JPS6141810A - Burning flame formation gas turbine - Google Patents

Burning flame formation gas turbine

Info

Publication number
JPS6141810A
JPS6141810A JP16023784A JP16023784A JPS6141810A JP S6141810 A JPS6141810 A JP S6141810A JP 16023784 A JP16023784 A JP 16023784A JP 16023784 A JP16023784 A JP 16023784A JP S6141810 A JPS6141810 A JP S6141810A
Authority
JP
Japan
Prior art keywords
air ratio
flame
nox
excess air
burning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16023784A
Other languages
Japanese (ja)
Inventor
Kenichi Soma
憲一 相馬
Norio Arashi
紀夫 嵐
Yoshinobu Kobayashi
啓信 小林
Kazuhisa Higashiyama
和寿 東山
Kiyoshi Narato
清 楢戸
Toru Inada
徹 稲田
Keizo Otsuka
大塚 馨象
Takao Hishinuma
孝夫 菱沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16023784A priority Critical patent/JPS6141810A/en
Publication of JPS6141810A publication Critical patent/JPS6141810A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce effectively thermal NOx produced in burning time by a method wherein a fuel jetting nozzle is utilized for forming a low excess air ratio burning flame and plural fuel jetting nozzles are arranged in concentric circle manner on the outer periphery of the fuel jetting nozzle for forming a high excess air ratio burning flame. CONSTITUTION:Fuel is jetted through a nozzle 10, the air required for burning is jetted through an air port 30, a low excess air ratio burning flame 50 having the excess air ratio less than 1.0 is formed. Meantime, the fuel is jetted through nozzles 20, the air required for the burning is jetted through air ports 40, a high excess air ratio burning flame 60 having the excess air ratio more than 1.0 is formed. Thermal NOx produced by the high excess air ratio burning flame 60 and a material for reducing the NOx produced by the low excess air ratio burning flame 50 are mixed sufficiently in a mixing region 70. Thereby, the NOx is changed to a harmless nitrogen by the reaction between said NOx and the material. Accordingly, the burning can be performed under the less amount of NOx producing condition.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はガスタービン燃焼器の構造に係シ、特に燃焼時
に発生する窒素酸化glJ(以下NOxと称する)を低
減するのに好適な燃焼器に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to the structure of a gas turbine combustor, and more particularly to a combustor suitable for reducing nitrogen oxide GLJ (hereinafter referred to as NOx) generated during combustion. .

〔発明の背景〕[Background of the invention]

ガスタービン燃焼器の燃焼時に発生するNOxはサーマ
ルNOXと言われる空気中窒素に起因するものでおる。
NOx generated during combustion in a gas turbine combustor is caused by nitrogen in the air called thermal NOx.

サーマルNOxの生成機構は、Zeldovich機構
で説明される。すなわち、”以下の3つの素反応による
The generation mechanism of thermal NOx is explained by the Zeldovich mechanism. In other words, ``Due to the following three elementary reactions.

N!+0 → No + N       (1)N+
0*→ NO+ 0       (2)N  + O
H−NO+H(3) これらの反応式によるならば、(1)式に代表される窒
素分子の解離反応による窒素原子の生成が、開始反応で
おる事が分る。(1)式にて窒素原子Nが生成し、その
Nが(2)式、(3)式にて酸素分子、水散基ラジカル
にて酸化されてNOとなる訳でちる、一般に窒素分子の
様な二原子分子は温度の上昇に伴って分子の伸縮振動が
活発化し、すなわち、窒素原子(N)と窒素原子(N)
の間の距離の伸び縮みが激しくなシ窒素−窒素結合が切
れ易くなる。
N! +0 → No + N (1) N+
0*→ NO+ 0 (2) N + O
H--NO+H (3) According to these reaction equations, it can be seen that the generation of nitrogen atoms by the dissociation reaction of nitrogen molecules represented by equation (1) is an initiation reaction. In formula (1), a nitrogen atom N is generated, and in formulas (2) and (3), that N is oxidized by an oxygen molecule and a water radical to become NO. In diatomic molecules such as
Nitrogen-nitrogen bonds, where the distance between them expands and contracts rapidly, are easily broken.

よって、温度の上昇に伴って窒素分子(N3)の解離反
応が激しく起こる事にな!0、(1)式の反応式がより
一層進行する事になる。
Therefore, as the temperature rises, the dissociation reaction of nitrogen molecules (N3) will occur violently! 0, the reaction equation (1) proceeds further.

以上の如く、サーマルNOxは温度の上昇に伴って生成
量が増加する事が説明出来る。
As described above, it can be explained that the amount of thermal NOx produced increases as the temperature rises.

すなわち、サーマルNOxの発生を低減させるためには
、(1)式の反応を進行させない事でおる。そして、そ
のためには温度を上げない様にする事である。現状のガ
スタービン燃焼器のt N Ox化の方法は、火炎の温
度を上げない様、大量の空気で冷却させる方法である。
That is, in order to reduce the generation of thermal NOx, it is necessary to prevent the reaction of formula (1) from proceeding. And in order to do that, it is important not to raise the temperature. The current method for converting gas turbine combustors to tN Ox is to cool the flame with a large amount of air so as not to increase the temperature of the flame.

すなわち、燃焼火炎の空気比は非常高くなっている。空
気比とは、供給した燃料を完全燃焼させるに必要な最少
限の空気量(理論空気量)と実際に投入した空気量の比
である。このような対策の後にても、排ガス中のNOx
濃度は1100pp程度でおシ、昨今の環境問題にては
60ppm以下が望まれている。
That is, the air ratio of the combustion flame is extremely high. The air ratio is the ratio between the minimum amount of air (theoretical air amount) required to completely burn the supplied fuel and the amount of air actually introduced. Even after such measures, NOx in exhaust gas
The concentration is preferably about 1100 ppm, and in view of recent environmental issues, a concentration of 60 ppm or less is desired.

従来のガスタービン燃焼器の低NOx燃焼方法について
、第5図にて説明する。すなわち、先(述べた様に、多
量の空気で火炎温度を低げる、いわゆる希薄燃焼による
方法である。ノズル10(ロ))ら燃料が供給され、さ
らにエアボー) 200よシ空気が投入される。その際
、空気比が非常に大さくなる様、燃料と空気のtt−制
御するものである。すなわち、火炎300は高空気比燃
焼火炎となる。そのために1いろいろの工夫がなされた
。例えば、実開昭57−154853写公報に記載の方
法では、ガスタービン車室圧力を利用して空気圧力が低
いときには、空気を供給し、出来るだけ安定な希薄燃焼
とするものでおる。また、実開昭57−150373号
公報では、ガスタービン燃焼器の空気導入装置に関する
ものでら夛、やはシ、低NOx比のための希薄燃焼を行
なうものである。
A conventional low NOx combustion method for a gas turbine combustor will be explained with reference to FIG. That is, as mentioned above, this is a so-called lean combustion method in which the flame temperature is lowered with a large amount of air.Fuel is supplied from the nozzle 10 (b), and air is further injected from the nozzle 10 (b). Ru. At that time, the fuel and air are tt-controlled so that the air ratio becomes extremely large. That is, the flame 300 becomes a high air ratio combustion flame. To this end, various efforts were made. For example, in the method described in Japanese Utility Model Publication No. 57-154853, when the air pressure is low, air is supplied using the gas turbine casing pressure to achieve lean combustion as stable as possible. Further, Japanese Utility Model Application Publication No. 57-150373 relates to an air introduction device for a gas turbine combustor, which performs lean combustion for a low NOx ratio.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前記課題を解決するために、他のNO
Xの生成反応の面から低NOx燃焼方法を考え、従来の
ガスタービン燃焼器の構造を改良することにより、燃焼
時に発生するサーマルNOx!c効果的に低減出来るガ
スタービン燃焼器を提供することにある。
An object of the present invention is to solve the above problems by using other NO.
By considering a low NOx combustion method from the viewpoint of X production reaction and improving the structure of the conventional gas turbine combustor, thermal NOx generated during combustion can be reduced! An object of the present invention is to provide a gas turbine combustor that can effectively reduce

〔発明の概要〕[Summary of the invention]

即ち、本発明の特徴は、ガスタービン燃焼器において、
低空気比燃焼火炎を形成させるための燃料噴出ノズルと
、該ノズルの外周同心円状に、高空気比燃焼火炎を形成
させるための、複数個の燃料噴出ノズルを配置している
事にある。なお、低空気比燃焼火炎とは空気比が1.0
未満であυ、高空気比燃焼火炎とは空気比が1.0以上
である。
That is, the feature of the present invention is that in a gas turbine combustor,
A fuel injection nozzle for forming a low air ratio combustion flame and a plurality of fuel injection nozzles for forming a high air ratio combustion flame are arranged concentrically around the outer circumference of the nozzle. Note that a low air ratio combustion flame is one in which the air ratio is 1.0.
A high air ratio combustion flame is one in which the air ratio is 1.0 or more.

また、低空気比燃焼火炎では、窒素酸化物の還元剤を生
成させ、高空気比燃焼火炎では、窒素酸化物(サーマル
N0x)を生成させ、該還元剤と窒素酸化物をガスター
ビン燃焼器内で混合させる事も特徴の1つである。
In addition, in a low air ratio combustion flame, a reducing agent for nitrogen oxides is generated, and in a high air ratio combustion flame, nitrogen oxides (thermal NOx) are generated, and the reducing agent and nitrogen oxides are transferred into the gas turbine combustor. One of the features is that it can be mixed with.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を用いて本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail using the drawings.

第1図は、本発明によるガスタービン燃焼器の一例であ
る。ノズル10が低空気燃焼火炎形成用でろシ、該ノズ
ルの外周同心円状に、高空気比燃焼火炎形成用のノズル
20が複数個配置しである。
FIG. 1 is an example of a gas turbine combustor according to the present invention. The nozzle 10 is for forming a low air combustion flame, and a plurality of nozzles 20 for forming a high air ratio combustion flame are arranged concentrically around the nozzle.

ノズル10から、ガスタービン燃焼器用の燃料(通常メ
タン等を用いる)を噴出させ、燃焼に必要な空気は、エ
アポート30から噴出される。エアボー430は、第1
図の如く、ノズル10の外周に、同心円状[4る。よっ
て、低空気比燃焼火炎50を形成する。該火炎を、空気
比1.0未満の火炎となる様、燃料及び空気量を制御す
る。
Fuel for the gas turbine combustor (usually using methane or the like) is ejected from the nozzle 10, and air necessary for combustion is ejected from the air port 30. Airbow 430 is the first
As shown in the figure, there are concentric circles [4] around the outer periphery of the nozzle 10. Therefore, a low air ratio combustion flame 50 is formed. The amount of fuel and air is controlled so that the flame has an air ratio of less than 1.0.

また、ノズル20から、ガスタービン燃焼器用の燃料(
通常メタン等を用いる)を噴出させ、燃焼に必要な空気
は、エアポート40から噴出される。エアポート40は
、第1図の如く複数個のボートでタービン燃焼器の外周
におり、火炎後流迄ある。よって、高空気比燃焼火炎6
0を形成する。
Further, from the nozzle 20, fuel for the gas turbine combustor (
The air necessary for combustion is ejected from the air port 40. As shown in FIG. 1, the air port 40 is arranged in a plurality of boats around the outer periphery of the turbine combustor and extends to the flame trailing stream. Therefore, the high air ratio combustion flame 6
form 0.

該火炎を、空気比1.0以上の火炎となる様、燃料及び
空気1を制御する。
The fuel and air 1 are controlled so that the flame has an air ratio of 1.0 or more.

しかして、高空気比燃焼火炎601/Cて生成するサー
マルNOXと、低空気比燃焼火炎50にて生成するN0
xt−還元する物質とを、混合領域70にて充分く混合
する事によって、低NOx燃焼を図るものである。
Therefore, the thermal NOX generated by the high air ratio combustion flame 601/C and the N0 generated by the low air ratio combustion flame 50
By sufficiently mixing the xt-reducing substance in the mixing region 70, low NOx combustion is achieved.

本発明の原理を以下に示す。The principle of the present invention is shown below.

第2図には、本発明の原理を検証した実験装置、第3図
及び第4図にはその実験結果を示す。
FIG. 2 shows an experimental apparatus for verifying the principle of the present invention, and FIGS. 3 and 4 show the experimental results.

まず、実験方法を説明する。導管80ヘメタンガスと空
気を予混合した気体を供給し、該気体はノズル81から
噴出されて火炎82を、燃焼器90内へ形成する。該火
炎の排ガスは、プローブ100からサンプリングされて
、ガスクロマドクラフィー及びNOx計にて分析される
。空気比は、該排ガス分析値より算出する。該火炎にょ
シ生成するサーマルNOxへの空気比の影響について、
初めに測定し、次いで、導管80へ一定量の一酸化窒素
(No慶メタンガスと空気を予混合した気体に添加し、
火炎を形成させる。該火炎について排ガス中のN08度
と空気比の関係を測定する。なお、空気比は、導管への
メタンガス量を変化させる事によシ変化させた。
First, the experimental method will be explained. Conduit 80 supplies a premixed gas of methane gas and air, which is ejected from nozzle 81 to form flame 82 into combustor 90 . The exhaust gas of the flame is sampled from the probe 100 and analyzed using gas chromatography and a NOx meter. The air ratio is calculated from the exhaust gas analysis value. Regarding the influence of air ratio on thermal NOx generated by the flame,
Firstly, a certain amount of nitrogen monoxide (No. 2, methane gas and air is added to the premixed gas) into the conduit 80.
Form a flame. Regarding the flame, the relationship between N08 degrees in the exhaust gas and the air ratio is measured. Note that the air ratio was changed by changing the amount of methane gas supplied to the conduit.

第3図に実ha来を示す。丸印のプロットによる曲線1
10は、メタンガスと空気の予混合火炎に関して空気比
と排ガス中サーマルNo X 磯にとの関係を示したも
のである。すなわち、空気比が0.7以上からサーマル
NOxの発生が覗察され、最大で約20ppm発生して
いる事が分った。次に1一定量の一酸化窒g(No)を
メタンガスと空気の予混合火炎中へ、添加し、該火炎に
ついて、排ガス中のNQxg度を測定する訳であるが、
ここでは、156ppmON O’に添加した。従って
、先に測定したサーマルNOXと、ここで添加した15
6ppmのNOの濃度の和が排ガス中で観察されるはず
である。すなわち、曲線110に156ppm t−足
した曲線120としての曲線が排ガス分析の結果得られ
るはずである。ところが、測定結果は、四角印のプロッ
トで示される曲線130となった。すなわち、この結果
は、空気比が0.9以下では、添加した156pIXn
のNoは還元されて窒素となっている事を示すものであ
る。よって、空気比が0.9以下の火炎中には、Noと
反応し窒素に還元する物質が存在している事が考えられ
る。更に実験結果は、空気比を下げていくに従って、排
ガス中NOx濃度は増々下がっていく事を示している。
Figure 3 shows the actual growth. Curve 1 based on circle plot
10 shows the relationship between the air ratio and the thermal Nox in the exhaust gas for a premixed flame of methane gas and air. That is, it was observed that thermal NOx was generated when the air ratio was 0.7 or higher, and it was found that the maximum amount generated was about 20 ppm. Next, a certain amount of nitric oxide g (No) is added to the premixed flame of methane gas and air, and the degree of NQxg in the exhaust gas is measured for the flame.
Here, 156 ppm ON O' was added. Therefore, the thermal NOX measured earlier and the 15
A total concentration of 6 ppm NO should be observed in the exhaust gas. That is, a curve 120 obtained by adding 156 ppm t to curve 110 should be obtained as a result of exhaust gas analysis. However, the measurement result was a curve 130 shown by a plot of square marks. In other words, this result shows that when the air ratio is 0.9 or less, the added 156pIXn
No indicates that it has been reduced to nitrogen. Therefore, it is considered that a substance that reacts with No and reduces it to nitrogen exists in a flame with an air ratio of 0.9 or less. Furthermore, the experimental results show that as the air ratio is lowered, the NOx concentration in the exhaust gas decreases more and more.

この事は、すなわち、燃焼火炎の空気比が低ければ低い
程、No1に還元する物質が多量に存在する事を意味す
る。本実験結果を、以下の式で定義する輩素酸化物低減
率(η)として表現した計算値を第4図に示す。第4図
の結果、空気比が0.7以下では、窒素酸化物低減率η
は90%以上となっておシ、空気比が0.7以下の火炎
は、NOを還元する物質を多量に生成しておシ、低NO
Xのためには非常に効果的でわる事が分る。
This means that the lower the air ratio of the combustion flame, the more substances that can be reduced to No. 1 are present. FIG. 4 shows the calculated value of the experimental results expressed as the ferrochemical oxide reduction rate (η) defined by the following formula. As a result of Figure 4, when the air ratio is 0.7 or less, the nitrogen oxide reduction rate η
is over 90%, and a flame with an air ratio of 0.7 or less produces a large amount of substances that reduce NO, resulting in low NO
It turns out to be very effective for X.

本発明は、以上の実験結果1に21i!Fにして成され
たものでδる。すなわち、生成したサーマルNOxを、
低空気比燃焼火炎中に多量に存在しているNoを還元す
る物質で、無害な窒素に還元する争t−特値とする燃焼
方法を具現化したものである。
The present invention is based on the above experimental result 1. It is δ due to what was done in F. In other words, the generated thermal NOx is
It is a substance that reduces No, which exists in large amounts in low air ratio combustion flames, and embodies a combustion method that reduces it to harmless nitrogen.

本実験結果では、空気比が0.7以下の低空気比燃焼火
炎を、タービン燃焼器内に形成させる事によって約90
チの蓋累酸化物の低減が可能である事を示しているもの
である。そして、実除に、通常のガスタービン燃焼器に
対して、何らの低NOx化のための処理をしていない場
合の、排ガス中NOx濃度とほぼ等しい156ppmの
Noを添加し模擬した実験にて排ガス中N0XIII度
が8ppm迄低減される結果を得た訳でらる。
In this experimental result, by forming a low air ratio combustion flame with an air ratio of 0.7 or less in the turbine combustor, approximately 90%
This shows that it is possible to reduce the amount of accumulated oxides on the lid. In fact, in a simulation experiment, 156 ppm of NO was added to a normal gas turbine combustor, which is almost the same as the NOx concentration in the exhaust gas without any treatment to reduce NOx. This means that the NOXIII level in the exhaust gas was reduced to 8 ppm.

〔光間の効果〕[Effect between lights]

本発明によれば、ガスタービン燃麗器内に空気比が1.
0未満の低空気比燃焼火炎の形成と、空気比が1.0以
上の高空気比燃焼火炎の形成とを実現する事が可能でわ
シ、低空気比燃焼火炎からはNOXの還元剤が生成し、
高空気比燃焼火炎からはサーマルNOXが生成し、両者
が反応してNQxH無害な窒素となり、よって、NOX
の発生量の少ない燃焼を行なう事が出来る。
According to the present invention, the air ratio in the gas turbine combustor is 1.
It is possible to form a low air ratio combustion flame with an air ratio of less than 0 and a high air ratio combustion flame with an air ratio of 1.0 or more. generate,
Thermal NOX is generated from a high air ratio combustion flame, and the two react to form harmless nitrogen, NQxH.
It is possible to perform combustion with a small amount of .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるガスタービン燃焼器の一実施例を
示す縦断面図、第2図は本発明の原理を検証した実験装
置の説明図、第3図及び第4図は、その実験結果を示す
線図、第5図は従来のガスタービン燃焼器の縦断面図で
おる。 10・・・低空気比燃焼火炎形成用ノズル、20・・・
高空気比燃焼火炎形成用ノズル、30.40・・・エア
ボー)、50・・・低空気比燃焼火炎、60・・・高空
気比笛10 茅z’ffJ 芽3 囚 0、S   O,60,70,111)、9   /、
0空八え入 芽4 図 宣長冗入
Fig. 1 is a vertical cross-sectional view showing an embodiment of a gas turbine combustor according to the present invention, Fig. 2 is an explanatory diagram of an experimental device for verifying the principle of the present invention, and Figs. 3 and 4 are the experimental results. FIG. 5 is a longitudinal sectional view of a conventional gas turbine combustor. 10... Low air ratio combustion flame formation nozzle, 20...
High air ratio combustion flame formation nozzle, 30.40... air bow), 50... low air ratio combustion flame, 60... high air ratio whistle 10 Kayaz'ffJ Mei 3 Prisoner 0, S O, 60 ,70,111),9/,
0 Sora Hachie Irime 4 Illustrated public notice extra inclusion

Claims (1)

【特許請求の範囲】[Claims] 1、ガスタービン燃焼器の中心部に低空気比燃焼火炎を
発生させる燃料噴出ノズルを位置させ、該ノズルの外周
に同心円状に、高空気比燃焼火炎を発生させる複数個の
燃料噴出ノズルを配置し、ガスタービン燃焼器内に低空
気比燃焼火炎と高空気比燃焼火炎とを形成させる事を特
徴とするガスタービンの燃焼火炎形成方法、
1. A fuel injection nozzle that generates a low air ratio combustion flame is located in the center of the gas turbine combustor, and a plurality of fuel injection nozzles that generate a high air ratio combustion flame are arranged concentrically around the nozzle. a combustion flame formation method for a gas turbine, the method comprising: forming a low air ratio combustion flame and a high air ratio combustion flame in a gas turbine combustor;
JP16023784A 1984-08-01 1984-08-01 Burning flame formation gas turbine Pending JPS6141810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16023784A JPS6141810A (en) 1984-08-01 1984-08-01 Burning flame formation gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16023784A JPS6141810A (en) 1984-08-01 1984-08-01 Burning flame formation gas turbine

Publications (1)

Publication Number Publication Date
JPS6141810A true JPS6141810A (en) 1986-02-28

Family

ID=15710665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16023784A Pending JPS6141810A (en) 1984-08-01 1984-08-01 Burning flame formation gas turbine

Country Status (1)

Country Link
JP (1) JPS6141810A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5022849A (en) * 1988-07-18 1991-06-11 Hitachi, Ltd. Low NOx burning method and low NOx burner apparatus
US5038558A (en) * 1988-01-08 1991-08-13 Hitachi, Ltd. Gas turbine combustor and a method of combustion thereby
JP2012140938A (en) * 2010-12-30 2012-07-26 General Electric Co <Ge> Method, system and apparatus for detecting material defect in combustor of combustion turbine engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5038558A (en) * 1988-01-08 1991-08-13 Hitachi, Ltd. Gas turbine combustor and a method of combustion thereby
US5022849A (en) * 1988-07-18 1991-06-11 Hitachi, Ltd. Low NOx burning method and low NOx burner apparatus
JP2012140938A (en) * 2010-12-30 2012-07-26 General Electric Co <Ge> Method, system and apparatus for detecting material defect in combustor of combustion turbine engine

Similar Documents

Publication Publication Date Title
Zachariah et al. Experimental and numerical studies of sulfur chemistry in H2/O2/SO2 flames
JPS6225927B2 (en)
Yuasa et al. A technique for improving the performance of hybrid rocket engines
Lin et al. Controllable NO emission and high flame performance of ammonia combustion assisted by non-equilibrium plasma
JPS58584B2 (en) ``Ninenkikan&#39;&#39;
ITMI20011809A1 (en) DEVICE TO TREAT EXHAUST GAS
Eberius et al. Stabilization of premixed, conical methane flames at high pressure
KR100304392B1 (en) How to reduce NOx emissions from gas turbine units and gas turbine units
JPS6141810A (en) Burning flame formation gas turbine
JPH01179822A (en) Gas turbine combustor
JPS5819934B2 (en) gas combustor
IT9019796A1 (en) DRY HYDROCARBON COMBUSTION APPARATUS AND METHOD WITH LOW NO / X PRODUCTION
JP3139978B2 (en) Gas turbine combustor
JPH0743136B2 (en) Turbulent premixed burner that reduces nitrogen oxides by reducing combustion
WO2019171067A1 (en) Abatement by combustion
GB1578665A (en) Minimizing no production in operation of gas turbine combustors
JP2007155320A (en) Opposed flow combustor
JPH1073254A (en) Low nox combustion device
Kim et al. Synergistic effect of non-thermal plasma and CH4 addition on turbulent NH3/air premixed flames in a swirl combustor
Khateeb Stability limits and exhaust emissions from ammonia flames in a swirl combustor at elevated pressures
JP2634279B2 (en) Method for burning NOx-containing gas
US8071062B2 (en) High temperature catalytic process to reduce emissions of carbon monoxide
JP2019105382A (en) Fuel combustion device and fuel combustion method
JPH08284681A (en) Gas turbine combustion device and nox reduction method therefor
KR100245500B1 (en) Nox treatment device of diesel engine