JPS6140460B2 - - Google Patents

Info

Publication number
JPS6140460B2
JPS6140460B2 JP54090335A JP9033579A JPS6140460B2 JP S6140460 B2 JPS6140460 B2 JP S6140460B2 JP 54090335 A JP54090335 A JP 54090335A JP 9033579 A JP9033579 A JP 9033579A JP S6140460 B2 JPS6140460 B2 JP S6140460B2
Authority
JP
Japan
Prior art keywords
catalyst
air
solution
impregnated
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54090335A
Other languages
Japanese (ja)
Other versions
JPS5615842A (en
Inventor
Shin Yamauchi
Kyoshi Yonehara
Tetsutsugu Ono
Takashi Oohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP9033579A priority Critical patent/JPS5615842A/en
Publication of JPS5615842A publication Critical patent/JPS5615842A/en
Publication of JPS6140460B2 publication Critical patent/JPS6140460B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、排気ガス浄化用触媒およびその製法
ならびにその使用法に関するものである。詳しく
述べると、本発明は、排気ガス中に含まれる有害
成分である炭化水素、一酸化炭素および窒素酸化
物を除去するための触媒およびその製法ならびに
その使用法に関するものである。さらに詳しく述
べると、本発明は、内燃機関が空気対燃料比の当
量点近辺で運転される際、排ガス中の炭化水素、
一酸化炭素および窒素酸化物を安定的に同時除去
しうる排気ガス浄化用触媒およびその製法ならび
にその使用法に関するものである。 内燃機関の排気ガス中の炭化水素(HC)、一酸
化炭素(CO)および窒素酸化物(NOx)3成分
を1個の触媒コンバーターで同時に除去するため
の触媒、いわゆる三元触媒はすでに一部の市販車
エンジンに装着されている。この三元触媒を装着
したエンジンは化学量論的な空気対燃料比(A/
F)近辺で運転されたとき、上記3成分を最も効
果的に浄化した排ガスを形成するとされる。しか
しながら、実際の市街や郊外での走行では、加
速、減速等を含むいわゆる非定常モードの運転が
なされる。このため、エンジンの状態の刻々の変
化に因つて設定空燃比(A/F)からのずれが生
ずるので、これをすみやかに補正する機構、すな
わちフイードバツク機構(またはクローズドルー
ブ機構)が必要である。具体的には、例えば電子
制御燃料噴射装置または優れたベンチユリー気化
器、並びに、排気管内に設置された酸素センサー
からの信号により空燃比を補正する制御機構を装
備する必要がある。 しかしながら、このようなA/Fフイードバツ
ク機構が装備されても、なお、その制御応答時間
との関係から不可避的にエンジンのA/Fが化学
量論的A/F平衡値を中心としてかなりの幅で周
期的に変動することも衆知のことである。そし
て、このような変動の幅が大きい場合には、しば
しば三元触媒の性能が低下するという事態、すな
わち3成分の高水準(たとえば80%以上)での同
時除去が可能なA/Fの範囲(ウインドウ幅と呼
ばれる)が静的なガス組成の時にくらべて著しく
せまくなるかまたは存在しなくなるというような
事態すら発生することも事実である。 このような事態に対処するために、ガス中の過
剰酸素を一時的に吸収する能力の高い金属たとえ
ばレニウムを配合した触媒を使用して、A/Fの
燃料(F)過剰側に作動範囲を広げる工夫が提案され
ている。しかし、この提案された方法には添加金
属が揮発性を有する酸化物を形成し又は排ガス中
に含まれる硫黄分などで被毒され易いこと、ある
いはウインドウ幅が実用的に満足できるほどには
広くないことなどの問題点がある。 本発明の一つの目的は、このような周期的A/
Fの変動下で安定して高い3成分浄化性能を示す
触媒組成物およびその製造方法を提供することに
ある。本発明の別の目的は、現在3元触媒として
最も高い評価を受けているロジウム(Rh)およ
び白金(Pt)を主たる活性成分とする触媒の改良
として、現実の走行モードの下における周期的な
A/F変動によつてウインドウ幅がせばめられる
ことなく、高い3成分浄化水準を維持しうる改良
された触媒及びその製造方法を提供することにあ
る。 本発明の他の目的は、資源的に制約の大きい高
価なロジウム(Rh)の使用量を可及的に少なく
しつつなお高水準の3成分浄化能を示すRh−Pt
系触媒を提供することにある。一般にこのロジウ
ム(Rh)の天然産出量が極端に少い(白金の1/1
9と推定される。)ためにPtとRhの重量比で19:
1〜10:1程度のRh含有3元触媒では例えば
50000Kmの走行数の浄化性能を高く維持すること
がむずかしく、特に化学当量比の空燃比時の排出
ガス中の酸素濃度は0.5〜1%程度と低いため
HC、COの浄化能低下が顕著な欠点として上げら
れる。このための対策として触媒を2床に分離し
前段床にはRh全量とPt、Pdの一部を担持し、次
に2次空気により酸素を加えてから第2段床の
Pt、Pd担時完全酸化触媒に導く方式が有望とな
つてきた。 これまで考えられていた2段床方式では空燃比
を燃料加剰側になるように気化器を設定し、排出
する還元性ガス中のNOxのみをRh触媒を用いて
除去し次いで2次空気を加えてから酸化触媒に導
くものがあつたが、この方式には2個の欠点があ
つた。すなわち燃費が悪いことと還元雰囲気では
NOのかなりの割合がアンモニアに還元され、そ
れが酸化触媒で再びNOにもどされ全体のNO浄化
能が低くなる点であつた。これに対し空燃比コン
トロール付エンジンの2段床方式は上記欠点を解
決している。すなわち、化学当量点で常に運転す
るため燃費が良く、また、化学当量点付近での排
ガスの反応時にはNH3副生が著しくおさえられる
ため、全体のNO浄化率は高いレベルに維持でき
る。 この様な2段床式の例として今車輛1台当り2
リツトルの触媒容量を使用し、Ptを1.5g、Pdを
0.6g、Rhを0.15g使用するとしてPt、Pdは前
段、後段床に均等に配分する場合、前段床は
Pt0.75g/、Pd0.3g/、Rh0.15g/組成で
Pt/Rh比は5/1となる。この比は当然単一床
3元触媒のPt/Rh=10/1よりRh比率が高めら
れた訳であり、同様の考え方でPtの20%を前段
床、80%を後段床に配分するならば前段床のPt/
Rh比は2/1とする事も可能である。しかし、
一方、2段床方式の前段床のみに着目するなら
ば、反応空間速度は2倍に高くなるので、より高
活性の2元触媒が要求されることになる。したが
つて、上記に追加的に述べる本発明の目的はかか
るPt/Rh比が比較的小さい組成でありながら、
高活性の3元触媒の組成を提供することと同時に
その経済的な製造方法を提供することにある。さ
らに詳しく述べると、本発明の触媒は、Ce、
Fe、Pt、Pd、Rhを用いて空燃比コントロール付
エンジンの排ガスを1段床方式の3元触媒とし
て、あるいは2段床方式の触媒コンバーター用の
前段の3元触媒としてCO、HC、NOxを高水準で
浄化でき、かつ耐久性に富む触媒組成とその製造
方法に関するものである。具体的には本発明の触
媒は耐火性、多孔質、高表面積の粒状担体上に完
成触媒1リツトル当り原子グラム(g)で表わし
て、1〜20gのセリウム、2.5〜20gの鉄、0.05
〜0.8gの白金、0.02〜0.3gのパラジウム、0.05
〜0.3gのロジウム、0〜0.08gの燐を担持し、
かつPtとRhの重量比が5:1〜1:1、またPt
とPdの比が5:1〜1:5の間に保たれた組成
を有する1段床方式あるいは2段床方式の前段床
用の触媒であり、その製造プロセスとして粒状担
体を2回の含浸工程により触媒成分を担持しその
1段目の含浸工程においてセリウム、鉄の水溶性
塩とジニトロジアミン白金の硝酸酸性溶液とパラ
ジユームの水溶性塩及び必要によりリン酸を添加
溶解した水性液を最終液量として該担体の総吸水
量の約0.5〜約1.3容量倍、好ましくは0.75〜1.2容
量倍となるように調整した触媒液を用いて含浸す
る工程と第2段目の含浸工程としてRhの水溶性
塩を溶解した水性液を第1段含浸触媒液と同様の
最終液量に調整して用いてRhを含浸する工程を
特徴とする製造方法である。 上記の如く、本発明の触媒は規定されるのであ
るが、本発明の触媒を構成する各元素の役割はい
まだ完全に解明されていない。しかしながら、本
発明者等は次の事実を知見している。 すなわち、Ce、Feは反応ガス中の酸素に対し
その吸収、貯蔵能を発揮し、触媒反応に直接関係
する空燃比変動幅を最小限に小さくする作用とと
もに、加えて、水性ガス反応やスチームリフオー
ミング反応を助ける作用と更に重要なこととして
これ等元素自体、CO、HCの酸化能やNOxの
CO、H2、HC等による還元能を有することにあ
る。このうち、特にCeは後に担持されるRhの担
持深さに影響を及ぼし本発明で使用される0.05〜
0.3g/と低い濃度のRhを出来るだけ反応に有
効に働かせるため担体の表面付近に微細分散担持
せしめるために有効な役割を演ずる。またCeは
アルミナ等の耐火物上に担持すると、Pt、Pd、
Rhなどの貴金属が高熱時にアルミナなどと反応
することをおさえ、従つて触媒の耐熱安定性向上
に寄与することが判明した。 また、本発明に用いることのできるPはリン酸
として、Pt、Pdと同時に担持することが望まし
く、その作用はまずリン酸が保有する強いアルミ
ナに対する吸着性のため、Pの添加量を加減する
ことによりPt、Pdを担体の内部の方に任意の深
さで担持させることが出来る。 したがつて、たとえばPt/Rh比が5/1の如
く、Ptが相対的に多い場合は、Ptの表面濃度を低
くするためPを添加し、この様にして触媒表面で
のPt/Rh比をより低くすることにより、Pt−Rh
の好ましくない合金化等もかなりふせぐことが出
来ると考えられる。しかし、一方Pt/Rh=1/
1のような場合は、もはやPtを担体の奥深くに担
持することは好ましくなく、従つてリン酸の添加
量はゼロないしは実質的にゼロ近くになる。本発
明者等によれば添加するリン酸量はPtのモル数の
0.1〜2倍モル程度が良好である。適当な濃度で
担体の表面に位置したリン酸はその後の熱処理に
より分解し酸化物状態で触媒中に存在すると考え
られるが、このPの化合物はNOの還元反応にお
けるアンモニア副生をおさえ、より窒素への還元
を推進する効果を持つことも見出された。これ等
の触媒を構成する基本元素の他にたとえばCe以
外の希土類元素すなわちランタン(La)、プラセ
オジウム(Pr)、ネオジウム、(Nd)、ガドリニウ
ム(Gd)等をCeの一部と置きかえることや、Fe
の一部をニツケル(Ni)、バリウム(Ba)、コバ
ルト(Co)、クロム(Cr)、カルシウム(Ca)等
で置きかえることも可能である。 本発明に用いられる粒状担体は、活性アルミナ
を主成分とするものが好ましいが、ほかにシリカ
アルミナ、シリカ、マグネシア、ジルコニア、チ
タニア等耐熱性に優れかつ担体として十分の強度
を備えたものならば一部混合しても使用出来る。
また、その粒子形状として、球、円柱、異型断面
状のいずれも使用出来る。またあらかじめ、
Fe、Ce成分の一部を含有して粒状に成型された
アルミナ担体を用いることも可能である。担体物
性としてBET表面積10〜200m2/g、好ましくは
30〜150m2/g、水銀圧入法で測定した全細孔容積
は0.4c.c./g以上、好ましくは0.5〜1.3c.c./g、平均
細孔径100Å以上、好ましくは150Å以上がよい。 本発明において用いられる触媒原料は後述の活
性化処理により各触媒成分が酸化物又は原子状に
活性化されうる化合物の中から選ばれ、通常水溶
液を形成しうる無機塩、有機塩、金属酸またはそ
の塩であれば良い。特に好ましい原料として、
Feについては、硝酸第2鉄、硫酸第1鉄アンモ
ニウム、Ceについては硝酸第1セリウム、硝酸
第2セリウムアンモニウム、Pについてはリン酸
が良い。Rh、Pdについてはその塩化物、硝酸塩
や他の各種水溶性錯塩を用いても良い。白金原料
としては米国特許第3953369号に開示されたジニ
トロジアミノ白金の硝酸酸性水溶液が最も好まし
い。この理由として、本発明の製法である第1含
浸液には、たとえば多量の硝酸セリウム、硝酸鉄
のイオンがPtと共に存在するため、通常の塩化白
金酸(H2PtCl6)の如きPt源を用いると、Ptは担
体粒の奥深く、時として、粒状担体の中心にまで
浸透して担持され高活性の触媒が得られないから
である。一方、ジニトロジアミノ白金の硝酸酸性
溶液は極めて強いアルミナに対する吸着性を有す
るため、前記硝酸セリウム、硝酸鉄の共存下にお
いても有効かつ微細分散状態で担体の表面近くに
担持せしめることが可能である。と同時に、Pt/
Rh=5/1のような場合、リン酸添加はジニト
ロジアミノ白金の担体表面濃度を任意にコントロ
ールする手段として有用である。 他方、塩化白金酸を出発原料として本発明組成
の触媒を調製するには、2段含浸法では良好な触
媒が得られず、代りに3段含浸法、すなわち第1
段としてFe、Ceを担持、乾燥、焼成後、第2段
としてRhを担持、乾燥、焼成後更に第3段とし
てPt、PdをPと同時に担持、乾燥、活性化とい
つた長い製造プロセスをとらなければならない。
しかも本発明者等は、塩化白金酸を用いて3段含
浸法で製造した本発明記載組成の触媒よりジニト
ロジアミン白金の硝酸溶液を用いて2段含浸法で
製造した触媒の方が反応活性、耐久性両面にすぐ
れていることを見出した。この理由ははつきり究
明されていないが、極表層のPt濃度や白金の分散
状態(結晶のこまかさ)に起因するものと推定さ
れる。また本発明者等は2段床方式の前段床触媒
としてRhのみ使用する場合よりPt−Pd−Rhの適
当な比の時の方がその相乗効果によりNO浄化率
が良くなることも見出した。 以上説明した本発明触媒の調製方法において、
Ce、Fe、Rh、Pt、Pd、P各成分含浸担持に際し
てポリオキシエチレン系非イオン界面活性剤の使
用は、本発明の触媒調製に対して非常に有用であ
る。ポリオキシエチレン系非イオン界面活性剤を
存在させることにより適度の泡立ちが生じ、触媒
成分水溶液と担体粒子と調製容器器壁との相互接
触が円滑になり、均一な再現性のある担持結果を
果せるし、また界面活性剤の持つ低浸透性のゆえ
に触媒表面および表層への有効な分散担持が行な
われ、最小の担持量で希望する水準の性能を有す
る触媒をえることができる。とくに触媒を大量に
調製する場合はこれらの長所が有利に発揮され
る。本発明の方法で用いられる界面活性剤として
挙げられるものは以下の通りである。 ポリエチレングリコールHO(C2H4O)oH(n
=11〜900)、ポリオキシエチレングリコールアル
キルエーテルRO(C2H4O)oH(Rは炭素数6〜
30のアルキル基でありn=3〜30)、「プルロニツ
ク」型、すなわちポリオキシエチレン−ポリオキ
シプロピレン−ポリオキシエチレングリコール
HO(C2H4O)a(C3H6O)b(C2H4O)cH(a、
b、cは1以上であり、a+b+c=20〜400)
一般式 で表わされる「テトロニツク型含窒素非イオン界
面活性剤(x1〜x4、y1〜y4は1以上であり、x1
x2+x3+x4+y1+y2+y3+y4=20〜800)、ポリエ
キシエチレンアルキルアリルエーテル
The present invention relates to an exhaust gas purifying catalyst, a method for manufacturing the same, and a method for using the same. Specifically, the present invention relates to a catalyst for removing harmful components such as hydrocarbons, carbon monoxide, and nitrogen oxides contained in exhaust gas, a method for producing the same, and a method for using the same. More specifically, the invention provides that when an internal combustion engine is operated near the equivalence point of the air-to-fuel ratio, hydrocarbons in the exhaust gas,
The present invention relates to an exhaust gas purifying catalyst capable of stably and simultaneously removing carbon monoxide and nitrogen oxides, a method for producing the same, and a method for using the same. Some so-called three-way catalysts, which are catalysts that simultaneously remove the three components of hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) from the exhaust gas of internal combustion engines, are already available. It is installed in commercially available car engines. Engines equipped with this three-way catalyst have a stoichiometric air-to-fuel ratio (A/
When operated in the vicinity of F), exhaust gas is said to be produced that most effectively purifies the above three components. However, in actual driving in the city or suburbs, a so-called unsteady mode of operation including acceleration, deceleration, etc. is performed. For this reason, a deviation from the set air-fuel ratio (A/F) occurs due to momentary changes in the engine condition, so a mechanism for quickly correcting this, that is, a feedback mechanism (or closed loop mechanism) is required. Specifically, it is necessary to equip the engine with, for example, an electronically controlled fuel injection system or a good ventilator carburetor, as well as a control mechanism that corrects the air-fuel ratio by means of a signal from an oxygen sensor installed in the exhaust pipe. However, even if such an A/F feedback mechanism is installed, the engine's A/F will inevitably have a considerable range around the stoichiometric A/F equilibrium value due to its control response time. It is also common knowledge that there are periodic fluctuations. When the range of such fluctuations is large, the performance of the three-way catalyst often deteriorates, that is, the A/F range that allows simultaneous removal of the three components at a high level (e.g., 80% or more) It is also true that situations may occur in which the window width (called the window width) becomes significantly narrower than at a static gas composition, or even disappears. To deal with this situation, a catalyst containing a metal such as rhenium, which has a high ability to temporarily absorb excess oxygen in the gas, is used to extend the operating range to the excess fuel (F) side of the A/F. Efforts to expand this have been proposed. However, this proposed method has problems such as the fact that the additive metal forms volatile oxides or is easily poisoned by sulfur contained in exhaust gas, or the window width is not wide enough to be practically satisfactory. There are problems such as not having one. One object of the present invention is to provide such periodic A/
The object of the present invention is to provide a catalyst composition that stably exhibits high three-component purification performance under fluctuations in F, and a method for producing the same. Another object of the present invention is to improve the catalyst containing rhodium (Rh) and platinum (Pt) as the main active components, which is currently receiving the highest evaluation as a three-way catalyst. An object of the present invention is to provide an improved catalyst capable of maintaining a high three-component purification level without narrowing the window width due to A/F fluctuations, and a method for manufacturing the same. Another object of the present invention is to minimize the amount of rhodium (Rh) used, which is resource-constrained and expensive, while still exhibiting a high level of three-component purification ability.
The objective is to provide a system catalyst. Generally, the natural production amount of rhodium (Rh) is extremely small (1/1 of platinum).
Estimated to be 9. ) for a weight ratio of Pt and Rh of 19:
For example, in a three-way catalyst containing Rh at a ratio of about 1 to 10:1,
It is difficult to maintain high purification performance over a distance of 50,000 km, especially since the oxygen concentration in the exhaust gas at a chemically equivalent air-fuel ratio is as low as 0.5 to 1%.
A notable drawback is the reduced ability to purify HC and CO. As a countermeasure for this, the catalyst is separated into two beds, the first bed supports the entire amount of Rh and a portion of Pt and Pd, then oxygen is added with secondary air, and then the second bed is loaded with oxygen.
A method that leads to a complete oxidation catalyst when Pt or Pd is supported is becoming promising. In the two-stage bed system considered so far, the carburetor is set so that the air-fuel ratio is on the fuel-added side, and only the NOx in the exhaust reducing gas is removed using a Rh catalyst, and then the secondary air is There was a method that led to the oxidation catalyst after addition, but this method had two drawbacks. In other words, with poor fuel efficiency and a reducing atmosphere,
A considerable proportion of NO was reduced to ammonia, which was returned to NO by the oxidation catalyst, leading to a decline in the overall NO purification ability. In contrast, the two-stage engine engine with air-fuel ratio control solves the above-mentioned drawbacks. In other words, the fuel efficiency is good because it is always operated at the chemical equivalence point, and since the NH 3 byproduct is significantly suppressed during the reaction of exhaust gas near the chemical equivalence point, the overall NO purification rate can be maintained at a high level. As an example of such a two-tier floor type, there are currently 2 floors per vehicle.
Using a catalyst capacity of 1.5 g of Pt and 1.5 g of Pd,
When using 0.6g and 0.15g of Rh, and distributing Pt and Pd equally to the front and rear floors, the front floor is
Pt0.75g/, Pd0.3g/, Rh0.15g/ composition
The Pt/Rh ratio is 5/1. This ratio naturally means that the Rh ratio is higher than the Pt/Rh = 10/1 of a single bed three-way catalyst, and if we use the same idea to allocate 20% of Pt to the front bed and 80% to the rear bed. Front floor Pt/
It is also possible to set the Rh ratio to 2/1. but,
On the other hand, if attention is focused only on the first bed of a two-stage bed system, the reaction space velocity will be twice as high, so a two-way catalyst with higher activity will be required. Therefore, the object of the present invention additionally stated above is to provide a composition having a relatively low Pt/Rh ratio,
The object of the present invention is to provide a composition of a highly active three-way catalyst and at the same time provide an economical method for producing the same. More specifically, the catalyst of the present invention comprises Ce,
Fe, Pt, Pd, and Rh are used to convert exhaust gas from an engine with air-fuel ratio control into a single-bed type three-way catalyst, or as a front-stage three-way catalyst for a two-stage bed type catalytic converter to convert CO, HC, and NOx. The present invention relates to a catalyst composition that can be purified at a high level and is highly durable, and a method for producing the same. Specifically, the catalyst of the present invention is deposited on a refractory, porous, high surface area particulate support containing 1 to 20 g of cerium, 2.5 to 20 g of iron, and 0.05 g of atomic grams (g) per liter of finished catalyst.
~0.8g platinum, 0.02-0.3g palladium, 0.05
Carrying ~0.3g rhodium, 0~0.08g phosphorus,
and the weight ratio of Pt and Rh is 5:1 to 1:1, and Pt
This is a catalyst for the first bed of a single-bed system or a two-stage bed system, with a composition in which the ratio of The catalyst component is supported by the process, and in the first impregnation process, a final solution is prepared by adding and dissolving water-soluble salts of cerium and iron, a nitric acid acidic solution of dinitrodiamine platinum, a water-soluble salt of palladium, and phosphoric acid if necessary. A step of impregnating with a catalyst solution adjusted to a volume of about 0.5 to about 1.3 times, preferably 0.75 to 1.2 times the total water absorption amount of the carrier, and a second impregnation step of dissolving Rh in water. This production method is characterized by a step of impregnating Rh with an aqueous solution in which a salt is dissolved, adjusted to the same final liquid volume as the first-stage impregnation catalyst solution. As mentioned above, although the catalyst of the present invention has been defined, the role of each element constituting the catalyst of the present invention has not yet been completely elucidated. However, the present inventors have discovered the following fact. In other words, Ce and Fe have the ability to absorb and store oxygen in the reaction gas, and have the ability to minimize the range of air-fuel ratio fluctuations that are directly related to catalytic reactions. The effect of supporting the ohming reaction and, more importantly, the oxidizing ability of these elements themselves, CO and HC, and the oxidation ability of NOx.
It has the ability to reduce CO, H 2 , HC, etc. Among these, Ce in particular affects the supporting depth of Rh that is later supported, and is used in the present invention.
In order to make the low concentration of Rh (0.3g/) work as effectively as possible in the reaction, it plays an effective role in supporting finely dispersed Rh near the surface of the carrier. In addition, when Ce is supported on a refractory such as alumina, Pt, Pd,
It has been found that noble metals such as Rh suppress the reaction with alumina and other substances at high temperatures, thereby contributing to improving the heat resistance stability of the catalyst. In addition, it is preferable that P, which can be used in the present invention, be supported as phosphoric acid at the same time as Pt and Pd, and its action is due to the strong adsorption property of phosphoric acid to alumina, so the amount of P added must be adjusted. By this, Pt and Pd can be supported at an arbitrary depth inside the carrier. Therefore, when there is a relatively large amount of Pt, such as when the Pt/Rh ratio is 5/1, P is added to lower the surface concentration of Pt, and in this way the Pt/Rh ratio on the catalyst surface is reduced. By lowering Pt−Rh
It is thought that undesirable alloying etc. can be considerably prevented. However, on the other hand, Pt/Rh=1/
In case 1, it is no longer preferable to support Pt deep into the carrier, and therefore the amount of phosphoric acid added becomes zero or substantially close to zero. According to the present inventors, the amount of phosphoric acid added is equal to the number of moles of Pt.
About 0.1 to 2 times the mole is good. It is thought that the phosphoric acid located on the surface of the carrier at an appropriate concentration is decomposed by the subsequent heat treatment and exists in the catalyst in an oxide state, but this P compound suppresses the ammonia by-product in the NO reduction reaction and makes it possible to release more nitrogen. It was also found that it has the effect of promoting the return of In addition to the basic elements constituting these catalysts, for example, rare earth elements other than Ce, such as lanthanum (La), praseodymium (Pr), neodymium, (Nd), and gadolinium (Gd), may be substituted for part of Ce. Fe
It is also possible to replace a part of nickel (Ni), barium (Ba), cobalt (Co), chromium (Cr), calcium (Ca), etc. The granular carrier used in the present invention is preferably one containing activated alumina as a main component, but other materials such as silica alumina, silica, magnesia, zirconia, and titania that have excellent heat resistance and sufficient strength as a carrier may also be used. It can be used even if some parts are mixed.
Further, as the particle shape, any of spheres, cylinders, and irregular cross-sectional shapes can be used. Also, in advance,
It is also possible to use an alumina carrier formed into granules containing a portion of Fe and Ce components. Support physical properties include BET surface area of 10 to 200 m 2 /g, preferably
The total pore volume measured by mercury porosimetry is preferably 0.4 cc/g or more, preferably 0.5 to 1.3 cc/g, and the average pore diameter is 100 Å or more, preferably 150 Å or more. The catalyst raw materials used in the present invention are selected from compounds whose catalyst components can be activated into oxides or atoms through the activation treatment described below, and are usually inorganic salts, organic salts, metal acids, or compounds that can form an aqueous solution. That salt is fine. As a particularly preferable raw material,
For Fe, ferric nitrate and ferrous ammonium sulfate are good. For Ce, ceric nitrate and ceric ammonium nitrate are good. For P, phosphoric acid is good. As for Rh and Pd, their chlorides, nitrates, and other various water-soluble complex salts may be used. The most preferred platinum raw material is a nitric acid aqueous solution of dinitrodiaminoplatinum disclosed in US Pat. No. 3,953,369. The reason for this is that the first impregnating solution used in the production method of the present invention contains, for example, a large amount of cerium nitrate and iron nitrate ions together with Pt, so a Pt source such as ordinary chloroplatinic acid (H 2 PtCl 6 ) is not used. This is because if Pt is used, Pt penetrates deep into the carrier particles, sometimes even to the center of the granular carrier, and is supported, making it impossible to obtain a highly active catalyst. On the other hand, a nitric acid acidic solution of dinitrodiaminoplatinum has extremely strong adsorption to alumina, so it can be effectively supported near the surface of the carrier in a finely dispersed state even in the coexistence of the cerium nitrate and iron nitrate. At the same time, Pt/
In cases such as Rh=5/1, addition of phosphoric acid is useful as a means to arbitrarily control the carrier surface concentration of dinitrodiaminoplatinum. On the other hand, in order to prepare a catalyst having the composition of the present invention using chloroplatinic acid as a starting material, a good catalyst cannot be obtained by the two-stage impregnation method, and instead a three-stage impregnation method, that is, the first
A long manufacturing process is carried out in which Fe and Ce are supported in the first step, dried and fired, then Rh is supported in the second step, dried and fired, and then Pt and Pd are simultaneously supported with P in the third step, dried and activated. I have to take it.
Moreover, the present inventors have found that a catalyst produced by a two-stage impregnation method using a nitric acid solution of dinitrodiamine platinum has a higher reaction activity than a catalyst having the composition described in the present invention produced by a three-stage impregnation method using chloroplatinic acid. It has been found to be excellent in both durability. Although the reason for this has not been completely investigated, it is presumed that it is due to the Pt concentration in the extreme surface layer and the dispersion state of platinum (crystal fineness). The present inventors have also found that the NO purification rate is better when an appropriate ratio of Pt-Pd-Rh is used as a front-bed catalyst in a two-stage bed system than when only Rh is used due to the synergistic effect. In the method for preparing the catalyst of the present invention explained above,
The use of a polyoxyethylene nonionic surfactant in impregnating and supporting each component of Ce, Fe, Rh, Pt, Pd, and P is very useful for preparing the catalyst of the present invention. The presence of a polyoxyethylene-based nonionic surfactant generates appropriate foaming, which facilitates mutual contact between the catalyst component aqueous solution, carrier particles, and the wall of the preparation container, resulting in uniform and reproducible loading results. Furthermore, due to the low permeability of the surfactant, effective dispersion and loading on the surface and surface layer of the catalyst can be carried out, and a catalyst having the desired level of performance can be obtained with a minimum amount of loading. These advantages are particularly advantageous when preparing a large amount of catalyst. The surfactants used in the method of the present invention are as follows. Polyethylene glycol HO (C 2 H 4 O) o H (n
= 11 to 900), polyoxyethylene glycol alkyl ether RO (C 2 H 4 O) o H (R has 6 to 6 carbon atoms)
30 alkyl groups (n=3-30), "Pluronic" type, i.e. polyoxyethylene-polyoxypropylene-polyoxyethylene glycol
HO(C 2 H 4 O) a (C 3 H 6 O) b (C 2 H 4 O) c H(a,
b, c are 1 or more, a+b+c=20-400)
general formula "Tetronic type nitrogen-containing nonionic surfactant (x 1 to x 4 , y 1 to y 4 are 1 or more, x 1 +
x 2 + x 3 + x 4 + y 1 + y 2 + y 3 + y 4 = 20-800), polyexyethylene alkyl allyl ether

【式】(R′は炭素数6 〜12のアルキル基でn=3〜30)、ポリオキシエ
チレンアルキルエステルR−COO(C2H4O)o
またはR−COO(C2H4O)o-1−CH2CH2COO−R
(Rは炭素数6〜24のアルキル基でありn=3〜
30)、ポリオキシエチレンアルキルアミン (Rは炭素数6〜30のアルキル基でありn、n1
よびn2は3〜30)、ポリオキシエチレンアルキル
アマイドR−CONH−(C2H4O)oHまたは
[Formula] (R' is an alkyl group having 6 to 12 carbon atoms, n = 3 to 30), polyoxyethylene alkyl ester R-COO (C 2 H 4 O) o H
or R−COO(C 2 H 4 O) o−1 −CH 2 CH 2 COO−R
(R is an alkyl group having 6 to 24 carbon atoms, and n=3 to
30), polyoxyethylene alkylamine (R is an alkyl group having 6 to 30 carbon atoms, and n, n 1 and n 2 are 3 to 30), polyoxyethylene alkylamide R-CONH-(C 2 H 4 O) o H or

【式】(Rは炭素数6〜30の アルキル基でありn、n1およびn2は3〜30)、ポ
リオキシエチレンソルビタンの脂肪酸エステル (Rは炭素数6〜24のアルキル基でありnは3〜
30) これらポリオキシエチレン系非イオン界面活性
剤のうち好ましいのは平均分子量500以上、とく
に1000以上のものである。平均分子量が500より
小さいと浸透性が大きくなり、触媒成分(特に貴
金属成分)が担体内部にまで均一に担持分布する
ようになり、担持量を増加させる必要が生ずるか
らである。この界面活性剤は担体1当り0.05〜
50g、好ましくは0.1〜20g用いられ、触媒成分
水溶液中に加えた場合は0.005〜10重量%、好ま
しくは0.01〜5重量%の範囲で用いられる。 実施例 1 表面積105m2/g、見かけ比重0.5g/c.c.で直径3
mm、平均長4mmの円柱状アルミナ担体100c.c.を、
硝酸第1セリウム〔Ce(NO33・6H2O〕3.10g
と硝酸第2鉄〔Fe(NO33・9H2O〕7.2gと0.019
gの85%リン酸(H3PO4)とジニトロジアミノ白
金〔Pt(NH32(NO22〕0.124gを含む硝酸酸性
溶液と0.065gの硝酸パラジウムと0.05gのプル
ロニツク型非イオン界面活性剤〔平均分子量
11000の酸化プロピレン(PO)、酸化エチレン
(EO)のブロツク共重合体で全分子中のEOが80
重量%である。〕とを混合し、水を加えて溶かし
全量を57c.c.とした液に浸漬し、温浴上で濃縮乾固
して上記成分を担持せしめた後150℃で2時間乾
燥後水素(H2)10%−残り窒素(N2)気流中で
350℃で2時間還元処理を行つた。その後0.038g
の3塩化ロジウム(Rh・Cl3・3H2O)と0.05gの
前記と同じ界面活性剤を水に溶解し全量を57c.c.と
した後、上記法と同様な手法によりRhを含浸担
持した後、180℃で3時間乾燥した後触媒とし
た。この触媒は完成触媒1リツトル当りの各成分
担持量を原子gで表わすと次の如くであつた。 Ce:Fe:P:Pt:Pd:Rh=10:10:0.05:
0.75:0.3:0.15 実施例 2 実施例1と同様の出発原料を用い、同様の担持
手法を用いて次の触媒を調製した。但し、Ce、
Fe、P、Pt、Pd担持乾燥後還元焼成の代りに550
℃で3時間酸化焼成を行い、またRh担持乾燥
後、350℃でH2/N2中で還元焼成を行つて次の触
媒を得た。 Ce:Fe:P:Pt:Pd:Rh=15:7.5:0.02:
0.3:0.25:0.1 実施例 3 実施例1と同様の担持手法でまた同じ出発原料
を用いて、次の組成の触媒を調製した。但し、
Rh担持乾燥後再び350℃でH2/N2気流中で還元焼
成を行つた。 Ce:Fe:P:Pt:Pd:Rh=7.5:2.5:0.005:
0.1:0.4:0.1 実施例 4〜6 実施例2と同様の方法でリン酸の添加量が異な
る次の触媒を調製した。 実施例4 Ce:Fe:P:Pt:Pd:Rh=5:
5:0:0.15:0.06:0.1 実施例5 Ce:Fe:P:Pt:Pd:Rh=5:
5:0.005:0.15:0.06:0.1 実施例6 Ce:Fe:P:Pt:Pd:Rh=5:
5:0.05:0.15:0.06:0.1 比較例 1 実施例5と同様の手法で、但しCe、Feを含ま
ない触媒を調製した。 Ce:Fe:P:Pt:Pd:Rh=0:0:0.005:
0.15:0.06:0.1 実施例 7 実施例1より実施例6までの触媒と比較例1の
触媒は台上エンジン試験装置でその浄化性能が評
価された。 試験方法はおおむねSAE770371に記されたと
同様の空燃比振動法であつた。すなわち、市販4
気筒1800c.c.エンジン(EFI)に発振器で作られた
1Hzのサイン波型電位がコントロールユニツトに
導入され±1.0A/F相当(たとえば、A/F=
13.5〜15.5)の空燃比振動となる様振幅が決めら
れた。触媒はステンレス製マルチ反応器に充填さ
れ反応条件は入口温度550℃、SV120000Hr-1とな
る様設定された。 新品時の性能の評価は表1にかかげた。この表
でNO実浄化率が最も重要な項目であり、他の
CO、HCの浄化率はその後に装着される酸化触媒
でさらに浄化されるのでここでは参考値として考
える。新品時の評価が終つた触媒は、エンジン回
転を3000rpmに上げて100時間クローズドループ
式運転で化学当量点付近で老化(エイジング)さ
せ再び新品時の条件と同じように性能評価を行つ
た。使用したガソリンは無鉛ガソリン規格品であ
り、実測鉛含有率は0.003gPb/ガロン以下であ
つた。100時間走行後の性能評価結果を表2に示
した。比較例1はFe、Ceが添加していないため
NO実浄化率が低いことが明らかである。なお、
参考のために図1−1、図1−2(以上実施例
1)、図2−1、図2−2(以上実施例5)およ
び図3−1、図3−2(以上比較例1)を示して
おく。
[Formula] (R is an alkyl group having 6 to 30 carbon atoms, and n, n 1 and n 2 are 3 to 30), fatty acid ester of polyoxyethylene sorbitan (R is an alkyl group having 6 to 24 carbon atoms, and n is 3 to
30) Among these polyoxyethylene nonionic surfactants, those having an average molecular weight of 500 or more, particularly 1000 or more are preferred. This is because if the average molecular weight is less than 500, the permeability will increase, and the catalyst components (particularly the noble metal components) will be uniformly supported and distributed inside the carrier, making it necessary to increase the amount supported. This surfactant is 0.05 to 1 per carrier.
50 g, preferably 0.1 to 20 g, is used, and when added to the catalyst component aqueous solution, it is used in a range of 0.005 to 10% by weight, preferably 0.01 to 5% by weight. Example 1 Surface area 105m 2 /g, apparent specific gravity 0.5g/cc, diameter 3
mm, cylindrical alumina carrier 100c.c. with an average length of 4mm,
Cerous nitrate [Ce(NO 3 ) 3・6H 2 O] 3.10g
and ferric nitrate [Fe(NO 3 ) 3・9H 2 O] 7.2g and 0.019
g of 85% phosphoric acid (H 3 PO 4 ) and a nitric acid acidic solution containing 0.124 g of dinitrodiaminoplatinum [Pt(NH 3 ) 2 (NO 2 ) 2 ], 0.065 g of palladium nitrate and 0.05 g of Pluronic type nonionic Surfactant [average molecular weight
A block copolymer of 11,000 propylene oxide (PO) and ethylene oxide (EO) with 80 EO in the entire molecule.
Weight%. ], then dissolved with water to make a total volume of 57 c.c., immersed in a solution, concentrated to dryness on a warm bath to support the above components, dried at 150°C for 2 hours, and then dissolved in hydrogen (H 2 ) 10% - remaining in nitrogen (N 2 ) stream
Reduction treatment was performed at 350°C for 2 hours. then 0.038g
After dissolving rhodium trichloride (Rh・Cl 3・3H 2 O) and 0.05 g of the same surfactant as above in water to make a total amount of 57 c.c., Rh was impregnated and supported using the same method as above. After that, it was dried at 180°C for 3 hours and used as a catalyst. In this catalyst, the amount of each component supported per liter of the finished catalyst, expressed in atomic grams, was as follows. Ce:Fe:P:Pt:Pd:Rh=10:10:0.05:
0.75:0.3:0.15 Example 2 The following catalyst was prepared using the same starting materials as in Example 1 and using the same supporting technique. However, Ce,
550 instead of Fe, P, Pt, Pd supported drying and reduction firing
Oxidation calcination was performed at 350°C for 3 hours, and after drying the Rh supported, reduction calcination was performed at 350°C in H 2 /N 2 to obtain the following catalyst. Ce:Fe:P:Pt:Pd:Rh=15:7.5:0.02:
0.3:0.25:0.1 Example 3 Using the same loading method as in Example 1 and using the same starting materials, a catalyst having the following composition was prepared. however,
After Rh supporting drying, reduction firing was performed again at 350° C. in a H 2 /N 2 gas flow. Ce:Fe:P:Pt:Pd:Rh=7.5:2.5:0.005:
0.1:0.4:0.1 Examples 4 to 6 The following catalysts with different amounts of phosphoric acid added were prepared in the same manner as in Example 2. Example 4 Ce:Fe:P:Pt:Pd:Rh=5:
5:0:0.15:0.06:0.1 Example 5 Ce:Fe:P:Pt:Pd:Rh=5:
5:0.005:0.15:0.06:0.1 Example 6 Ce:Fe:P:Pt:Pd:Rh=5:
5:0.05:0.15:0.06:0.1 Comparative Example 1 A catalyst was prepared in the same manner as in Example 5, except that it did not contain Ce or Fe. Ce:Fe:P:Pt:Pd:Rh=0:0:0.005:
0.15:0.06:0.1 Example 7 The catalysts of Examples 1 to 6 and the catalyst of Comparative Example 1 were evaluated for their purification performance using a bench engine test device. The test method was an air-fuel ratio oscillation method roughly similar to that described in SAE770371. That is, commercially available 4
A 1Hz sine wave potential generated by an oscillator is introduced into the control unit into the cylinder 1800c.c. engine (EFI), and the equivalent of ±1.0A/F (for example, A/F =
The amplitude was determined to give an air-fuel ratio oscillation of 13.5 to 15.5). The catalyst was packed into a stainless steel multi-reactor, and the reaction conditions were set at an inlet temperature of 550°C and a SV of 120000 Hr -1 . Table 1 shows the evaluation of performance when new. In this table, the actual NO purification rate is the most important item, and other
The CO and HC purification rates are considered as reference values here, as they are further purified by the oxidation catalyst installed afterwards. After the catalyst had been evaluated when new, the engine speed was raised to 3000 rpm and the catalyst was aged near the chemical equivalence point in closed-loop operation for 100 hours, and its performance was evaluated again under the same conditions as when it was new. The gasoline used was standard unleaded gasoline, and the actual lead content was less than 0.003 gPb/gal. Table 2 shows the performance evaluation results after running for 100 hours. Comparative Example 1 does not contain Fe or Ce.
It is clear that the actual NO purification rate is low. In addition,
For reference, Figures 1-1, 1-2 (Example 1 above), Figures 2-1, 2-2 (Example 5), and Figures 3-1, 3-2 (Comparative Example 1) ) is shown below.

【表】【table】

【表】【table】

【表】【table】

【表】 実施例 8 実施例5の触媒900c.c.と通常の製法で調製した
Pt0.85g/、Pd0.34g/担持の酸化酸媒900c.c.
を組合わせて2床触媒コンバーターを作つた。こ
の触媒コンバーターを前記1800c.c.排気量エンジン
に装着し3000rpmでクローズドループ運転で200
時間走行後、実施例7と同様の評価方法で性能を
調べた。このコンバーターの性能評価結果を表3
で対比する。
[Table] Example 8 Catalyst 900c.c. of Example 5 and prepared by normal manufacturing method
Pt0.85g/, Pd0.34g/supported oxidizing acid medium 900c.c.
A two-bed catalytic converter was created by combining the two. This catalytic converter was installed on the 1800 c.c.
After running for a certain period of time, performance was examined using the same evaluation method as in Example 7. Table 3 shows the performance evaluation results of this converter.
Compare with.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

図1−1は実施例1の触媒の新品時の触媒活性
の図であり、図1−2は実施例1の触媒の100時
間走行時の触媒活性の図である。図2−1と図2
−2は各々実施例5の触媒の新品時及び100時間
走行後の触媒活性を示していいる。図3−1と図
3−2は比較例1の触媒の同様の触媒活性を示し
ている。
FIG. 1-1 is a diagram of the catalytic activity of the catalyst of Example 1 when new, and FIG. 1-2 is a diagram of the catalytic activity of the catalyst of Example 1 after running for 100 hours. Figure 2-1 and Figure 2
-2 indicates the catalytic activity of the catalyst of Example 5 when new and after running for 100 hours. 3-1 and 3-2 show similar catalytic activity of the catalyst of Comparative Example 1.

Claims (1)

【特許請求の範囲】 1 高表面積を有する耐火性多孔質粒状担体を用
い、()該担体を、セリウム(Ce)および鉄
(Fe)の水溶性化合物を水性媒体に溶解し、この
溶液にジニトロジアミノ白金の硝酸酸性溶液、つ
いでパラジウム(Pd)を含む水性溶液を加えて
調整した触媒溶液に含浸せしめ、ついで120〜180
℃で乾燥したのち250〜600℃にて空気中または水
素雰囲気中焼成し、ついで()該焼成処理触媒
をロジウム(Rh)の水溶性化合物を含む触媒溶
液に含浸せしめ、ついで120〜180℃で乾燥するか
またはさらに空気中あるいは水素雰囲気中で250
〜600℃で焼成してえられ、かつ、完成触媒1リ
ツトル当り、原子グラムで表わして、1〜20gの
Ce、2.5〜20gのFe、0.05〜0.8gのPt、0.02〜
0.3gのPdおよび0.05〜0.3gのRhを担持してな
り、しかもPt:Rhの重量比で5:1〜5、Pt:
Pdの重量比で1:0.2〜5の範囲である、排ガス
中の一酸化炭素(CO)、炭化水素(HC)および
窒素酸化物(NOx)を同時に除去しうる排ガス
浄化用触媒の製造方法。 2 高表面積を有する耐火性多孔質粒状担体を用
い、()該担体を、セリウム(Ce)および鉄
(Fe)の水溶性化合物を水性媒体に溶解し、この
溶液にジニトロジアミノ白金の硝酸酸性溶液、つ
いでパラジウム(Pd)を含む水性溶液、さらに
リン酸を加えて調整した触媒溶液に含浸せしめ、
ついで120〜180℃で乾燥したのち250〜600℃にて
空気中または水素雰囲気中焼成し、ついで()
該焼成処理触媒を、ロジウム(Rh)の水溶性化
合物を含む触媒溶液に含浸せしめ、ついで120〜
180℃で乾燥するかまたはさらに空気中あるいは
水素雰囲気中で250〜600℃で焼成してえられ、か
つ、完成触媒1リツトル当り、原子グラムで表わ
して、1〜20gのCe、2.5〜20gのFe、0.05〜0.8
gのPt、0.02〜0.3gのPd、0.05〜0.3gのRhおよ
び0.005〜0.08gのリンを担持してなり、しかも
Pt:Rhの重量比で5:1〜5、Pt:Pdの重量比
で1:0.2〜5の範囲である、排ガス中の一酸化
炭素(CO)、炭化水素(HC)および窒素酸化物
(NOx)を同時に除去しうる排ガス浄化用触媒の
製造方法。
[Claims] 1. Using a refractory porous granular carrier having a high surface area, () dissolving water-soluble compounds of cerium (Ce) and iron (Fe) in an aqueous medium, and dissolving dinitroinol into this solution. It was impregnated with a catalyst solution prepared by adding an acidic solution of diaminoplatinum in nitric acid and then an aqueous solution containing palladium (Pd).
After drying at 120°C to 600°C, it is calcined in air or in a hydrogen atmosphere, and then () the calcined catalyst is impregnated with a catalyst solution containing a water-soluble compound of rhodium (Rh), and then at 120 to 180°C. Dry or further in air or hydrogen atmosphere for 250
obtained by calcination at ~600°C, and contains 1 to 20 g, expressed in atomic grams, per liter of finished catalyst.
Ce, 2.5~20g Fe, 0.05~0.8g Pt, 0.02~
It supports 0.3 g of Pd and 0.05 to 0.3 g of Rh, and the weight ratio of Pt:Rh is 5:1 to 5, Pt:
A method for producing an exhaust gas purifying catalyst capable of simultaneously removing carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx) in exhaust gas in a weight ratio of Pd in the range of 1:0.2 to 5. 2 Using a refractory porous granular carrier with a high surface area, () dissolve the water-soluble compounds of cerium (Ce) and iron (Fe) in an aqueous medium, and add to this solution a nitric acid acidic solution of dinitrodiaminoplatinum. , then impregnated with an aqueous solution containing palladium (Pd) and a catalyst solution prepared by adding phosphoric acid,
Then, after drying at 120-180℃, firing at 250-600℃ in air or hydrogen atmosphere, and then ()
The calcined catalyst was impregnated with a catalyst solution containing a water-soluble compound of rhodium (Rh), and then
obtained by drying at 180°C or further calcining at 250-600°C in air or hydrogen atmosphere, and containing 1-20 g of Ce, 2.5-20 g of Ce, expressed in atomic grams, per liter of finished catalyst. Fe, 0.05~0.8
g of Pt, 0.02 to 0.3 g of Pd, 0.05 to 0.3 g of Rh, and 0.005 to 0.08 g of phosphorus, and
Carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides ( A method for manufacturing an exhaust gas purification catalyst that can simultaneously remove NOx).
JP9033579A 1979-07-18 1979-07-18 Exhaust gas cleaning catalyst Granted JPS5615842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9033579A JPS5615842A (en) 1979-07-18 1979-07-18 Exhaust gas cleaning catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9033579A JPS5615842A (en) 1979-07-18 1979-07-18 Exhaust gas cleaning catalyst

Publications (2)

Publication Number Publication Date
JPS5615842A JPS5615842A (en) 1981-02-16
JPS6140460B2 true JPS6140460B2 (en) 1986-09-09

Family

ID=13995641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9033579A Granted JPS5615842A (en) 1979-07-18 1979-07-18 Exhaust gas cleaning catalyst

Country Status (1)

Country Link
JP (1) JPS5615842A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592119U (en) * 1982-06-08 1984-01-09 三菱電機株式会社 electromagnetic induction equipment
FR2530489B1 (en) * 1982-07-26 1987-02-27 Pro Catalyse PROCESS FOR THE MANUFACTURE OF CATALYSTS FOR THE TREATMENT OF EXHAUST GASES FROM INTERNAL COMBUSTION ENGINES
FR2546078B1 (en) * 1983-05-19 1987-05-07 Pro Catalyse PROCESS FOR THE MANUFACTURE OF CATALYSTS FOR THE TREATMENT OF EXHAUST GASES FROM INTERNAL COMBUSTION ENGINES
FR2556236B1 (en) * 1983-12-09 1988-04-01 Pro Catalyse METHOD FOR MANUFACTURING A CATALYST FOR THE TREATMENT OF EXHAUST GASES
JP2745644B2 (en) * 1989-03-01 1998-04-28 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP4631360B2 (en) * 2004-09-02 2011-02-16 トヨタ自動車株式会社 Method for producing exhaust gas purification catalyst

Also Published As

Publication number Publication date
JPS5615842A (en) 1981-02-16

Similar Documents

Publication Publication Date Title
US4283308A (en) Auto exhaust gas catalyst, and process for production thereof
KR920009112B1 (en) Three-way catalysts for lean exhaust system
KR100567726B1 (en) Exhaust gas purifying catalyst
JP5889756B2 (en) Exhaust gas purification catalyst carrier
JP3311012B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPS6140461B2 (en)
US10052615B2 (en) Oxygen storage materials
JPWO2008140025A1 (en) Exhaust gas purification catalyst, exhaust gas purification apparatus and exhaust gas purification method using the same
JPS6140460B2 (en)
JP7180150B2 (en) Nitrogen oxide storage material, exhaust gas purification catalyst, exhaust gas purification device
EP2878359B1 (en) Use of mixed oxides as oxygen storage components
CA2402999C (en) Iridium catalyst for purifying nitrogen oxides in exhaust systems
JP5078638B2 (en) Exhaust gas purification device
JPH0582258B2 (en)
JP3154620B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPS59162948A (en) Catalyst for purifying exhaust gas
JP6096818B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method using the same
JPS599217B2 (en) Exhaust gas purification catalyst and its manufacturing method
JPH08173815A (en) Catalyst for purification of exhaust gas
JP3682476B2 (en) NOx removal catalyst, method for producing the same, and exhaust gas NOx removal method using the same
JP2005279372A (en) Denitrification catalyst and denitrification method using it
JP4822049B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JPH11138001A (en) Catalyst for exhaust gas purification
JP2021037445A (en) Catalyst for exhaust purification and method for producing the same
JPH1190229A (en) Catalyst for purifying exhaust gas