JPS6139611B2 - - Google Patents

Info

Publication number
JPS6139611B2
JPS6139611B2 JP16715980A JP16715980A JPS6139611B2 JP S6139611 B2 JPS6139611 B2 JP S6139611B2 JP 16715980 A JP16715980 A JP 16715980A JP 16715980 A JP16715980 A JP 16715980A JP S6139611 B2 JPS6139611 B2 JP S6139611B2
Authority
JP
Japan
Prior art keywords
magnetic field
blood
sample
inspection position
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16715980A
Other languages
Japanese (ja)
Other versions
JPS5790157A (en
Inventor
Kazumasa Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mochida Pharmaceutical Co Ltd
Original Assignee
Mochida Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mochida Pharmaceutical Co Ltd filed Critical Mochida Pharmaceutical Co Ltd
Priority to JP16715980A priority Critical patent/JPS5790157A/en
Publication of JPS5790157A publication Critical patent/JPS5790157A/en
Publication of JPS6139611B2 publication Critical patent/JPS6139611B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • G01N21/253Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To perform a diagnosis of a malignant tumor, by a method wherein a blood, divided into a blood cell and serum, drops on a plurality of glass plates, their respective glass plates are conveyed, in order, to an inspection position by means of a conveyor, and a difference in reflection rate is produced due to the presence of a magnetic field through the irradiation with laser light. CONSTITUTION:A sample blood, divided into a blood cell and a serum, is placed as a sample 1 on a glass plate 2, and is conveyed to an inspection position 15 provided with a coil 15 or a permanent magnet for generating a constant magnetic field. A laser light polarized to a shutter (7) side is caused to enter the under surface of the glass plate 2 from a reflection mirror 9A at right angles with a magnetic field, and a reflection light of a sample 1 is inputted to a detector 8B through a reflection mirror 9, and a pin hole 10. A difference in reflection rate between a time when a magnetic field is applied by a coil 15 and a time when a magnetic field is not applied is computed (11) and recorded (12). With a shutter 7 closed, a change in an output of a laser light is detected by a detector 8A where necessary. This finds a change in the reflection rate between a time when a magnetic field is generated in the sample 1, and a time when no magnetic field is produced. The change in reflection rate of the blood cell and serum is indicated such that the change rate of the blood cell is shown in a lateral axis and that of the serum in a longitudinal axis. If the cross point is positioned outside, it is healthy, and if in a center, a malignant tumor exists.

Description

【発明の詳細な説明】 本発明は血液の連続自動検査装置、更に詳しく
は、血液を血漿と血球に分離し、それぞれにレー
ザー光を照射したときの反射率の磁界が印加され
たときとされないときの変化を測定する連続自動
検査装置に関するものである。
[Detailed Description of the Invention] The present invention relates to a continuous automatic testing device for blood, and more specifically, it separates blood into plasma and blood cells, and irradiates each with laser light when a magnetic field of reflectance is applied. This invention relates to a continuous automatic inspection device that measures changes over time.

悪性腫瘍におかされた患者の血液には何らかの
変化が生ずる。その変化を検出する方法とし、血
液のレーザー光の反射率が磁界の有無により変化
することを利用することが提案されている。該方
法の概ね次の如くである。
Some changes occur in the blood of patients with malignant tumors. As a method for detecting this change, it has been proposed to utilize the fact that the reflectance of laser light in blood changes depending on the presence or absence of a magnetic field. The method is generally as follows.

(1) 先ず血液を遠心分離機等にて血漿と血球に分
離する。
(1) First, blood is separated into plasma and blood cells using a centrifuge.

(2) 血漿と血球毎にアルゴンイオンレーザーを照
射して反射率を測定する。アルゴンイオンレー
ザーはリトロープリズムで波長選択し、0.50/
7μmの最も感度のよう波長が選択される。前
記の反射率の測定に際して磁界を印加し、磁界
のない時の反射率R2(O)と磁界のあるとき
の反射率R2(H)を測定し、反射率変化ΔR
を次式で求める。
(2) Irradiate each plasma and blood cell with an argon ion laser and measure the reflectance. The wavelength of the argon ion laser is selected using a Littrow prism, and the wavelength is 0.50/
The most sensitive wavelength of 7 μm is chosen. When measuring the reflectance described above, a magnetic field is applied, and the reflectance R 2 (O) in the absence of a magnetic field and the reflectance R 2 (H) in the presence of a magnetic field are measured, and the reflectance change ΔR is measured.
is calculated using the following formula.

ΔR=R(H)−R(O)/R(O) (3) 血球のΔRを横軸に、血漿のΔRを縦軸にと
つて直交座標表示を行なう。
ΔR=R 2 (H)−R 2 (O)/R 2 (O) (3) Cartesian coordinates are displayed with ΔR of blood cells on the horizontal axis and ΔR of plasma on the vertical axis.

(4) レーザー光の入射面と磁界の方向が直交して
いる場合はこのそれぞれのΔRの交点は、悪性
腫瘍者の血液の場合は中心に分布し、良性及び
健康者の血液の場合は外側に分布する。
(4) When the incident plane of the laser beam and the direction of the magnetic field are perpendicular, the intersection of these ΔRs will be distributed at the center in the case of blood from patients with malignant tumors, and at the outside in the case of blood from benign and healthy individuals. distributed in

このような血液検査により被検者の健康状態悪
性疾患の有無を調べる。
Through such blood tests, the health status of the subject is investigated for the presence or absence of malignant diseases.

この血液検査法は悪性疾患の診断、ガン診断、
あるいはガン手術後、疾患部を全部摘出したかど
うかの診断等に効果をあげることができる。
This blood test method is used to diagnose malignant diseases, diagnose cancer,
Alternatively, after cancer surgery, it can be effective in diagnosing whether all the diseased parts have been removed.

本発明の目的は、上記の血液の磁界の有無によ
るレーザー光の反射率変化を自動的に連続して測
定することができる血液連続自動検査装置を提供
するにある。
An object of the present invention is to provide an automatic continuous blood testing device that can automatically and continuously measure the change in reflectance of laser light depending on the presence or absence of a magnetic field in the blood.

本発明による血液連続自動検査装置は主として
次の(a)〜(g)の要素にて構成される。
The automatic continuous blood testing device according to the present invention is mainly composed of the following elements (a) to (g).

(a) それぞれ同一血液より得られた血液と血漿の
検体を区分して滴下した複数のガラス板を、そ
の移動方向に等間隔に載置し、ある距離ずつ水
平移動するコンベア。
(a) A conveyor in which multiple glass plates, each containing blood and plasma samples obtained from the same blood, are placed at equal intervals in the direction of movement and are moved horizontally by a certain distance.

(b) 該コンベアを駆動するモータ。(b) A motor that drives the conveyor.

(c) 該コンベアの移動により検体が通過する一個
所を検査位置とし、該検査位置のコンベア部を
囲んで設けられ、該検査位置に磁力線の方向が
一定の磁界を形成するコイル又は、磁石。
(c) A coil or magnet that defines a location through which the specimen passes as the conveyor moves, and is provided surrounding the conveyor portion of the testing location, and forms a magnetic field with the lines of magnetic force in a constant direction at the testing location.

(d) 前記ガラス板を通して検査位置の検体面にレ
ーザー光を入射するレーザー光発生装置、最適
光量に調整する光減衰装置及びレーザー光をガ
ラス板の下から入射させる反射ミラ、並びにレ
ーザー入射光出力を検出する入射光デイテク
タ。
(d) A laser beam generator that injects a laser beam into the specimen surface at the inspection position through the glass plate, a light attenuator that adjusts to the optimum light intensity, a reflection mirror that injects the laser beam from below the glass plate, and laser incident light output. An incident light detector that detects.

(e) 前記検体よりの反射光の出力を検出する反射
光デイテクタ並びに反射光を該デイテクタに導
く反射ミラ及びピンホール板。
(e) A reflected light detector for detecting the output of reflected light from the specimen, and a reflecting mirror and pinhole plate for guiding the reflected light to the detector.

(f) 前記2つのデイテクタよりの信号に基づい
て、磁界の印加の有無時それぞれの検体の反射
率及び磁界の有無による反射率変化ΔRを演算
する演算手段、並びに同一血液毎に血球と血漿
毎のΔRを記録する記録計。
(f) Calculating means for calculating the reflectance of each sample when a magnetic field is applied and the reflectance change ΔR depending on the presence or absence of a magnetic field based on the signals from the two detectors, and calculating means for calculating the reflectance change ΔR for each sample when a magnetic field is applied, and for each blood cell and plasma for each blood. A recorder that records ΔR.

(g) モータの駆動、検査位置への磁界の印加及び
前記2つのデイテクタより演算手段への信号の
入力等を制御する制御手段。
(g) A control means for controlling the driving of the motor, the application of a magnetic field to the inspection position, the input of signals from the two detectors to the calculation means, etc.

以下、本発明の装置を実施例に基づいて説明す
る。先ず、本発明の装置の実施例の一部の構成を
示す部分構成図の第1図に基づいて説明する。
Hereinafter, the apparatus of the present invention will be explained based on examples. First, a description will be given based on FIG. 1, which is a partial configuration diagram showing a part of the configuration of an embodiment of the apparatus of the present invention.

第1図において1は血球又は血漿、2はガラス
板である。血球又は血漿(以下検体という。)1
のガラス板2に接するに面にレーザー光が入射さ
れ、磁界3の有無時のそれぞれの反射率が測定さ
れる。
In FIG. 1, 1 is blood cells or plasma, and 2 is a glass plate. Blood cells or plasma (hereinafter referred to as specimen) 1
Laser light is incident on the surface in contact with the glass plate 2, and the reflectance in the presence and absence of the magnetic field 3 is measured.

4はアルゴンイオンレーザー発生器でレーザー
光はリトロープリズム5で波長選択され、減衰板
6で検体1に熱的光学的変化を与えない程度に減
衰される。7はシヤツタで、シヤツタ7の反射光
は入射光デイテクタ8Aに入力される。シヤツタ
7を開放時のレーザー光は反射ミラ9Aで反射さ
れ、検体1の下側の面に入射され、その反射光は
反射ミラ9Bで反射され、ピンホール板10で、
ガラス板2の下側表面での反射光を除いて血液の
反射光のみ通過させ反射光デイテクタ8Bに入力
される。ここで血液の下側の面から入射させるこ
とは重要である。下側の面はガラス板と接触して
いるので空気との接触がなく血液が凝固する等の
変化を防ぐことができる。
Reference numeral 4 denotes an argon ion laser generator, and the laser beam is wavelength-selected by a Littrow prism 5 and attenuated by an attenuation plate 6 to an extent that no thermal or optical change is caused to the specimen 1 . 7 is a shutter, and the reflected light from the shutter 7 is input to an incident light detector 8A. When the shutter 7 is opened, the laser beam is reflected by the reflective mirror 9A and is incident on the lower surface of the specimen 1. The reflected light is reflected by the reflective mirror 9B, and then by the pinhole plate 10.
Except for the light reflected on the lower surface of the glass plate 2, only the blood reflected light is allowed to pass and is input to the reflected light detector 8B. Here, it is important to make the blood enter from the lower side. Since the lower surface is in contact with the glass plate, there is no contact with air, and changes such as blood coagulation can be prevented.

2つのデイテクタ8A,8Bよりの信号は演算
手段11に入力される。演算手段11は血漿と血
球毎に、磁界のない時の反射率R2(O)と磁界
のあるときの反射率R2(H)を演算し、更に、 ΔR=R(H)−R(O)/R(O) の式より反射率変化ΔRを演算し、血球と血漿毎
のΔR値を記録計12に入力され、記録計12に
よつて直交座標グラフ上に該値が記録される。
Signals from the two detectors 8A and 8B are input to the calculation means 11. The calculating means 11 calculates the reflectance R 2 (O) in the absence of a magnetic field and the reflectance R 2 (H) in the presence of a magnetic field for each plasma and blood cell, and further calculates ΔR=R 2 (H)−R. The reflectance change ΔR is calculated from the formula 2 (O)/R 2 (O), and the ΔR values for each blood cell and plasma are input into the recorder 12, and the values are plotted on the orthogonal coordinate graph by the recorder 12. recorded.

次に本発明の装置の実施例の全体の構成を第2
図の構成図に基づいて説明する。
Next, the overall configuration of the embodiment of the device of the present invention will be explained in the second section.
The explanation will be based on the configuration diagram in the figure.

第2図において、13はコンベアである。コン
ベア13は次のように構成されている。即ち、パ
ルスモータ14に連結された駆動軸13Aと3個
の案内軸13Bにはそれぞれ2個の歯車13Cが
とりつけてある。駆動軸13Aと案内軸13Bの
それぞれの歯車13c毎に噛合する2本の無端チ
エーン13Dが張設されている。2本のチエーン
13Dは多数の支桿13Eで連結されている。各
支桿13Eの間には、それぞれ同一血液より得ら
れ血球と血漿の検体1を区分して滴下したガラス
板2が載置されている。多数のガラス板2は等間
隔に載置される。多数の支桿13Eで連結された
1対のチエーン13Dよりなるコンベア13はパ
ルスモータ14により矢印方向に移動される。検
体1を滴下したガラス板2は、コンベア13の上
側水平部の上流側で載置され、検査位置19を通
り、コンベア13が水平方向より下方に移動する
際、ガラス板2はコンベア13よりはずれ、受器
18に回収される。
In FIG. 2, 13 is a conveyor. The conveyor 13 is constructed as follows. That is, two gears 13C are attached to each of the drive shaft 13A and three guide shafts 13B connected to the pulse motor 14. Two endless chains 13D are stretched to mesh with each gear 13c of the drive shaft 13A and guide shaft 13B. The two chains 13D are connected by a number of branch rods 13E. A glass plate 2 is placed between each support rod 13E, on which a sample 1 of blood cells and plasma obtained from the same blood is separated and dropped. A large number of glass plates 2 are placed at equal intervals. A conveyor 13 consisting of a pair of chains 13D connected by a number of support rods 13E is moved in the direction of the arrow by a pulse motor 14. The glass plate 2 on which the sample 1 has been dropped is placed on the upstream side of the upper horizontal part of the conveyor 13, and when the conveyor 13 moves downward from the horizontal direction after passing through the inspection position 19, the glass plate 2 is removed from the conveyor 13. , is collected in the receiver 18.

検査位置19のコンベア13の部分を囲んでコ
イル15が設置され、コイル15に直流電流が印
加され、検査位置19に磁力線の方向が一定の磁
界3(第2図には記載せず。)が形成される。(本
実施例では磁界発生装置としてコイル15を用い
ているが、もちろんコイルの代りに永久磁石、又
は電磁石を用いてもよい。) また検査位置19における検体1には第1図に
基いて説明したようにレーザー光が入射され、そ
の入射及び反射出力は2つのデイテクタ8A,8
Bにより検出される。
A coil 15 is installed surrounding the conveyor 13 at the inspection position 19, a direct current is applied to the coil 15, and a magnetic field 3 (not shown in FIG. 2) whose lines of magnetic force are in a constant direction is applied to the inspection position 19. It is formed. (In this embodiment, the coil 15 is used as the magnetic field generator, but of course a permanent magnet or an electromagnet may be used instead of the coil.) The specimen 1 at the inspection position 19 will be explained based on FIG. As shown above, a laser beam is incident, and its incident and reflected output are transmitted to two detectors 8A and 8.
Detected by B.

17は直流及び交流電源であり、コイル15に
は、制御手段16により直流電流が断続され、所
要時に通電される。制御手段16は、またパルス
モータ14の回転を制御し、且つ、シヤツタ7、
演算手段11及び記録計12の作動を制御する。
Reference numeral 17 denotes a DC and AC power source, and DC current is applied to the coil 15 on and off by the control means 16, and is energized when necessary. The control means 16 also controls the rotation of the pulse motor 14, and also controls the shutter 7,
The operation of the calculation means 11 and the recorder 12 is controlled.

検体1の血球又は血漿が検査位置19に到達す
ると、シヤツタ7を開き、レーザー光を検出1に
入射せしめる(レーザー光の入射出力は既にデイ
テクタ8Aにより検出され演算手段11に入力さ
れてある。)。血球又は血漿の磁界3のない場合の
反射光の出力がデイテクタ8Bにより演算手段1
1に入力され、演算手段11で磁界のないときの
反射率R2(O)が演算される。
When the blood cells or plasma of the specimen 1 reach the test position 19, the shutter 7 is opened and the laser beam is made to enter the detection 1 (the input output of the laser beam has already been detected by the detector 8A and input to the calculation means 11). . The output of the reflected light in the absence of the magnetic field 3 of blood cells or plasma is calculated by the detector 8B and calculated by the calculation means 1.
1, and the calculation means 11 calculates the reflectance R 2 (O) in the absence of a magnetic field.

次に、制御手段16によりコイル15に直流電
流が印加され、デイテクタ8Bにより磁界3のあ
る場合の叛射光出力が演算手段11に入力される
と、演算手段11は磁界のあるときの反射率R2
(H)を演算し、更に反射率変化ΔRを演算し、
該演算値は記録計12に入力され記録される。
Next, when a direct current is applied to the coil 15 by the control means 16 and the reflected light output in the presence of the magnetic field 3 is inputted to the calculation means 11 by the detector 8B, the calculation means 11 calculates the reflectance R when the magnetic field 3 is present. 2
(H), further calculate the reflectance change ΔR,
The calculated value is input to the recorder 12 and recorded.

次に、制御手段16によりパルスモータ14が
微小回転され、検査位置19に同一血液の他方の
検体(血漿又は血液)1が位置せしめられる。該
検体1についても前記と同様に磁界3の有無の場
合の反射率、更に反射率変化ΔRが演算され、Δ
R値が記録計12に記録される。
Next, the pulse motor 14 is slightly rotated by the control means 16, and the other sample (plasma or blood) 1 of the same blood is positioned at the test position 19. Similarly to the above, for the specimen 1, the reflectance in the presence and absence of the magnetic field 3 and the change in reflectance ΔR are calculated, and Δ
The R value is recorded on recorder 12.

一つの血液(1個のガラス板2上の血球及び血
漿)についての測定が終ると、次の血液の血球又
は血漿が検査位置19に来るように、パルスモー
タ14が微小回転せしめられ、次の血液について
前述と同様の測定が行なわれる。レーザー光の出
力変化のおそれがあるときは、必要に応じて、シ
ヤツタ7を閉びデイテクタ8Aにより該出力を検
出し、該値に基づいて前記の演算を行なう。
When the measurement of one blood (blood cells and plasma on one glass plate 2) is completed, the pulse motor 14 is slightly rotated so that the next blood cell or plasma comes to the test position 19. Measurements similar to those described above are made for blood. When there is a possibility of a change in the output of the laser beam, the shutter 7 is closed and the output is detected by the detector 8A, as necessary, and the above calculation is performed based on the value.

本発明の装置は以上の如く構成され、且つ作動
するので、多数の血液の磁界の有無によるレーザ
ー光の反射率変化を自動的に連続して測定するこ
とができる。従つて、悪性疾患の診断、健康診断
時の血液検査等を能率的に実施することができる
ので、医療分野における実用価値が大である。
Since the apparatus of the present invention is constructed and operates as described above, it is possible to automatically and continuously measure changes in the reflectance of laser light depending on the presence or absence of a magnetic field of a large number of blood. Therefore, diagnosis of malignant diseases, blood tests during health checkups, etc. can be carried out efficiently, so it has great practical value in the medical field.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の装置の実施例の構成を示すもの
で、第1図は部分構成図、第2図は全体構成図で
ある。 1……検体、2……ガラス板、3……磁界、4
……レーザー光発生装置、5……リトロープリズ
ム、6……減衰板、7……シヤツタ、8A,8B
……デイテクタ、9A,9B……反射ミラ、10
……ピンホール板、11……演算手段、12……
記録計、13……コンベア、14……パルスモー
タ、15……コイル、16……制御手段、17…
…電源、19……検査位置。
The drawings show the configuration of an embodiment of the apparatus of the present invention, and FIG. 1 is a partial configuration diagram, and FIG. 2 is an overall configuration diagram. 1... Specimen, 2... Glass plate, 3... Magnetic field, 4
... Laser light generator, 5 ... Litro prism, 6 ... Attenuation plate, 7 ... Shutter, 8A, 8B
...Detector, 9A, 9B...Reflection mirror, 10
... Pinhole plate, 11 ... Calculation means, 12 ...
Recorder, 13... Conveyor, 14... Pulse motor, 15... Coil, 16... Control means, 17...
...Power supply, 19...Inspection position.

Claims (1)

【特許請求の範囲】 1 (a) それぞれ同一血液より得られた血液と血
漿の検体を区分して滴下した複数のガラス板
を、その移動方向に等間隔に載置し、ある距離
ずつ水平移動するコンベア、 (b) 該コンベアを駆動するモータ、 (c) 該コンベアの移動により検体が通過する一個
所を検査位置とし、該検査位置のコンベア部を
囲んで設けられ、該検査位置に磁力線の方向が
一定の磁界を形成するコイル又は、磁石、 (d) 前記ガラス板を通して検査位置の検体面にレ
ーザー光を入射するレーザー光発生装置、最適
光量に調整する光減衰装置及びレーザー光をガ
ラス板の下から入射させる反射ミラ、並びにレ
ーザー入射光出力を検出する入射光デイテク
タ、 (e) 前記検体よりの反射光の出力を検出する反射
光デイテクタ並びに反射光を該デイテクタに導
く反射ミラ及びピンホール板、 (f) 前記2つのデイテクタよりの信号に基づい
て、磁界の印加の有無時それぞれの検体の反射
率及び磁界の有無による反射率変化ΔRを演算
する演算手段並びに同一血液毎に血球と血漿毎
のΔRを記録する記録計、並びに、 (g) モータの駆動、検査位置への磁界への磁界の
印加及び前記2つのデイテクタより演算手段へ
の信号の入力等を制御する制御手段、 を有することを特徴とする血液連続自動検査装
置。
[Claims] 1 (a) A plurality of glass plates on which blood and plasma samples each obtained from the same blood are separately dropped are placed at equal intervals in the direction of movement, and are moved horizontally by a certain distance. (b) a motor that drives the conveyor; (c) a location where the sample passes as the conveyor moves is set as an inspection position; a coil or magnet that forms a magnetic field with a constant direction; (d) a laser beam generator that injects a laser beam into the specimen surface at the inspection position through the glass plate; a light attenuation device that adjusts the light intensity to the optimum amount; (e) a reflected light detector that detects the output of the reflected light from the specimen, and a reflective mirror and pinhole that guides the reflected light to the detector; (f) Calculating means for calculating the reflectance of each sample when a magnetic field is applied and the reflectance change ΔR depending on the presence or absence of a magnetic field based on the signals from the two detectors, and a calculating means for calculating the reflectance change ΔR of each specimen when a magnetic field is applied, and blood cells and plasma for each blood. (g) control means for controlling the driving of the motor, the application of a magnetic field to the inspection position, the input of signals from the two detectors to the calculation means, etc. A continuous automatic blood testing device characterized by:
JP16715980A 1980-11-27 1980-11-27 Continuous and automatic inspector for blood Granted JPS5790157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16715980A JPS5790157A (en) 1980-11-27 1980-11-27 Continuous and automatic inspector for blood

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16715980A JPS5790157A (en) 1980-11-27 1980-11-27 Continuous and automatic inspector for blood

Publications (2)

Publication Number Publication Date
JPS5790157A JPS5790157A (en) 1982-06-04
JPS6139611B2 true JPS6139611B2 (en) 1986-09-04

Family

ID=15844508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16715980A Granted JPS5790157A (en) 1980-11-27 1980-11-27 Continuous and automatic inspector for blood

Country Status (1)

Country Link
JP (1) JPS5790157A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157606U (en) * 1986-03-31 1987-10-06

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111707507B (en) * 2020-06-23 2023-02-28 合肥安为康医学检验有限公司 Biochemical quantitative detection device of blood sample

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62157606U (en) * 1986-03-31 1987-10-06

Also Published As

Publication number Publication date
JPS5790157A (en) 1982-06-04

Similar Documents

Publication Publication Date Title
US5112124A (en) Method and apparatus for measuring the concentration of absorbing substances
JP3775992B2 (en) Radiation therapy inspection system
US6076010A (en) Imaging spatially varying dynamic media with diffusing correlation waves
Hoyt et al. Remote biomedical spectroscopic imaging of human artery wall
JPH04135551A (en) Optical three-dimensional image observing device
JP2007267848A (en) Instrument for inspecting tumor
JPH04352933A (en) Opthalmic measuring method
JPS62120834A (en) Ophthalmic measuring apparatus
Maarek et al. A simulation method for the study of laser transillumination of biological tissues
CN107192670A (en) The measurement apparatus and measuring method of material linear absorption and non-linear absorption
JPS6139611B2 (en)
CN113758569A (en) Underwater target spectral polarization multi-dimensional characteristic test simulation device and measurement method
US5644429A (en) 2-dimensional imaging of translucent objects in turbid media
CN108414464A (en) Water body multi-wavelength optical attenuation coefficient measuring device and method
JPS6130199Y2 (en)
CN109668906A (en) It is a kind of for measuring the measurement method and device of optical film layer laser damage threshold
JPH10246697A (en) Optical inspection method and device
JPH0792076A (en) Grain analyzing device
US11099278B2 (en) Device for optically measuring doses of radiation absorbed by a gel dosimeter by means of polarized light
JP2020010880A5 (en)
JPH0431054B2 (en)
SU1402850A1 (en) Method of determining diemensions of brownian particles
JPH04254744A (en) Apparatus for nondestructive inspection of taste of citrus fruit
JPH06217939A (en) Measuring device for ophthalmology
SU1481592A1 (en) Method of checking defects of specimen surface processing