been found that it is advantageous to allow the reaction to proceed more slowly. The cupric salt may be contained in cuprous chloride in an amount of 0 to 70 mol percent, preferably 0.5 to 30 mol percent.
As the cupric salt, cupric sulfate, cupric nitrate, cupric chloride, etc. may be added. The copper used is eluted from the recovered inorganic matter with hydrochloric acid, etc., and then processed using a conventional method.
It can be recovered and used as cuprous chloride.

塩基性溶剤としては、ピリジン等が使用でき
又、非プロトン性極性溶剤としては、ジメチルホ
ルムアミド、ジエチルホルムアミド、ジメチルス
ルホキシド、ジメチルアセトアミド、ヘキサメチ
ルホスホルアミド、N―メチルピロリドン、N,
N′―ジメチルイミダゾリドン、テトラメチレン
スルホン、ジメチルスルホン等が使用されるが、
特にN―メチルピロリドン、N,N′―ジメチル
イミダゾリドンの環状アミド化合物を原料の2―
ハロゲノニトロベンゼン誘導体一重量部に対し
て、0.05〜1.0重量部使用した場合良い成績が得
られる。
As the basic solvent, pyridine etc. can be used, and as the aprotic polar solvent, dimethylformamide, diethylformamide, dimethylsulfoxide, dimethylacetamide, hexamethylphosphoramide, N-methylpyrrolidone, N,
N'-dimethylimidazolidone, tetramethylene sulfone, dimethyl sulfone, etc. are used.
In particular, 2-
Good results can be obtained when 0.05 to 1.0 parts by weight are used per 1 part by weight of the halogenonitrobenzene derivative.

反応温度、及び反応時間は、使用する溶剤の種
類、使用量により異なるが、一般的には反応温度
は100〜220℃好ましくは140〜200℃が適当であ
る。反応時間は0.5〜15時間が適当である。
The reaction temperature and reaction time vary depending on the type and amount of the solvent used, but generally the reaction temperature is suitably 100 to 220°C, preferably 140 to 200°C. A suitable reaction time is 0.5 to 15 hours.

以下、実施例と比較例によつて本発明をさらに
詳しく説明するが本発明はこれらに限定されるも
のではない。
Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

実施例 1 2,4―ジクロルニトロベンゼン19.2g、塩化
第一銅3.2g、無水硫酸第二銅1.3g、シアン化ナ
トリウム5.44g及びN,N′―ジメチルイミダゾリ
ドン4.0gを加え、反応温度170℃で8時間反応さ
せた。反応終了後50mlのジクロルエタンを加え、
無機物を瀘過した。瀘液を5%アンモニア水及び
水で洗浄した後、有機層をガスクロマトグラフイ
で定量し、収率78.7%で3―クロル―6―ニトロ
ベンゾニトリルを得た。
Example 1 19.2 g of 2,4-dichloronitrobenzene, 3.2 g of cuprous chloride, 1.3 g of anhydrous cupric sulfate, 5.44 g of sodium cyanide, and 4.0 g of N,N'-dimethylimidazolidone were added, and the reaction temperature was 170 g. The reaction was carried out at ℃ for 8 hours. After the reaction is complete, add 50ml of dichloroethane,
Inorganic substances were filtered out. After washing the filtrate with 5% aqueous ammonia and water, the organic layer was quantified by gas chromatography to obtain 3-chloro-6-nitrobenzonitrile in a yield of 78.7%.

比較例 1 2,4―ジクロルニトロベンゼン19.2g、シア
ン化銅10.0g及びN―メチルピロリドン3.0gを
加え、反応温度170℃で4時間反応させた。実施
例1と同様の方法で後処理を行い、収率59.5%で
3―クロル―6―ニトロベンゾニトリルを得た。
Comparative Example 1 19.2 g of 2,4-dichloronitrobenzene, 10.0 g of copper cyanide, and 3.0 g of N-methylpyrrolidone were added, and the mixture was reacted at a reaction temperature of 170° C. for 4 hours. Post-treatment was carried out in the same manner as in Example 1 to obtain 3-chloro-6-nitrobenzonitrile in a yield of 59.5%.

実施例 2 2,4―ジクロルニトロベンゼン19.2g、シア
ン化ナトリウム5.44g、塩化第一銅4.0g及びピ
リジン3.0gを加え、反応温度170℃で4時間反応
させた。実施例1と同様の方法で後処理を行い、
収率34%で3―クロル―6―ニトロベンゾニトリ
ルを得た。
Example 2 19.2 g of 2,4-dichloronitrobenzene, 5.44 g of sodium cyanide, 4.0 g of cuprous chloride, and 3.0 g of pyridine were added, and the mixture was reacted at a reaction temperature of 170° C. for 4 hours. Post-processing was performed in the same manner as in Example 1,
3-chloro-6-nitrobenzonitrile was obtained with a yield of 34%.

実施例 3 2―クロルニトロベンゼン23.6g、塩化第一銅
4.8g、無水硫酸第二銅2.0g、シアン化ナトリウ
ム8.16g及びN,N′―ジメチルイミダゾリドン
4.5gを加え、反応温度170℃で4時間反応させ
た。実施例1と同様の方法で後処理を行い、収率
76.3%で2―ニトロベンゾニトリルを得た。
Example 3 2-chloronitrobenzene 23.6g, cuprous chloride
4.8g, anhydrous cupric sulfate 2.0g, sodium cyanide 8.16g and N,N'-dimethylimidazolidone
4.5g was added and the reaction was carried out at a reaction temperature of 170°C for 4 hours. Post-treatment was performed in the same manner as in Example 1, and the yield was
2-nitrobenzonitrile was obtained at 76.3%.

実施例 4 2―クロルニトロベンゼン23.6g、塩化第一銅
4.8g、無水硫酸第二銅2.0g、シアン化ナトリウ
ム8.16g及びN―メチルピロリドン4.5gを加
え、反応温度180℃で4時間反応させた。実施例
1と同様の方法で後処理を行い、収率67.1%で2
―ニトロベンゾニトリルを得た。
Example 4 2-chloronitrobenzene 23.6g, cuprous chloride
4.8 g of anhydrous cupric sulfate, 2.0 g of anhydrous cupric sulfate, 8.16 g of sodium cyanide, and 4.5 g of N-methylpyrrolidone were added, and the mixture was reacted at a reaction temperature of 180° C. for 4 hours. Post-treatment was carried out in the same manner as in Example 1, and 2 was obtained with a yield of 67.1%.
- Obtained nitrobenzonitrile.

比較例 2 2―クロルニトロベンゼン23.6g、シアン化銅
15.0g及びN―メチルピロリドン4.5gを加え、
反応温度180℃で4時間反応させた。実施例1と
同様の方法で後処理を行い、収率20.6%で2―ニ
トロベンゾニトリルを得た。
Comparative example 2 2-chloronitrobenzene 23.6g, copper cyanide
Add 15.0g and 4.5g of N-methylpyrrolidone,
The reaction was carried out at a reaction temperature of 180°C for 4 hours. Post-treatment was performed in the same manner as in Example 1 to obtain 2-nitrobenzonitrile in a yield of 20.6%.

実施例 5 2,5―ジクロルニトロベンゼン19.2g、塩化
第一銅3.2g、無水硫酸第二銅1.3g、シアン化ナ
トリウム5.44g及びN,N′―ジメチルイミダゾリ
ドン3.0gを加え反応温度170℃で8時間反応させ
た。実施例1と同様の方法で後処理を行い、収率
61.4%で4―クロル―6―ニトロベンゾニトリル
を得た。
Example 5 19.2 g of 2,5-dichloronitrobenzene, 3.2 g of cuprous chloride, 1.3 g of anhydrous cupric sulfate, 5.44 g of sodium cyanide, and 3.0 g of N,N'-dimethylimidazolidone were added, and the reaction temperature was 170°C. The mixture was allowed to react for 8 hours. Post-treatment was performed in the same manner as in Example 1, and the yield was
4-chloro-6-nitrobenzonitrile was obtained at 61.4%.

実施例 6 2,3,4,―トリクロルニトロベンゼン17.0
g、塩化第一銅2.4g、無水硫酸第二銅1.0g、シ
アン化ナトリウム4.1g、及びN―メチルピロリ
ドン2.3gを加え、反応温度170℃で4時間反応さ
せた。実施例1と同様の方法で後処理を行い、収
率88.6%で2,3―ジクロル―6―ニトロベンゾ
ニトリルを得た。
Example 6 2,3,4-trichloronitrobenzene 17.0
g, 2.4 g of cuprous chloride, 1.0 g of anhydrous cupric sulfate, 4.1 g of sodium cyanide, and 2.3 g of N-methylpyrrolidone were added, and the mixture was reacted at a reaction temperature of 170° C. for 4 hours. Post-treatment was performed in the same manner as in Example 1 to obtain 2,3-dichloro-6-nitrobenzonitrile in a yield of 88.6%.

実施例 7 2,3―ジブロモニトロベンゼン28.1g、塩化
第一銅3.2g、無水硫酸第二銅1.3g、シアン化ナ
トリウム5.44g及びN,N′―ジメチルイミダゾリ
ドン4.0gを加え、反応温度160℃で4時間反応さ
せた。実施例1と同様の方法で後処理を行い、収
率75.3%で2―ブロモー6―ニトロベンゾニトリ
ルを得た。
Example 7 28.1 g of 2,3-dibromonitrobenzene, 3.2 g of cuprous chloride, 1.3 g of anhydrous cupric sulfate, 5.44 g of sodium cyanide, and 4.0 g of N,N'-dimethylimidazolidone were added, and the reaction temperature was 160°C. The mixture was allowed to react for 4 hours. Post-treatment was performed in the same manner as in Example 1 to obtain 2-bromo-6-nitrobenzonitrile in a yield of 75.3%.

実施例 8 2,5―ジブロモニトロベンゼン28.1g、塩化
第一銅3.2g、無水硫酸第二銅1.3g、シアン化ナ
トリウム5.44g及びN―N′―ジメチルイミダゾリ
ドン4.0gを加え、反応温度160℃で4時間反応さ
せた。実施例1と同様の方法で後処理を行い、収
率70.6%で4―ブロモー6―ニトロベンゾニトリ
ルを得た。
Example 8 28.1 g of 2,5-dibromonitrobenzene, 3.2 g of cuprous chloride, 1.3 g of anhydrous cupric sulfate, 5.44 g of sodium cyanide and 4.0 g of N-N'-dimethylimidazolidone were added, and the reaction temperature was 160°C. The mixture was allowed to react for 4 hours. Post-treatment was performed in the same manner as in Example 1 to obtain 4-bromo-6-nitrobenzonitrile in a yield of 70.6%.

実施例 9 2,4―ジクロルニトロベンゼン19.2g、塩化
第一銅3.2g、無水硫酸第二銅1.3g、シアン化カ
リウム7.22g、及びN,N′―ジメチルイミダゾリ
ドン4.0gを加え、反応温度170℃で8時間反応さ
せた。実施例1と同様の方法で後処理を行い、収
率76.3%で3―クロル―6―ニトロベンゾニトリ
ルを得た。
Example 9 19.2 g of 2,4-dichloronitrobenzene, 3.2 g of cuprous chloride, 1.3 g of anhydrous cupric sulfate, 7.22 g of potassium cyanide, and 4.0 g of N,N'-dimethylimidazolidone were added, and the reaction temperature was 170°C. The mixture was allowed to react for 8 hours. Post-treatment was performed in the same manner as in Example 1 to obtain 3-chloro-6-nitrobenzonitrile in a yield of 76.3%.

実施例 10 2,4―5―トリブロモニトロベンゼン36.0
g、塩化第一銅3.2g、無水硫酸第二銅1.3g、シ
アン化ナトリウム5.44g、及びN,N′―ジメチル
イミダゾリドン4.0gを加え、反応温度160℃で4
時間反応させた。実施例1と同様の方法で後処理
を行い、収率85.2%で3,4―ジブロモ―6―ニ
トロベンゾニトリルを得た。
Example 10 2,4-5-tribromonitrobenzene 36.0
g, 3.2 g of cuprous chloride, 1.3 g of anhydrous cupric sulfate, 5.44 g of sodium cyanide, and 4.0 g of N,N'-dimethylimidazolidone were added, and the reaction temperature was 160°C.
Allowed time to react. Post-treatment was carried out in the same manner as in Example 1 to obtain 3,4-dibromo-6-nitrobenzonitrile in a yield of 85.2%.

実施例 11 2,4,5―トリブロモニトロベンゼン36.0g
の代りに2,3―ジヨードニトロベンゼン37.5g
を用いた他は実施例10と同様にして反応及び後処
理を行い、収率83.5%で2―ヨード―6―ニトロ
ベンゾニトリルを得た。
Example 11 2,4,5-tribromonitrobenzene 36.0g
37.5g of 2,3-diiodonitrobenzene instead of
The reaction and post-treatment were carried out in the same manner as in Example 10, except that 2-iodo-6-nitrobenzonitrile was obtained in a yield of 83.5%.

実施例 12 2,4,5―トリブロモニトロベンゼン36.0g
の代りに2,4―ジフルオロニトロベンゼン15.9
gを用いた以外は実施例10と同様にして反応及び
後処理を行い、収率84.7%で3―フルオロ―6―
ニトロベンゾニトリルを得た。
Example 12 2,4,5-tribromonitrobenzene 36.0g
2,4-difluoronitrobenzene instead of 15.9
The reaction and post-treatment were carried out in the same manner as in Example 10 except that 3-fluoro-6-
Nitrobenzonitrile was obtained.

実施例 13 2,4―ジクロルニトロベンゼン19.2g、塩化
第一銅4.0g、シアン化ナトリウム5.44g及び
N,N′―ジメチルイミダゾリドン4.0gを加え、
反応温度170℃で8時間反応させた。
Example 13 Add 19.2 g of 2,4-dichloronitrobenzene, 4.0 g of cuprous chloride, 5.44 g of sodium cyanide and 4.0 g of N,N'-dimethylimidazolidone,
The reaction was carried out at a reaction temperature of 170°C for 8 hours.

実施例1と同様の方法で後処理を行い、収率
77.8%で3―クロル―6―ニトロベンゾニトリル
を得た。
Post-treatment was performed in the same manner as in Example 1, and the yield was
3-chloro-6-nitrobenzonitrile was obtained at 77.8%.

実施例 14 2,4―ジクロルニトロベンゼン19.2g、塩化
第一銅3.2g、塩化第二銅0.8g、シアン化ナトリ
ウム5.44g及びN,N′―ジメチルイミダゾリドン
4.0gを加え、反応温度170℃で8時間反応させ
た。実施例1と同様の方法で後処理を行い、収率
78.4%で3―クロル―6―ニトロベンゾニトリル
を得た。
Example 14 19.2 g of 2,4-dichloronitrobenzene, 3.2 g of cuprous chloride, 0.8 g of cupric chloride, 5.44 g of sodium cyanide, and N,N'-dimethylimidazolidone
4.0g was added and the reaction was carried out at a reaction temperature of 170°C for 8 hours. Post-treatment was performed in the same manner as in Example 1, and the yield was
3-chloro-6-nitrobenzonitrile was obtained at 78.4%.

Claims (1)

【特許請求の範囲】 1 ニトロ基のオルソ位にハロゲン原子を持つ一
般式() (式中、Xはハロゲン原子を示し、nは0〜3
の整数を示す。) で示されるハロゲノニトロベンゼン誘導体(但
し、2,3―ジクロルニトロベンゼンを除く。) と、シアン化アルカリとを、非プロトン性極性溶
剤又は塩基性溶剤中で塩化第一銅又は、塩化第一
銅と第二銅塩の存在下に反応させることを特徴と
する一般式() (式中、X及びnは上記のものを示す。)で示
されるO―ニトロベンゾニトリル誘導体の製造方
法。
[Claims] 1 General formula () having a halogen atom at the ortho position of the nitro group (In the formula, X represents a halogen atom, and n is 0 to 3
indicates an integer. ) A halogenonitrobenzene derivative (excluding 2,3-dichloronitrobenzene) and an alkali cyanide are mixed with cuprous chloride or cuprous chloride in an aprotic polar solvent or basic solvent. General formula () characterized by reacting with and in the presence of a cupric salt A method for producing an O-nitrobenzonitrile derivative represented by the formula (wherein X and n are as shown above).
JP15683879A 1979-12-05 1979-12-05 Preparation of o-nitrobenzonitrile derivative Granted JPS5679662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15683879A JPS5679662A (en) 1979-12-05 1979-12-05 Preparation of o-nitrobenzonitrile derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15683879A JPS5679662A (en) 1979-12-05 1979-12-05 Preparation of o-nitrobenzonitrile derivative

Publications (2)

Publication Number Publication Date
JPS5679662A JPS5679662A (en) 1981-06-30
JPS6147830B2 true JPS6147830B2 (en) 1986-10-21

Family

ID=15636467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15683879A Granted JPS5679662A (en) 1979-12-05 1979-12-05 Preparation of o-nitrobenzonitrile derivative

Country Status (1)

Country Link
JP (1) JPS5679662A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUP0103775A3 (en) * 1998-10-13 2003-05-28 Aventis Cropscience Sa Chemical processes
EP1000929B1 (en) * 1998-10-13 2004-12-29 Bayer CropScience S.A. Process for preparing o-nitrobenzonitriles
DE10015280A1 (en) 1999-03-29 2001-01-04 Nissan Chemical Ind Ltd Substituted benzonitrile derivative preparation in high yield, for use as herbicide or intermediate, from halo compound and sodium, potassium or zinc cyanide in presence of metal catalyst

Also Published As

Publication number Publication date
JPS5679662A (en) 1981-06-30

Similar Documents

Publication Publication Date Title
JP4872668B2 (en) Process for producing 2-amino-5-iodobenzoic acid
JPS6251260B2 (en)
JPS6147829B2 (en)
US4642398A (en) Preparation of fluoronitrobenzene compounds in dispersion of potassium fluoride
JPS6147830B2 (en)
EP0097357B1 (en) Process for preparing trifluoromethylbenzene derivatives
JP7482125B2 (en) Process for the preparation of 2,6-dichlorobenzonitrile
JPH0625097B2 (en) Method for producing aromatic nitrile
JP3919215B2 (en) Process for producing carboxyarene sulfonic acid and its carboxylic acid derivative
JPH10330334A (en) Production of 3,5-difluoroaniline
JP2520267B2 (en) Method for producing o-nitrobenzoic acids
JPS617217A (en) Novel method for preparating fluorinated aromatic compound
AU767379B2 (en) Chemical processes
US4973772A (en) Catalytic method for producing fluoroarmatic compounds using substituted pyridinium salts
EP0253837B1 (en) Catalytic method for producing fluoroaromatic compounds using branched alkyl pyridinium salts
JPS625421B2 (en)
EP0994099B1 (en) Process for preparing 4-cyano-3-nitrobenzotrifluoride from 3-bromo-4-cyanobenzotrifluoride in the presence of catalytic cuprous cyanide and a phase transfer catalyst.
JP3784865B2 (en) Method for producing 4,4'-bis (chloromethyl) biphenyl
JP3500504B2 (en) Method for producing 2-hydroxycarbazole
US6191309B1 (en) Method for preparing halogenated 2-amino or 2-acetamido trifluoromethylbenzene derivatives
JP2779527B2 (en) Method for producing 4-chloro-2-fluoronitrobenzene
JPH0140833B2 (en)
JPH069509A (en) Selective dehalogenation of ortho-halogenonitrobenzene
JPH01228943A (en) Production of 2,4-dichloro-3-alkyl-6-nitrophenol
JP3531039B2 (en) 1,4-difluorobenzene derivative