JPS6142613A - Optical modulating device - Google Patents

Optical modulating device

Info

Publication number
JPS6142613A
JPS6142613A JP16440384A JP16440384A JPS6142613A JP S6142613 A JPS6142613 A JP S6142613A JP 16440384 A JP16440384 A JP 16440384A JP 16440384 A JP16440384 A JP 16440384A JP S6142613 A JPS6142613 A JP S6142613A
Authority
JP
Japan
Prior art keywords
light
luminous flux
angle
light beam
modulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16440384A
Other languages
Japanese (ja)
Inventor
Kazuhiko Matsuoka
和彦 松岡
Kazuo Minoura
一雄 箕浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP16440384A priority Critical patent/JPS6142613A/en
Priority to US06/748,835 priority patent/US4842396A/en
Publication of JPS6142613A publication Critical patent/JPS6142613A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain sufficiently a separation angle by a simple and small-sized constitution by providing an optical element for increasing a luminous flux separation angle of a modulating luminous flux and a non-modulating luminous flux, on the luminous flux emitting side of an optical modulating element in which the separation angle of the modulating luminous flux and the non-modulating luminous flux is small. CONSTITUTION:An irradiating luminous flux 28 by a light source 21 and an illuminating system 22 is made incident vertically on a deflecting element 24, and in case when the deflecting element 24 is not in a deflecting operation, a light source image 25 is formed on the optical axis of the illuminating system. On the other hand, in case the deflecting element is in a deflecting operation, said luminous flux is reflected as a deflected luminous flux 29 by the deflecting element 24. In this case, a volume type hologram 23 is constituted so as to satisfy a Bragg angle with respect to an incident angle to the hologram of the deflected luminous flux 29. In this way, only the deflected luminous flux can amplify an angle made by the optical axis of the illuminating system.

Description

【発明の詳細な説明】 本発明は光変調装置に関するものであり、プランタ−、
ディスプレイ等への応用展開が可能なものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a light modulation device, and includes a planter,
This can be applied to displays, etc.

従来、入力信号に応じて入射光束を偏向する素子を用い
た光変調装置は種々知られている。
Conventionally, various optical modulation devices using elements that deflect an incident light beam according to an input signal are known.

反射型の光変調素子の一例としては、例えば”Micr
omechanial  light modulat
erarray  fablicated  on  
5ilicon”(Appl 、Phys、Lett 
、Vol、31.No、8.1977)に記載されるカ
ンチレバーミラー素子がある。
As an example of a reflective light modulation element, for example, "Micr"
omechanial light modulat
error fabricated on
5ilicon” (Appl, Phys, Lett
, Vol. 31. There is a cantilever mirror element described in No. 8.1977).

この素子の偏向原理を第1図を用いて説明する。The deflection principle of this element will be explained using FIG.

薄膜ミラー1に入射する光束2は1図中に実線で示すミ
ラの状態では非変調光束3として、入射方向へ反射され
る。一方、基盤とミラー間に電位差が与えられた場合に
は、静電引力によりミラーは破線で示す、ように変形す
る。
A light beam 2 incident on the thin film mirror 1 is reflected in the incident direction as a non-modulated light beam 3 when the mirror is in the state shown by the solid line in FIG. On the other hand, when a potential difference is applied between the base and the mirror, the mirror deforms as shown by the broken line due to electrostatic attraction.

その結果入射光束2は変調光束4として反射・偏向され
る。透過型の光変調素子の一例としては、例えば“熱に
よる屈折率変化で光が偏向” (口径エレクトロニクス
、1982.8.16号)又は特開昭 59−6872
3 号公報に記載される熱光学効果を利用した素子があ
る。第2図にはこの変wR原理を示す、誘電体結晶5中
に入射した光束2は、非偏向光束3として出射する。
As a result, the incident light beam 2 is reflected and deflected as a modulated light beam 4. Examples of transmissive light modulation elements include "Light is deflected by a change in refractive index due to heat" (Aperture Electronics, August 16, 1982) or JP-A-59-6872.
There is an element using the thermo-optic effect described in Publication No. 3. FIG. 2 shows this variable wR principle. A light beam 2 incident on a dielectric crystal 5 is emitted as an undeflected light beam 3.

しかしヒーター6が発熱した状態では、結晶中に生じる
屈折率分布7により偏向光束4として出射−する。
However, when the heater 6 generates heat, the light is emitted as a deflected light beam 4 due to the refractive index distribution 7 generated in the crystal.

然しながら、上述した様な光変調素子に於いては、変調
光束と非変調光束との分離角度が高々成度程度と小さい
、従って、上記光変調素子に於いては、変調光束と非変
調光束のいずれか一方を遮光することにより光変調装置
として用いる場合、S/N比の良好な光変調素子を実現
する為には、光変調素子から十分離れた位置で、上記二
光束のいずれか一方を遮断する必要が生じる。更に、第
1図、第2図に示す光変調素子を二次元アレイ、二次元
アレイ状に複。数個配設して使用する場合には、入射光
束を変調可能な変調領域の間を占める変調に寄与しない
非変調領域を透過又は非変調領域で反射される非変調光
束を、変調光束に対して充分に分離させる必要がある。
However, in the above-mentioned light modulation element, the separation angle between the modulated light flux and the non-modulated light flux is as small as a supersonic degree. When used as a light modulator by blocking either one of the two beams, in order to achieve a light modulator with a good S/N ratio, one of the two beams must be placed at a sufficient distance from the light modulator. It becomes necessary to shut it off. Furthermore, the light modulation elements shown in FIGS. 1 and 2 are arranged in a two-dimensional array or a two-dimensional array. When several light fluxes are arranged and used, the non-modulated light flux that is transmitted through the non-modulated area that does not contribute to modulation that occupies between the modulated areas that can modulate the incident light flux, or is reflected by the non-modulated area, is used as the modulated light flux. It is necessary to separate them sufficiently.

本発明の目的は、上述した難点を鑑み、変調光束と非変
調光束の分離角度が小さい光変調素子を用いた場合でも
、簡単且つ小型の構成で変調光束と非変調−光束との分
離角度が十分に取れる様な光変調装置を提供することに
ある。
In view of the above-mentioned difficulties, it is an object of the present invention to have a simple and compact configuration that allows the angle of separation between the modulated light flux and the unmodulated light flux to be reduced even when a light modulation element with a small separation angle between the modulated light flux and the non-modulated light flux is used. The object of the present invention is to provide a light modulation device that can provide a sufficient amount of light.

本発明の光変調素子に於いては、変調光束と非変調光束
との分離角度が小さい光変調素子の光束出射側に、変調
光束と非変調光束との光束分離角度を増大せしめる様な
光学素子を設けることにより上記目的を達成せんとする
ものである。この光学素子をどの様な素子で構成するか
は、対象とする光変調素子の形状及び機能に基づいて適
宜選択することが可能である。以下、本発明を詳述する
In the light modulation element of the present invention, an optical element that increases the light beam separation angle between the modulated light beam and the non-modulated light beam is provided on the light beam output side of the light modulation element where the separation angle between the modulated light beam and the non-modulated light beam is small. The purpose is to achieve the above objective by providing the following. The type of element that constitutes this optical element can be appropriately selected based on the shape and function of the target light modulation element. The present invention will be explained in detail below.

7pIJ3図は、本発明の光変調素子に使用される変調
光束と非変調光束の分離角度を増大させる為の光学素子
の一例である体積型ホログラムを示す9図中、10は体
積型ホログムであり、その内部は、ホログラム表面の面
法線に対して所定の角度ψの傾きを有する位相格子と見
做せる0面法線に対して一〇の傾きを越す入射光線11
は、ホログラム10を通過後ミラー14に達する。実線
で示すようにミラー14の表面がホログラム10の表面
と平行であれば、入射光11は、ホログラム面法線とθ
の角度を成して反射され、再びホログラムlOへ入射す
る。ここで、ホログラム面への入射角θに対して、ブラ
ック条件を満足すべく格子の傾きp等を設計することに
より、入射光の光量を特定の次数の回折光へ、たとえば
1次回折光12へ集中させることが可能である。この時
、1次回折光12のホログラム面法線と成す角度は2p
−θである。上述した回折効率はホログラム面への入射
角度の関数であり、その様子を第4図に示す。
Figure 7pIJ3 shows a volume hologram, which is an example of an optical element for increasing the separation angle between a modulated light beam and a non-modulated light beam used in the light modulation element of the present invention. , the inside of which can be regarded as a phase grating having an inclination of a predetermined angle ψ with respect to the plane normal of the hologram surface.
reaches the mirror 14 after passing through the hologram 10. If the surface of the mirror 14 is parallel to the surface of the hologram 10 as shown by the solid line, the incident light 11 will be
It is reflected at an angle of , and enters the hologram IO again. Here, by designing the inclination p of the grating to satisfy the Black condition with respect to the incident angle θ on the hologram surface, the light amount of the incident light can be changed to diffracted light of a specific order, for example, to the first-order diffracted light 12. It is possible to concentrate. At this time, the angle between the first-order diffracted light 12 and the normal to the hologram surface is 2p.
−θ. The above-mentioned diffraction efficiency is a function of the angle of incidence on the hologram surface, and the situation is shown in FIG.

横軸は入射角度、縦軸は回折効率を示す、ブラー・グ条
件を満足する入射角度θの時、最大の回折効率が得られ
る。上述の説明において、入射光11が入射角度−〇を
成してホログラムに入射する場合にはブラック条件から
大きく外れ、その結果、入射光量の殆どが0次光として
ホログラムを直進して通過するので、ミラー14に対し
ても同じ入射角度−〇を保つことが可能である。再び第
3図を用いて説明を続ける0次なる状態として、ミラー
14が破線で示すように角度−〇だけ回転したとする。
The horizontal axis shows the incident angle, and the vertical axis shows the diffraction efficiency. The maximum diffraction efficiency is obtained when the incident angle θ satisfies the Brague condition. In the above explanation, when the incident light 11 enters the hologram at an incident angle of -0, it deviates greatly from the black condition, and as a result, most of the incident light goes straight through the hologram as zero-order light. , it is possible to maintain the same incident angle -0 with respect to the mirror 14. Let us assume that the mirror 14 is rotated by an angle of -0 as shown by the broken line as a zero-order state, which will be explained again with reference to FIG.

この時入射光11は、ホログラム10に対して、θ−2
φの角度で入射する。しかしながら、やはり第4図に示
すように、ブラック条件から外れるので、入射光量の殆
どが0次光としてホログラムを通過し、出射光13と成
る0以上の説明から理解できるように、ミラー14の回
転動作の前後において、ミラーによる反射直後では、各
々の動作による反射光の成す角度が2φであったものが
、ホログラムを通、通抜には2(ψ−θ+φ)と成る。
At this time, the incident light 11 is θ-2 with respect to the hologram 10.
It is incident at an angle of φ. However, as shown in FIG. 4, since the black condition is not met, most of the incident light passes through the hologram as zero-order light and becomes the output light 13. As can be understood from the explanation of 0 or more, the rotation of the mirror 14 Before and after the operation, the angle formed by the reflected light from each operation is 2φ immediately after reflection by the mirror, but when it passes through the hologram, it becomes 2(ψ−θ+φ).

ψ〉θであるから、二本の光線の成す角度は増巾されて
いる。
Since ψ〉θ, the angle formed by the two rays is widened.

更なる構成例としては1体積型ホログラム10の出射側
にガラス平板等を接着して、上記ガラス平板と空気との
境界面において、1次回折光12のみを全反射させるこ
とにより、上記光束13と成す角度を一層大ならしめる
ことが可能である。
As a further configuration example, a flat glass plate or the like is bonded to the output side of the one-volume hologram 10, and only the first-order diffracted light 12 is totally reflected at the interface between the glass flat plate and the air, so that the light flux 13 and It is possible to make the angle formed even larger.

第5図には、本発明に係る光変調装置の一実施例を示す
、第5図において24は反射型偏向(変−調)素子アレ
イであり、たとえば第1図に示した素子が複数個紙面垂
直方向に配列されている。光源21.照明系22による
照明光束28は、偏光素子24に垂直入射し、偏向素子
24が偏向動作でない場合には、照明系の光軸上に光源
像25を形成する。−・方、偏向素子24が破線で示す
如く偏向(変調)動作にある場合には、偏向素子24に
より図面中右下方向へ偏向光束29として反射される。
FIG. 5 shows an embodiment of the optical modulation device according to the present invention. In FIG. They are arranged perpendicular to the page. Light source 21. An illumination light beam 28 from the illumination system 22 is perpendicularly incident on the polarizing element 24, and forms a light source image 25 on the optical axis of the illumination system when the polarizing element 24 is not in a deflecting operation. - On the other hand, when the deflection element 24 is in a deflection (modulation) operation as shown by the broken line, the light is reflected by the deflection element 24 in the lower right direction in the drawing as a deflected light beam 29.

ここで5体積型ホログラム23を、上記偏向光束29の
ホログラムへの入射角度に対してブラック角を満足する
べく構成することにより、第3図、第4図を用いて説明
した原理を応用することにより、偏向光束のみ照明系の
光軸と成す角度を増巾させることが可能である。この結
果、照明系の光束と光分離れた位置に結像系26を配置
することが可能と成り、したがって雑音光成分となる照
明光束(非変調光束)を拾うことなく偏向光束のみを観
測面27上に結像することが可能である。尚未実施−例
においては、偏向素子24上での照明光量むらを防ぐた
めにケーラー照明に類似した照明系の配置を示している
が、必らずしもこれに限定されるものではなく、クリテ
ィカル照明であっても良い。
Here, the principle explained using FIGS. 3 and 4 can be applied by configuring the five-volume hologram 23 to satisfy the Black angle with respect to the angle of incidence of the deflected light beam 29 on the hologram. Accordingly, it is possible to widen the angle that only the deflected light beam forms with the optical axis of the illumination system. As a result, it is possible to place the imaging system 26 at a position optically separated from the light beam of the illumination system, and therefore only the polarized light beam is transmitted to the observation surface without picking up the illumination light beam (non-modulated light beam) that becomes a noise light component. It is possible to image on 27. In addition, although the example shows an arrangement of an illumination system similar to Koehler illumination in order to prevent unevenness in the amount of illumination light on the deflection element 24, it is not necessarily limited to this, and critical illumination It may be.

第6図には、本発明に係る光変調素子の更なる実施例を
示す、第6図の特徴は、結像系26の光軸を、偏向(変
調)素子24の表面に対して垂直なる構成とした点にあ
り、この結果1.たとえば第1図に示した素子を偏向素
子24の表面上に二次元マトリクス配置することが可能
で゛ある0本実施例においては、光源21からの照明光
束28は、照明系22により図面中有下方から偏向素子
24を照明する。偏向素子24表面にて正反射された非
偏向(変調)光束は、体積型ホログラム23に対して図
面中左下方から入射するが、第3図、第4図を用いての
説明による原理に基づき、この入射角度に対してブラッ
ク角を満足するよう体積をホログラム23を構成するこ
とによって、結像系26の光軸に対して成す角度を増+
tJすることが可能である。一方、破線で示す偏向(変
調)光束は1体M1塁ホログラム23の影響を受けるこ
となく結像系26により観測面27上に結像される。
FIG. 6 shows a further embodiment of the light modulation element according to the invention. The feature of FIG. The result is 1. For example, it is possible to arrange the elements shown in FIG. 1 on the surface of the deflection element 24 in a two-dimensional matrix. The deflection element 24 is illuminated from below. The non-deflected (modulated) light beam specularly reflected on the surface of the deflection element 24 enters the volume hologram 23 from the lower left in the drawing, based on the principle explained using FIGS. 3 and 4. , by configuring the hologram 23 so that its volume satisfies the Black angle with respect to this incident angle, the angle formed with respect to the optical axis of the imaging system 26 can be increased.
It is possible to do tJ. On the other hand, the deflected (modulated) light beam shown by the broken line is imaged on the observation surface 27 by the imaging system 26 without being influenced by the one-body M1 base hologram 23.

第7図は、本発明に係る光変調装置の更なる実施例を示
す図で、光変調素子として第2図に示した光変調素子を
用いた場合を示す、光変調素子32が偏向(変調)動作
状態にない場合には、レーザー光lX31からの照明光
束36は、光変調素子32中を直進・透過して上述した
体積型ゴログラム33へ入射する。この時の入射角度に
対してブラック条件を満足するべくホログラム33を構
成することにより、非偏向(変2J!I)光束37は、
図面中力斜上方向へ進む、一方、素子が動作状態にある
場合には破線で示す偏向(変調)光束38は1体積型ホ
ログラム中を直進し、結像系34により、観測面35上
に結像される0本実施例においても、光変調素子32は
、紙面に直交する方向に複数の変wR債城を有する一次
元アレイ状光変調素子であっても構わない。
FIG. 7 is a diagram showing a further embodiment of the light modulation device according to the present invention, in which the light modulation device 32 is deflected (modulated) using the light modulation device shown in FIG. 2 as the light modulation device. ) When not in the operating state, the illumination light beam 36 from the laser beam IX31 passes straight through the light modulation element 32 and enters the volume type gologram 33 described above. By configuring the hologram 33 to satisfy the black condition for the incident angle at this time, the undeflected (variant 2J!I) light beam 37 becomes
On the other hand, when the element is in the operating state, the deflected (modulated) light beam 38 shown by the broken line travels straight through the one-volume hologram and is focused onto the observation surface 35 by the imaging system 34. Even in this embodiment, the light modulation element 32 may be a one-dimensional array light modulation element having a plurality of variable wR elements in the direction perpendicular to the plane of the paper.

上記実施例に於いては、光源は必ずしも単色光源に限定
されるものではない。
In the above embodiments, the light source is not necessarily limited to a monochromatic light source.

以上、本発明に係る光変調素子に於いては。The above is the light modulation element according to the present invention.

光変調素子の光束出射側に変調光束と非変調光束の形成
する角度を増大せしめる手段を配することにより簡易な
構成でS/N比の良好な光変調装置を提供することが可
能である。
By disposing means for increasing the angle formed by the modulated light beam and the non-modulated light beam on the light beam output side of the light modulation element, it is possible to provide a light modulation device with a good S/N ratio with a simple configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は各々、従来の光変調素子の一実施例
を示す図、第3図及びwIJ4図は、本発明の光変調装
置に用いる光学素子の一例である体積型ホログラムを説
明する為の図、第5図、第6図及び第7図は各々1本発
明に係る光変調素子の一実施例を示す図。 21−−−−−一光源 22−−−−−一照明系 23−−−一−一体積型ホログラム 24−−−−−一光変調素子 25−−−−−一光源像 26−−−−−一結像系 2−7−−−−−−観測面 28−−−−−一照明光束 29−−−−−一偏向光束 一θ z−zp1 手 爪先 ネ由 正 書(方式) 特許庁長官  志 賀   学 殿 1、事件の表示 昭和59年特許願第164403号 2、発明の名称 光変調装置 3、補正をする者 事件との関係     特許出願人 住所 東京都大田区下丸子3−30−2名称 (100
)キャ/ン株式会社 代表者 賀  来  能 三 部 4、代理人 居所 〒148東京都大田区下丸子3−30−25、補
正命令の日付(発送日) 昭和59年11月27日 6、補正の対象 明m書 7、補正の内容 (1)、明細書第2頁の3行目の「“Micro’ma
canica11から5行目のrll!??) Jにか
(すでの記載を下記の如く補正する。 記 r″マイクロメカニカルライト、モジュレータ−、アレ
イ、ファプリケイティラド、オン、シリコン(Micr
omachanical light modulat
or arra7fabricated an 5il
icon)”アプライド、フィジックス、レター、ボリ
ューム、31、ナンバー8、’ l 977  (AP
PL、 PHYS、 LETT、 vol、31. N
o、 8゜’ 1fl??)J
FIG. 1 and FIG. 2 each show an example of a conventional light modulation element, and FIG. 3 and wIJ4 illustrate a volume hologram that is an example of an optical element used in the light modulation device of the present invention. FIG. 5, FIG. 6, and FIG. 7 are views each showing an embodiment of the light modulation element according to the present invention. 21------One light source 22---One illumination system 23---One volume hologram 24---One light modulation element 25---One light source image 26------ ---One imaging system 2-7--------Observation surface 28-----One illumination light beam 29--One deflection light beam one θ z-zp1 Hand Toe Nyū Orthographic (Method) Patent Agency Commissioner Manabu Shiga 1, Indication of the case Patent Application No. 164403 of 1982, 2 Name of the invention Light modulation device 3, Person making the amendment Relationship to the case Patent applicant address 3-30 Shimomaruko, Ota-ku, Tokyo 2 names (100
) Can Co., Ltd. Representative Noh Kaku 3 Department 4, Agent residence 3-30-25 Shimomaruko, Ota-ku, Tokyo 148 Date of amendment order (shipment date) November 27, 1980 6, Amendment Target specification M 7, content of amendment (1), 3rd line of page 2 of the specification, ““Micro’ma”
rll on the 5th line from canica11! ? ? ) J (Correct the existing description as follows. Note: Micro-mechanical light, modulator, array, fabricator, on, silicon (Micr
omachanical light modulat
or arra7fabricated an 5il
icon)"Applied,Physics,Letter,Volume,31,Number 8,' l 977 (AP
PL, PHYS, LETT, vol, 31. N
o, 8゜' 1fl? ? )J

Claims (2)

【特許請求の範囲】[Claims] (1)入力信号に応じて入射光束の出射方向を可変なら
しめる光変調素子を備えた光変調装置に於いて、光変調
素子の光束出射側に、光変調素子により変調を受けた光
束と変調を受けなかった光束との分離角度を増大せしめ
る光学部材を配した事を特徴とする光変調装置。
(1) In a light modulation device equipped with a light modulation element that makes the output direction of an incident light beam variable in accordance with an input signal, a light beam modulated by the light modulation element and a light beam modulated by the light modulation element are placed on the light output side of the light modulation element. A light modulation device characterized by having an optical member arranged to increase the separation angle from a light beam that is not received.
(2)前記光学部材は、光変調素子から出射する変調光
束又は非変調光束のいずれか一方の光束に対してブラッ
ク条件を満足する体積型ホログラムである特許請求の範
囲第1項記載の光変調装置。
(2) The light modulation according to claim 1, wherein the optical member is a volume hologram that satisfies a black condition for either a modulated light flux or a non-modulated light flux emitted from a light modulation element. Device.
JP16440384A 1984-06-29 1984-08-06 Optical modulating device Pending JPS6142613A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP16440384A JPS6142613A (en) 1984-08-06 1984-08-06 Optical modulating device
US06/748,835 US4842396A (en) 1984-06-29 1985-06-26 Light modulation element and light modulation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16440384A JPS6142613A (en) 1984-08-06 1984-08-06 Optical modulating device

Publications (1)

Publication Number Publication Date
JPS6142613A true JPS6142613A (en) 1986-03-01

Family

ID=15792468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16440384A Pending JPS6142613A (en) 1984-06-29 1984-08-06 Optical modulating device

Country Status (1)

Country Link
JP (1) JPS6142613A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5272690A (en) * 1992-03-05 1993-12-21 International Business Machines Corporation Hologram element system
US5331445A (en) * 1992-08-18 1994-07-19 International Business Machines Corporation Increased Bragg angle sensitivity hologram system and method
US5602657A (en) * 1992-12-17 1997-02-11 International Business Machines Corporation Hologram system having hologram layers with rotationally offset Bragg planes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5272690A (en) * 1992-03-05 1993-12-21 International Business Machines Corporation Hologram element system
US5331445A (en) * 1992-08-18 1994-07-19 International Business Machines Corporation Increased Bragg angle sensitivity hologram system and method
US5602657A (en) * 1992-12-17 1997-02-11 International Business Machines Corporation Hologram system having hologram layers with rotationally offset Bragg planes

Similar Documents

Publication Publication Date Title
US10890707B2 (en) Holographic waveguide apparatus for structured light projection
US4698602A (en) Micromirror spatial light modulator
US7113333B2 (en) Screen having micro-lens array and projector
US6608961B2 (en) Optical system including a planar waveguide
US6943950B2 (en) Two-dimensional blazed MEMS grating
JP4804358B2 (en) Spatial light modulation device, optical processing device, and method of using coupling prism
JPH06284362A (en) Picture projection device
KR960706105A (en) Backlight Assembly Used for Electro-Optic Display
JPH0922541A (en) Optical reader of recording medium
CA1291657C (en) Systems and methods for processing optical correlator memory devices
US5031993A (en) Detecting polarization state of an optical wavefront
JP2002162573A (en) Spatial optical modulator and image display device
JPS6142613A (en) Optical modulating device
US7221509B2 (en) Method and apparatus for optical pickup capable of performing an effective polarization split
US6049410A (en) Structure of spatial light modulator and lighting system therefor
US5793733A (en) Polarizing beam splitter and method for manufacturing same
JPH08190054A (en) Amplitude-modulation contrast microscope
US6407849B1 (en) Method and system for illumination using laser diode bar and microlenses array of same pitch
KR890002703A (en) Light beam deflector
JPH0968685A (en) Reflection type spacial optical modulating element and projecting optical device using that spacial optical modulating element
US20010055131A1 (en) Optical element and apparatus
JPS6142612A (en) Optical modulating device
JP4668365B2 (en) Optical device
JP2976561B2 (en) Optical information processing device
KR100808099B1 (en) Display device using spatial optical modulator with diffraction order separation function and Method thereof