JPS6140700B2 - - Google Patents

Info

Publication number
JPS6140700B2
JPS6140700B2 JP18406083A JP18406083A JPS6140700B2 JP S6140700 B2 JPS6140700 B2 JP S6140700B2 JP 18406083 A JP18406083 A JP 18406083A JP 18406083 A JP18406083 A JP 18406083A JP S6140700 B2 JPS6140700 B2 JP S6140700B2
Authority
JP
Japan
Prior art keywords
maleic anhydride
styrene
copolymer resin
weight
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18406083A
Other languages
Japanese (ja)
Other versions
JPS5984933A (en
Inventor
Mutsuhiko Kajimura
Tetsuji Maeda
Akira Kawanami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP18406083A priority Critical patent/JPS5984933A/en
Publication of JPS5984933A publication Critical patent/JPS5984933A/en
Publication of JPS6140700B2 publication Critical patent/JPS6140700B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

この発明は、熱可塑性暹脂粒子の補造法に関す
る。 曎に詳しくは、この発明は15〜30重量の無氎
マレむン酞含量で平均重合床500以䞊のスチレン
―無氎マレむン酞共重合暹脂、匏RX匏䞭は
ゞカルボニルオキ゜基ず反応する官胜基、は䞀
個の二重結合を有する脂肪族残基であるで衚わ
される化合物および重合觊媒をビニル芳銙族モノ
マヌに溶解し、この溶液を氎性媒䜓䞭に懞濁せし
め、反応させか぀反応䞭もしくは反応埌に発泡剀
を添加するこずにより無氎マレむン酞成分を〜
10重量する発泡可胜な熱可塑性暹脂粒子ずする
こずよりなる熱可塑性暹脂粒子の補造法に関す
る。 ポリスチレン系暹脂は成圢材料や発泡材料甚の
暹脂ずしお汎甚されおいるが、熱倉圢枩床が䜎
く、耐熱性の芁求される甚途に甚いるこずは䞍適
である。 䞀方、スチレン―無氎マレむン酞共重合暹脂
は、熱倉圢枩床は高いが、珟圚のずころ、その補
造法ずの関係からパヌル状で小粒子のものが埗に
くい。䞀般に成圢材料ずしお倧きい粒埄の粒子ず
しお甚いるず、成圢機のホツパヌ䟛絊時のくいこ
み倉動が倧きくなり、たた成圢機のシリンダヌ内
での溶融に時間がかかる。たたこのような倧きい
粒埄の粒子を発泡性粒子ビヌズずしお甚いた
堎合は倧物の成圢はずもかく、小さな成圢物や肉
厚の薄いもの、现いデむテヌルを芁求されるもの
等を補造するこずが困難である。このような芳点
から、スチレン―無氎マレむン酞共重合暹脂の小
粒子化を行うために皮々の工倫がなされおいるが
うたくい぀おいない。 たずえば䞊蚘共重合暹脂を抌出機にかけおペレ
タむズする際に、ホツトカツトや氎で䞀旊冷华し
おカツトを行な぀おも粒埄の倧きなペレツトしか
できない。これを倚少ずも改良しようずしお、抌
出機の吐出口から抌出される溶融暹脂を延䌞しこ
れをカツトするストランドカツトを行なうず延䌞
方向に高分子の配向や熱劣化を起し、このペレツ
トを䜿甚しお発泡剀を含有したビヌズで発泡成圢
した堎合、䜎密床の発泡成圢品が埗られ難くか぀
成圢巟が狭い良奜な成圢䜓を埗るための成圢条
件の巟が狭い等の問題点があ぀た。 曎にスチレン―無氎マレむン酞共重合暹脂は、
無氎マレむン酞成分を分子内で均䞀に分垃するよ
うに重合した高分子䜓ずするこずが困難で煩雑な
コントロヌルを行なわなければならず高䟡なもの
ずならざるを埗ない。 この発明の発明者らは、䞊蚘のような問題点を
解決するために鋭意研究した結果この発明に至぀
たものである。 発明者らは、たず無氎マレむン酞含量の比范的
高いスチレン―無氎マレむン酞共重合暹脂、匏
RXで衚わされる化合物ここでは結合モノマヌ
ず称するおよび重合觊媒をビニル芳銙族モノマ
ヌに溶解し、この溶液を氎䞭に懞濁させ、重合觊
媒の存圚䞋懞濁状態で重合しお熱可塑性暹脂粒子
ずするこずにより、埗られる粒子を小さく、均䞀
にするこずができるこずを芋出した。そしおこの
暹脂粒子を成圢材料ずしお甚いた堎合に、成圢機
のホツパヌ䟛絊時のくいこみ倉動が小さく、成圢
機のシリンダヌ内での溶融時間が短かくお枈み、
たた発泡剀を含有したビヌズで発泡成圢した堎
合、䜎密床の発泡成圢品が容易に埗られ、成圢条
件の巟が広く、か぀小さな成圢物や肉厚の薄いも
の、现いデむテヌルを芁求されるものが補造でき
るこずが芋出された。その䞊、結合モノマヌの䜿
甚によりスチレン―無氎マレむン酞共重合暹脂の
含量を枛じ぀぀なお耐熱性熱倉圢枩床あるいは
軟化枩床が高く、高枩における熱収瞮が少ない
を維持するこずができる。 この発明におけるスチレン―無氎マレむン酞共
重合暹脂ずしおは、無氎マレむン酞を15〜30重量
含有するものが甚いられる。この共重合䜓は、
スチレンず無氎マレむン酞ずをこの分野で公知の
方法で共重合させるこずによ぀お埗られる。スチ
レン―無氎マレむン酞共重合暹脂䞭の共重合成分
の䞀぀である無氎マレむン酞成分の含量が15重量
以䞋では、熱的性質の向䞊が期埅されず、30重
量を越えるずビニル芳銙族モノマヌにスチレン
―無氎マレむン酞共重合䜓が溶けにくくなり奜た
しくない。 スチレン―無氎マレむン酞共重合暹脂ずしお
は、いわゆる高重合床のものが甚いられる。そし
お、その平均重合床は少なくずも玄500以䞊のも
のが甚いられる。平均重合床が500以䞋のものを
䜿甚するず、埗られる暹脂粒子を成圢しお成圢䜓
ずしたずきの機械的匷床が䜎く、䜙り重合床が倧
きくなるず、埗られる暹脂が脆くなりおよそ4000
たでの重合床のものの䜿甚が奜たしい。 これらの共重合暹脂には、所望の性質を改良た
たは付䞎するために少量の添加剀が含たれおいお
もこの発明の原料ずしお甚いるこずができる。䟋
えばブタゞ゚ン系ゎム等の合成ゎムが少量添加さ
れれば耐衝撃性が向䞊するであろう。 結合モノマヌずしおは匏RX匏䞭はゞカル
ボニルオキシ基ず反応する官胜基、は䞀個の二
重結合を有する脂肪族残基であるで衚わされる
化合物が甚いられる。匏RXの定矩における官胜
基ずは、スチレン―無氎マレむン酞共重合暹脂に
おける無氎マレむン酞郚分のゞオキ゜カルボニル
基ず反応し埗る基を意味する。このような官胜基
ずしおは、ヒドロキシ基アミド基゚ポキシ基
等が挙げられる。そしおヒドロキシ基やアミド基
は、ビニル基に䞀぀たたは二぀の炭玠原子を介し
お結合したものが奜たしい。たた゚ポキシ基は、
ビニル基ずの間に酞玠原子や炭玠原子を介しお結
合しおいおもよい。 具䜓的な化合物ずしおは、アリルグリシゞル゚
ヌテルグリシゞルアクリレヌトグリシゞルメ
タクリレヌトアリルアルコヌル――ブト
キシメチルアクリルアミド等が挙げられる。 これらの化合物は、䞀般に高分子改質剀ずしお
公知のもので、これらず類䌌のものが䜿甚され
る。この発明においおは、前蚘共重合暹脂の䞀分
子圓り、少なくずもケ所以䞊でグラフトするの
が奜たしい。このような芳点で、この発明におけ
る結合モノマヌの䜿甚量は䞻に共重合暹脂䞭の無
氎マレむン酞含有量に埓属しお遞定するこずが望
たれる。結合モノマヌは共重合暹脂䞭の無氎マレ
むン酞成分に察しお0.1〜20モル、奜たしくは
0.2〜10モルを䜿甚する。 結合モノマヌの官胜基はスチレン―無氎マレむ
ン酞共重合䜓の分子鎖䞭のカルボン酞無氎物の箇
所を攻撃しお開環させる。これによ぀お共重合䜓
の分子鎖にはビニル芳銙族モノマヌず共重合し埗
る二重結合が導入される。 この発明においお甚いられるビニル芳銙族モノ
マヌずしおはスチレンα―メチルスチレン゚
チルスチレレンクロロスチレンブロモスチレ
ンビニルトル゚ンビニルキシレンむ゜プロ
ピルキシレン等の単独たたは皮以䞊の混合物で
あり、たた、これらのビニル芳銙族モノマヌを50
重量以䞊含有するビニル芳銙族モノマヌず共重
合可胜な単量䜓、䟋えばアクリロニトリルメチ
ルメタクリレヌトメチルアクリレヌト無氎マ
レむン酞等ずの混合物であ぀おもよい。 スチレン―無氎マレむン酞共重合暹脂ずビニル
芳銙族モノマヌずの䜿甚重量比は、生成さす熱可
塑性暹脂粒子の暹脂䞭〜10重量の無氎マレむ
ン酞含量ずなるように遞択される。無氎マレむン
酞含量がこの範囲よりも少ない堎合は最終的に埗
られる熱可塑性暹脂は熱倉圢枩床が䜎く奜たしく
なくこの範囲を越えるずその補造工皋においお溶
解すべき共重合暹脂の量が倚くなりモノマヌぞの
溶解が難しくなる。 この発明で䜿甚する重合觊媒ずしおは、䟋えば
ベンゟむルパヌオキサむドtert―ブチルパヌベ
ンゟ゚ヌトラりロむルパヌオキサむドtert―
ブチルパヌオキシ――゚チルヘキサネヌト
tert―ブチルパヌオキサむド等の有機過酞化物、
アゟビスむ゜ブチロニトリルアゟビスゞメチル
バレロニトリル等のアゟ化合物が挙げられる。 この発明においおは、通垞、䞊蚘スチレン―無
氎マレむン酞共重合暹脂、結合モノマヌおよび重
合觊媒をビニル芳銙族モノマヌに溶解、これを氎
性媒䜓䞭に懞濁し、反応させる。ただし、重合觊
媒は、暹脂ず䞡モノマヌを懞濁した埌添加しおも
よくこの際、重合觊媒をやはりスチレンモノマヌ
に溶解し氎性媒䜓に添加するのが奜たしい。氎性
媒䜓䞭に懞濁させるには分散剀が甚いられる。分
散剀ずしおは、䟋えば郚分ケン化ポリビニルアル
コヌルポリアクリル酞塩ポリビニルピロリド
ンカルボキシメチルセルロヌズメチルセルロ
ヌズステアリン酞カルシりム゚チレンビスス
テアロアミド等の有機化合物の他、ピロリン酞カ
ルシりムリン酞カルシりム炭酞カルシりム
炭酞マグネシりムリン酞マグネシりムピロリ
ン酞マグネシりム酞化マグネシりム等の氎に難
溶性の埮粉末からなる無機化合物を挙げるこずが
できる。この発明の方法においお、懞濁剀ずしお
無機化合物を甚いる際には、ドデシルベンれンス
ルホン酞ナトリりムの劂き界面掻性剀を䜵甚する
こずが奜たしい。これらの分散剀は䞀般に氎に察
しお0.01ないし重量添加しお䜿甚される。 この発明における反応は65〜95℃、奜たしくは
箄80〜90℃前埌の枩床で〜12時間加熱するこず
により行なわれ、曎に極く少量の未反応成分を
120〜140℃で加熱撹拌するこずにより反応を完結
させる。 このような条件䞋においおは、スチレン―無氎
マレむン酞共重合䜓の分子鎖䞭のカルボン酞無氎
物ぞの結合モノマヌの官胜基の攻撃開環反
応、スチレンモノマヌの重合、スチレンモノマ
ヌず結合モノマヌ䞭の二重結合ずの重合およびこ
れらの反応による分子間の架橋が生起しおいるず
考えられる。 この発明で䜿甚される発泡剀ずしおは易揮発性
の発泡剀、即ち、プロパン―ブタン―ブ
タン―ペンタン―ペンタン―ヘキサ
ン等の脂肪族炭化氎玠、シクロペンタンシクロ
ヘキサン等の環匏脂肪族炭化氎玠、メチルクロラ
むド゚チルクロラむドゞクロロゞフルオロメ
タンクロロゞフルオロメタントリクロロフル
オロメタン等のハロゲン化炭化氎玠を挙げるこず
ができる。これらの発泡剀は前蚘熱可塑性暹脂粒
子に察しお䞀般に〜40重量の割合で䜿甚され
る。たた、トル゚ンキシレン等の有機溶剀を少
量䜵甚しおもよい。 発泡剀は反応䞭たたは反応埌のうち、い぀加え
おもよい。奜たしくは反応埌に生成粒子に含浞さ
れる。 発泡剀を反応埌に熱可塑性暹脂粒子に含浞する
には、たずえばオヌトクレヌプ䞭に懞濁剀を懞濁
させた懞濁液䞭に熱可塑性暹脂粒子を懞濁し、加
熱しお発泡剀を圧入するこずにより行なわれる。 氎性懞濁液に䜿甚される懞濁剀は、前蚘熱可塑
性暹脂粒子が発泡剀の含浞䞭に互いに結合たたは
合着するのを防止するために添加するものであ぀
お、分散剀ずしお前蚘した有機化合物の他ピロリ
ン酞カルシりムリン酞カルシりム炭酞カルシ
りム炭酞マグネシりムリン酞マグネシりム
ピロリン酞マグネシりム酞化マグネシりム等の
氎に難溶性の埮粉末からなる無機化合物を挙げる
こずができる。この発明の方法においお、懞濁剀
ずしお無機化合物を甚いる際には、ドデシルベン
れンスルホン酞ナトリりムの劂き界面掻性剀を䜵
甚するこずが奜たしい。これらの分散剀は䞀般に
氎に察しお0.01ないし重量添加しお䜿甚され
る。 前蚘のようにしお埗られた発泡性熱可塑性暹脂
粒子は、氎から分離し、適宜掗浄、也燥を行な぀
おから䜿甚に䟛する。 この発明によれば、均䞀で小さい粒埄の粒子が
倚量に埗られる。たたこの暹脂粒子を成圢材料ず
しお甚いた堎合に、成圢機のホツパヌ䟛絊時のく
いこみ倉動が小さく成圢機のシリンダヌ内での溶
融が短時間で枈み、こずに発泡成圢した堎合、䜎
密床の発泡成圢品が容易に埗られ、成圢条件の巟
が応く、か぀小さな成圢物や肉厚の薄いもの、现
いデむテヌルが芁求されるものが補造できる。そ
の䞊結合モノマヌの䜿甚により、スチレン―無氎
マレむン酞共重合暹脂の含量を枛じ぀぀なお耐熱
性を維持するこずができる。 次に実斜䟋を挙げおこの発明を説明する。 実斜䟋  内容積の反応容噚に氎2000、耇分解法ピ
ロリン酞マグネシりム4.8及びドデシルベンれ
ンスホン酞ナトリりムの重量氎溶液10を投
入し、さらに無氎マレむン酞含有量18重量であ
るスチレン―無氎マレむン酞共重合䜓平均重合
床1000600、過酞化ベンゟむル3.5、tert―
ブチルパヌベンゟ゚ヌトおよびグリシゞルメ
タクリレヌト2.5をスチレンモノマヌ1400に
溶解した混合溶液を投入し、150回転分で撹拌
しながら90℃に昇枩した。90℃で時間反応した
埌、撹拌速床を250回転分に䞊げ、130℃たで昇
枩しお時間維持した埌、無氎マレむン酞5.4重
量の重合䜓粒子を埗た。 ここで埗られた重合䜓はパヌル状で、その粒埄
はJIS芏栌のフルむで10〜20メツシナの間に70
分垃しおいた。たた軟化枩床は114℃であ぀た。 実斜䟋  実斜䟋で埗られた重合䜓10〜20メツシナの
間の粒埄を有する1200を氎2800、耇分解法
ピロリン酞マグネシりム4.8及びドデシルベン
れンスホン酞ナトリりムの氎溶液10、トル
゚ン48の入぀た内容積のオヌトクレヌブに
投入した。撹拌しながら密閉状態䞋でブタン120
を圧入した。぀いで100℃に昇枩しお20時間維
持した埌、30℃たで冷华しお、発泡剀を含有した
ビヌズを埗た。このビヌズを掗浄、脱氎、也燥し
た埌、封をした容噚に入れ、15℃䞋で日間保存
した。 ここで埗られた発泡性ビヌズを100℃のスチヌ
ムで発泡した凊、0.021Kgの嵩密床を有する
発泡粒子が埗られた。 この発泡粒子を宀内に24時間攟眮した埌、金型
内に充填しお1.5Kgcm2ゲヌゞ圧のスチヌム
で成圢した。埗られた成圢䜓は0.022Kgの密
床を有し、この成圢䜓を90℃の空気埪環匏恒枩槜
に䞀週間攟眮した凊、原寞に察しお䞀方向に1.2
収瞮しおいた。 実斜䟋  実斜䟋においおスチレンモノマヌに溶解した
グリシゞルメタクリレヌトの量を倉曎した以倖同
様にしお反応を行な぀お埗られた重合粒子の軟化
枩床および熱トル゚ン䞍溶物の含有は衚のずお
りであ぀た。
The present invention relates to a method for producing thermoplastic resin particles. More specifically, this invention provides a styrene-maleic anhydride copolymer resin having a maleic anhydride content of 15 to 30% by weight and an average degree of polymerization of 500 or more, a styrene-maleic anhydride copolymer resin having the formula RX (wherein X is a functional group that reacts with a dicarbonyloxo group, R is an aliphatic residue having one double bond) and a polymerization catalyst are dissolved in a vinyl aromatic monomer, this solution is suspended in an aqueous medium, and reacted, and during the reaction or reaction. By adding a blowing agent afterwards, the maleic anhydride component is
The present invention relates to a method for producing thermoplastic resin particles, which comprises forming expandable thermoplastic resin particles with a weight of 10%. Polystyrene resins are widely used as resins for molding materials and foaming materials, but their heat distortion temperature is low, making them unsuitable for use in applications requiring heat resistance. On the other hand, styrene-maleic anhydride copolymer resin has a high heat deformation temperature, but it is currently difficult to obtain pearl-like and small particles due to the manufacturing method. Generally, when particles with a large particle size are used as a molding material, there will be large fluctuations in penetration when feeding into the hopper of a molding machine, and it will take time to melt in the cylinder of the molding machine. Furthermore, when particles with such a large particle size are used as expandable particles (beads), it is possible to not only mold large objects, but also to manufacture small molded objects, thin walled objects, and objects that require thin details. Have difficulty. From this point of view, various attempts have been made to make the particles of styrene-maleic anhydride copolymer resins smaller, but none have been successful. For example, when the copolymer resin is pelletized using an extruder, only large-sized pellets can be obtained even if the copolymer resin is hot-cut or cooled with water before cutting. In an attempt to improve this to some extent, strand cutting, which involves stretching and cutting the molten resin extruded from the extruder's discharge port, causes polymer orientation and thermal deterioration in the stretching direction, making it difficult to use these pellets. When foam molding is performed using beads containing a foaming agent, there are problems such as it is difficult to obtain a low-density foam molded product and the molding width is narrow (the range of molding conditions to obtain a good molded product is narrow). Ta. Furthermore, the styrene-maleic anhydride copolymer resin is
It is difficult to form a polymer in which the maleic anhydride component is polymerized so as to be uniformly distributed within the molecule, requiring complicated control and resulting in an expensive product. The inventors of this invention arrived at this invention as a result of intensive research in order to solve the above-mentioned problems. The inventors first developed a styrene-maleic anhydride copolymer resin with a relatively high maleic anhydride content, formula
A compound represented by RX (herein referred to as a bonding monomer) and a polymerization catalyst are dissolved in a vinyl aromatic monomer, this solution is suspended in water, and polymerized in a suspended state in the presence of a polymerization catalyst to form thermoplastic resin particles. It has been found that by doing so, the particles obtained can be made small and uniform. When these resin particles are used as a molding material, the variation in penetration during feeding into the hopper of the molding machine is small, and the melting time in the cylinder of the molding machine is short.
In addition, when foam molding is performed using beads containing a foaming agent, a low-density foam molded product can be easily obtained, and a wide range of molding conditions can be applied, and small molded products, thin wall thickness, and thin details are required. It was discovered that it could be produced. Furthermore, by using a bonding monomer, the content of styrene-maleic anhydride copolymer resin can be reduced while still maintaining heat resistance (high heat distortion temperature or softening temperature, low heat shrinkage at high temperatures).
can be maintained. As the styrene-maleic anhydride copolymer resin in this invention, one containing 15 to 30% by weight of maleic anhydride is used. This copolymer is
It is obtained by copolymerizing styrene and maleic anhydride using methods known in the art. If the content of maleic anhydride component, which is one of the copolymerized components in the styrene-maleic anhydride copolymer resin, is less than 15% by weight, no improvement in thermal properties can be expected, and if it exceeds 30% by weight, vinyl aromatic This is not preferable because the styrene-maleic anhydride copolymer becomes difficult to dissolve in the monomer. As the styrene-maleic anhydride copolymer resin, one having a so-called high degree of polymerization is used. A polymer having an average degree of polymerization of at least about 500 or more is used. If a material with an average degree of polymerization of less than 500 is used, the resulting resin particles will have low mechanical strength when molded into a molded product, and if the degree of polymerization is too high, the resulting resin will become brittle and have a strength of approximately 4000.
It is preferable to use a polymer having a degree of polymerization of up to . These copolymer resins can be used as raw materials for the present invention even if they contain small amounts of additives to improve or impart desired properties. For example, if a small amount of synthetic rubber such as butadiene rubber is added, the impact resistance will be improved. As the bonding monomer, a compound represented by the formula RX (wherein X is a functional group that reacts with a dicarbonyloxy group, and R is an aliphatic residue having one double bond) is used. The functional group in the definition of formula RX means a group that can react with the dioxocarbonyl group of the maleic anhydride moiety in the styrene-maleic anhydride copolymer resin. Examples of such functional groups include hydroxy groups, amide groups, and epoxy groups. The hydroxy group or amide group is preferably bonded to the vinyl group via one or two carbon atoms. In addition, the epoxy group is
It may be bonded to the vinyl group via an oxygen atom or a carbon atom. Specific compounds include allyl glycidyl ether, glycidyl acrylate, glycidyl methacrylate, allyl alcohol, Nn-butoxymethyl acrylamide, and the like. These compounds are generally known as polymer modifiers, and compounds similar to these are used. In this invention, it is preferable to graft at least one site per molecule of the copolymer resin. From this point of view, it is desirable that the amount of the binding monomer used in the present invention be selected depending mainly on the maleic anhydride content in the copolymer resin. The binding monomer is 0.1 to 20 mol%, preferably 0.1 to 20 mol% based on the maleic anhydride component in the copolymer resin.
Use 0.2-10 mol%. The functional group of the binding monomer attacks the carboxylic anhydride site in the molecular chain of the styrene-maleic anhydride copolymer to open the ring. This introduces into the molecular chain of the copolymer a double bond that can be copolymerized with the vinyl aromatic monomer. The vinyl aromatic monomers used in this invention include styrene, α-methylstyrene, ethylstyrene, chlorostyrene, bromostyrene, vinyltoluene, vinylxylene, isopropylxylene, etc. alone or in a mixture of two or more, and 50 of these vinyl aromatic monomers
It may be a mixture of a vinyl aromatic monomer and a copolymerizable monomer, such as acrylonitrile, methyl methacrylate, methyl acrylate, maleic anhydride, etc., containing at least % by weight. The weight ratio of the styrene-maleic anhydride copolymer resin and the vinyl aromatic monomer is selected so that the maleic anhydride content in the resin of the thermoplastic resin particles to be produced is 2 to 10% by weight. If the maleic anhydride content is less than this range, the final thermoplastic resin will have a low heat deformation temperature, which is undesirable.If it exceeds this range, the amount of copolymer resin that must be dissolved in the manufacturing process will increase, resulting in a monomer. becomes difficult to dissolve. Examples of the polymerization catalyst used in this invention include benzoyl peroxide, tert-butyl perbenzoate, lauroyl peroxide, and tert-butyl peroxide.
Butyl peroxy-2-ethylhexanate,
Organic peroxides such as tert-butyl peroxide,
Examples include azo compounds such as azobisisobutyronitrile and azobisdimethylvaleronitrile. In this invention, the styrene-maleic anhydride copolymer resin, binding monomer, and polymerization catalyst are usually dissolved in a vinyl aromatic monomer, suspended in an aqueous medium, and reacted. However, the polymerization catalyst may be added after suspending the resin and both monomers. In this case, it is also preferable to dissolve the polymerization catalyst in the styrene monomer and add it to the aqueous medium. Dispersants are used to suspend in aqueous media. Examples of dispersants include organic compounds such as partially saponified polyvinyl alcohol, polyacrylates, polyvinylpyrrolidone, carboxymethyl cellulose, methyl cellulose, calcium stearate, and ethylene bisstearamide, as well as calcium pyrophosphate, calcium phosphate, calcium carbonate,
Examples include inorganic compounds consisting of fine powder hardly soluble in water, such as magnesium carbonate, magnesium phosphate, magnesium pyrophosphate, and magnesium oxide. In the method of this invention, when an inorganic compound is used as a suspending agent, it is preferable to use a surfactant such as sodium dodecylbenzenesulfonate. These dispersants are generally added in an amount of 0.01 to 5% by weight based on water. The reaction in this invention is carried out by heating at a temperature of 65 to 95°C, preferably about 80 to 90°C, for 2 to 12 hours, and further removes a very small amount of unreacted components.
The reaction is completed by heating and stirring at 120-140°C. Under these conditions, attack of the functional group It is thought that polymerization with double bonds in monomers and intermolecular crosslinking due to these reactions occur. The blowing agents used in this invention include easily volatile blowing agents, such as aliphatic hydrocarbons such as propane, n-butane, i-butane, n-pentane, i-pentane, and n-hexane, cyclopentane, Examples include cycloaliphatic hydrocarbons such as cyclohexane, halogenated hydrocarbons such as methyl chloride, ethyl chloride, dichlorodifluoromethane, chlorodifluoromethane, and trichlorofluoromethane. These blowing agents are generally used in an amount of 3 to 40% by weight based on the thermoplastic resin particles. Further, a small amount of an organic solvent such as toluene or xylene may be used in combination. The blowing agent may be added at any time during or after the reaction. Preferably, the product particles are impregnated after the reaction. To impregnate the thermoplastic resin particles with the blowing agent after the reaction, for example, the thermoplastic resin particles are suspended in a suspension in which the suspending agent is suspended in an autoclave, and the blowing agent is forced into the suspension by heating. This is done by The suspending agent used in the aqueous suspension is added to prevent the thermoplastic resin particles from bonding or coalescing with each other during impregnation with the blowing agent, and is a dispersing agent containing the above-mentioned organic In addition to compounds, calcium pyrophosphate, calcium phosphate, calcium carbonate, magnesium carbonate, magnesium phosphate,
Examples include inorganic compounds consisting of fine powders that are poorly soluble in water, such as magnesium pyrophosphate and magnesium oxide. In the method of this invention, when an inorganic compound is used as a suspending agent, it is preferable to use a surfactant such as sodium dodecylbenzenesulfonate. These dispersants are generally added in an amount of 0.01 to 5% by weight based on water. The expandable thermoplastic resin particles obtained as described above are separated from water, washed and dried as appropriate, and then used. According to this invention, a large amount of particles having a uniform and small particle size can be obtained. In addition, when this resin particle is used as a molding material, there is little variation in penetration when feeding into the hopper of a molding machine, and melting in the cylinder of the molding machine takes a short time.In particular, when foam molding is performed, low density foam molding The product can be easily obtained, a range of molding conditions can be accommodated, and small molded products, thin walled products, and products requiring thin details can be produced. Furthermore, the use of a binding monomer allows the content of styrene-maleic anhydride copolymer resin to be reduced while still maintaining heat resistance. Next, the present invention will be explained with reference to Examples. Example 1 2000 g of water, 4.8 g of metathetical magnesium pyrophosphate and 10 g of a 2% by weight aqueous solution of sodium dodecylbenzenesulfonate were charged into a reaction vessel with an internal volume of 5, and styrene-anhydride containing 18% by weight of maleic anhydride was added. 600 g of maleic acid copolymer (average degree of polymerization 1000), 3.5 g of benzoyl peroxide, tert-
A mixed solution of 1 g of butyl perbenzoate and 2.5 g of glycidyl methacrylate dissolved in 1,400 g of styrene monomer was added, and the temperature was raised to 90° C. while stirring at 150 rpm. After reacting at 90°C for 7 hours, the stirring speed was increased to 250 rpm, and the temperature was raised to 130°C and maintained for 2 hours to obtain polymer particles containing 5.4% by weight of maleic anhydride. The polymer obtained here is pearl-like, and its particle size is 70% between 10 and 20 meshes when measured using a JIS standard sieve.
It was distributed. Moreover, the softening temperature was 114°C. Example 2 1200 g of the polymer obtained in Example 1 (having a particle size between 10 and 20 meshes) was mixed with 2800 g of water, 4.8 g of metathesized magnesium pyrophosphate, 10 g of a 2% aqueous solution of sodium dodecylbenzenesulfonate, and toluene. It was placed in an autoclave with an internal volume of 5 containing 48 g. Butane 120 under closed conditions with stirring
g was press-fitted. The temperature was then raised to 100°C, maintained for 20 hours, and then cooled to 30°C to obtain beads containing a foaming agent. After washing, dehydrating, and drying the beads, they were placed in a sealed container and stored at 15° C. for 3 days. When the expandable beads obtained here were foamed with steam at 100°C, foamed particles having a bulk density of 0.021 Kg/ were obtained. After the foamed particles were left indoors for 24 hours, they were filled into a mold and molded with steam at 1.5 kg/cm 2 (gauge pressure). The obtained molded product has a density of 0.022 Kg/, and when this molded product was left in a 90°C air circulation constant temperature bath for one week, it had a density of 1.2 in one direction relative to the original size.
% shrinkage. Example 3 The softening temperature and content of hot toluene insolubles of polymer particles obtained by carrying out the reaction in the same manner as in Example 1 except that the amount of glycidyl methacrylate dissolved in the styrene monomer was changed are as shown in Table 1. Ta.

【衚】 実斜䟋  内容積の反応容噚に氎2000、耇分解法ピ
ロリン酞マグネシりム4.8及びドデシルベンれ
ンスルホン酞ナトリりムの氎溶液10を投入
し、曎に予め無氎マレむン酞の含有量が21重量
であるスチレン―無氎マレむン酞共重合䜓500
平均重合床800、過酞化ベンゟむル3.75、tert
―ブチルパヌベンゟ゚ヌト1.2ならびにグリシ
ゞルメタクリレヌト4.0をスチレンモノマヌ
1500に溶解した混合溶液を投入した。150回
転分で撹拌しながら90℃に昇枩した。90℃の枩
床で時間反応した埌、撹拌を250回転分にあ
げ130℃たで昇枩し、130℃の枩床で時間維持し
た。その埌冷华しお重合䜓を取り出した。かくし
お埗られた重合䜓はパヌル状で、その粒埄はJIS
芏栌のフルむで10〜20メツシナ間に82分垃しお
いた。たた埗られた重合䜓粒子の軟化枩床は116
℃であ぀た。130℃の熱トル゚ンに時間浞挬さ
せたずころ72が䞍溶物であ぀た。 比范䟋  実斜䟋のうちグリシゞルメタクリレヌトを䜿
甚しなか぀た以倖同様にしお重合を行ない埗られ
た重合䜓粒子の軟化枩床を枬定したずころ110℃
であ぀た。
[Table] Example 4 2000 g of water, 4.8 g of metathetical magnesium pyrophosphate, and 10 g of a 2% aqueous solution of sodium dodecylbenzenesulfonate were placed in a reaction vessel with an internal volume of 5, and the content of maleic anhydride was 21% by weight in advance.
500g of styrene-maleic anhydride copolymer
(Average degree of polymerization 800, benzoyl peroxide 3.75g, tert
- 1.2 g of butyl perbenzoate and 4.0 g of glycidyl methacrylate as styrene monomer.
A mixed solution of 1,500 g was added. The temperature was raised to 90°C while stirring at 150 rpm. After reacting at a temperature of 90°C for 7 hours, the stirring was increased to 250 rpm, the temperature was raised to 130°C, and the temperature was maintained at 130°C for 2 hours. Thereafter, it was cooled and the polymer was taken out. The polymer thus obtained is pearl-like, and its particle size is JIS
The distribution was 82% between 10 and 20 meshes using a standard sieve. The softening temperature of the obtained polymer particles was 116
It was warm at ℃. When immersed in hot toluene at 130°C for 4 hours, 72% was found to be insoluble matter. Comparative Example 1 Polymerization was carried out in the same manner as in Example 1 except that glycidyl methacrylate was not used, and the softening temperature of the obtained polymer particles was measured and was 110°C.
It was hot.

Claims (1)

【特蚱請求の範囲】  15〜30重量の無氎マレむン酞含量で平均重
合床500以䞊のスチレン―無氎マレむン酞共重合
暹脂、匏RX匏䞭はゞカルボニルオキ゜基ず
反応する官胜基、は䞀個の二重結合を有する脂
肪族残基であるで衚わされる化合物をビニル芳
銙族モノマヌに溶解し、この溶液を氎性媒䜓䞭に
懞濁させ、重合觊媒の存圚䞋反応せしめ、その
際、反応䞭もしくは反応埌に発泡剀を添加するこ
ずにより無氎マレむン酞成分を〜10重量含有
する発泡可胜な熱可塑性暹脂粒子を埗るこずを特
城ずする熱可塑性暹脂粒子の補造法。  匏RXで衚わされる化合物がスチレン―無氎
マレむン酞共重合暹脂䞭の無氎マレむン酞成分に
察しお0.1〜20モル、奜たしくは0.2〜10モル
䜿甚される特蚱請求の範囲第項蚘茉の補造法。
[Scope of Claims] 1. A styrene-maleic anhydride copolymer resin with a maleic anhydride content of 15 to 30% by weight and an average degree of polymerization of 500 or more, formula RX (wherein X is a functional group that reacts with a dicarbonyloxo group, R is an aliphatic residue having one double bond) is dissolved in a vinyl aromatic monomer, this solution is suspended in an aqueous medium, and reacted in the presence of a polymerization catalyst, during which A method for producing thermoplastic resin particles, which comprises adding a blowing agent during or after the reaction to obtain expandable thermoplastic resin particles containing 2 to 10% by weight of a maleic anhydride component. 2 The compound represented by formula RX is present in an amount of 0.1 to 20 mol%, preferably 0.2 to 10 mol%, based on the maleic anhydride component in the styrene-maleic anhydride copolymer resin.
The manufacturing method according to claim 1, which is used.
JP18406083A 1983-09-30 1983-09-30 Production of thermoplastic resin particle Granted JPS5984933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18406083A JPS5984933A (en) 1983-09-30 1983-09-30 Production of thermoplastic resin particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18406083A JPS5984933A (en) 1983-09-30 1983-09-30 Production of thermoplastic resin particle

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2093279A Division JPS5915130B2 (en) 1979-02-24 1979-02-24 Method for producing thermoplastic resin particles

Publications (2)

Publication Number Publication Date
JPS5984933A JPS5984933A (en) 1984-05-16
JPS6140700B2 true JPS6140700B2 (en) 1986-09-10

Family

ID=16146669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18406083A Granted JPS5984933A (en) 1983-09-30 1983-09-30 Production of thermoplastic resin particle

Country Status (1)

Country Link
JP (1) JPS5984933A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6719053B2 (en) 2001-04-30 2004-04-13 Bj Services Company Ester/monoester copolymer compositions and methods of preparing and using same
CN114437279B (en) * 2020-10-16 2024-07-02 䞭囜石油化工股仜有限公叞 Maleic anhydride copolymer and preparation method and application thereof

Also Published As

Publication number Publication date
JPS5984933A (en) 1984-05-16

Similar Documents

Publication Publication Date Title
CN102203205B (en) Thermally expandable microcapsule and foam-molded article
JPS5940163B2 (en) Method for producing expandable thermoplastic resin particles
RU2213101C2 (en) Binding vinylaromatic polymers and foam
JPH0425532A (en) Expandable resin composition and its molded item
US3972843A (en) Expandable styrene polymers suitable for the production of quickly moldable cellular bodies
CN106009359B (en) Panel packaging container
US4539335A (en) Expandable thermoplastic resin particles and process for preparing the same
JPS5915130B2 (en) Method for producing thermoplastic resin particles
JPH07258444A (en) Foam comprising polystyrenic resin composition
JPS6140700B2 (en)
JP4653321B2 (en) Expandable rubber-modified acrylonitrile / styrene-based resin particles, process for producing the same, and foam molded article
CA1120650A (en) Process for producing expandable thermoplastic resin beads
JPS6338063B2 (en)
JPS5915129B2 (en) Method for producing thermoplastic resin particles
JPS5915132B2 (en) Method for producing thermoplastic resin particles
JPS6140697B2 (en)
JPS5915128B2 (en) Method for producing thermoplastic resin particles
JPS6140699B2 (en)
JPS6129615B2 (en)
JPH08151471A (en) Expandable particle for producing impact-resistant foam and production thereof
JPS6140701B2 (en)
JPS6140698B2 (en)
JPS6021645B2 (en) Method for producing thermoplastic resin particles
JPH0221416B2 (en)
JPS6140703B2 (en)