JPS6138922B2 - - Google Patents

Info

Publication number
JPS6138922B2
JPS6138922B2 JP8688981A JP8688981A JPS6138922B2 JP S6138922 B2 JPS6138922 B2 JP S6138922B2 JP 8688981 A JP8688981 A JP 8688981A JP 8688981 A JP8688981 A JP 8688981A JP S6138922 B2 JPS6138922 B2 JP S6138922B2
Authority
JP
Japan
Prior art keywords
raw material
polymerization
resin
range
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8688981A
Other languages
Japanese (ja)
Other versions
JPS57202314A (en
Inventor
Koji Tanaka
Tooru Iwashita
Akihiko Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP8688981A priority Critical patent/JPS57202314A/en
Publication of JPS57202314A publication Critical patent/JPS57202314A/en
Publication of JPS6138922B2 publication Critical patent/JPS6138922B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 本発明は、石油類の熱分解により得られる分解
油留分のうち140〜240℃の範囲内の沸点を有する
留分を分解・蒸留し、その留分を用いて重合し、
耐候性および上塗適合性の優れた炭化水素樹脂の
製造する方法に関するものである。 石油類の熱分解の際に得られる不飽和炭化水素
含有留分をフリーデルクラフツ型触媒の存在下に
重合し、炭化水素樹脂の製造する方法はよく知ら
れている。この際、原料油中にジシクロペンタジ
エン(DCPD)が多量に存在すると、それを用い
て重合した炭化水素樹脂は、臭素価が高くなりこ
れを塗料用として用いた場合、上塗適合性は良好
になるが、耐候性が劣つてくる。また、樹脂を製
造する際の条件として重合温度が高いと得られる
樹脂の分子量が低くなり、上塗適合性及び耐候性
が悪くなり、かつ、色相も悪化する。反対に上記
温度が低すぎると得られる樹脂の分子量が高くな
り、上塗適合性及び耐候性は良好となるが、軟化
点が高くなり塗料用としては使用し難くなる。ま
た、重合原料中に共役ジオレフインがwt%を越
えると得られる樹脂は、上塗適合性は良好である
が、耐候性が悪くなり、溶解性も劣つてくる。更
に、重合原料中に芳香族不飽和成分が30%未満と
なると、重合で得られる樹脂の分子量が低くな
り、これを塗料に用いた場合、上塗適合性、耐候
性とも満足する結果は得られない。 本発明者らは、塗料用物性として重要な耐候性
および上塗適合性が優れ、かつ軟化点が110〜140
℃の範囲の塗料用炭化水素樹脂の製造法について
検討した結果、石油類の熱分解により得られる分
解油留分のうち、140〜240℃の沸点留分中の共役
ジオレフインを1wt%以下、芳香族不飽和炭化水
素成分を30〜55wt%で、原料中のDCPD濃度およ
びこれを用いて重合する際の重合温度をある範囲
内に調整して重合することにより上記の目的を達
成できることを見出した。 即ち、DCPD濃度と重合温度は次の式を満足す
る範囲に入ることが必須である。 x/10−2<y<−x/4+20 ここでxは重合温度(℃)、yはDCPD濃度(wt
%)を示す。但し、yは0より大である。 上記した組成範囲となるように原料油を調節す
るには、例えば加圧下で熱分解し、更に分別蒸留
により沸点範囲を調節するなどの方法で行なう。 本発明に用いられる重合触媒としては、フリー
デルクラフツ型触媒の三弗化ホウ素あるいはその
フエノールおよびエーテル錯体、三塩化アルミニ
ウムなどがあげられる。上記した範囲に調整した
原料油を用い、重合温度を0〜60℃の範囲として
重合を行なう以外は一般的な方法により樹脂は得
られる。反応終了後の混合物は、常法に従つて
水、アルカリ性水溶液などを反応生成物に加える
ことにより触媒を失活させ、更に水洗等により脱
灰した後に未反応の炭化水素油を留去すると、用
いた原料油に対して35〜55%の収率で重合体が得
られる。 本発明の特徴を列記すると次のとおりである。 (1) 原料油中のDCPD濃度および重合温度を調節
することにより、塗料用物性として重要な耐候
性、上塗適合性ともに優れた樹脂を得ることが
できる。 (2) 原料油成分が大きく変動した場合でも、上記
方法、即ち、原料組成の調節したものを用いる
ことによつて目的の樹脂が得られる。 (3) 原料油を分解・精製することにより色相およ
び溶解性の良好な樹脂が得られる。 以下、実施例を示すが、これらは一例であつて
本発明はその趣旨に反しない限り本実施例に限定
されるものではない。 なお、実施例および比較例において炭化水素樹
脂の評価を次の方法によつて行なつた。 (1) 軟化点 JIS K−2531に従つて環球法で測定した。 (2) 色相 炭化水素樹脂5gをトルエン5gに溶解させ、ガ
ードナー標準色と比較し、ガードナー値で示し
た。(ASTM D−1544−58T) (3) 臭素価 ASTM D−1158−57Tにより測定した。 (4) 塗料調製方法 炭化水素樹脂、アマニ油、ミネラルスピリツト
を所定の割合に混合後、ドライヤー、弁柄、炭
酸カルシウム、ガラスビーズの順に所定量添加
分散後、沈降防止剤を加え45℃で2時間静置し
て均一な組成を調製した。 (5) 塗膜の耐候性 (4)で調製した塗料からJIS K−5400に記載され
た方法に従つて塗装試験書を作成した。その試
験法をサンシヤインウエザオメーターによつて
ブラツクパネル温度65℃、スプレーサイクル
18min/2hr、照耐時間100hrなる条件下で劣化
促進試験を行なつた。その結果、外観の変化を
次の4段階で表示した。 A:全くクラツクが認められない。 B:一部に1mm程度のクラツクが認められる。 C:一部に5mm程度のクラツクが認められる。 D:全体に多数のクラツクが認められる。 この評価をもつて塗膜の耐候性を表わした。 (5) 上塗適合性 (4)で調製した塗料を4ミルのドクターブレード
を用いて塗布、乾燥後、上塗り塗料(神東塗料
工業KK製、白色マリンペイント)を下塗りの
にじみ出しが認められたぬり回数で判定した。 A:にじみ出しが認められた回数 9〜10回 B: 〃 5〜8回 C: 〃 4回以下 実施例 1 沸点範囲が140〜240℃の分解油留分を加圧下
DCPDを熱分解後、低沸点留分、高沸点留分を除
去して表1記載の重合成分組成に調製した。この
原料油500gを2のセパラブルフラスコに入れ
20℃で1時間重合を行なつた。触媒は三弗化ホウ
素フエノールコンプレツクス(30%濃度)の2.5g
を反応開始後30分間で全て反応系に添加した。な
お、重合は乾燥窒素雰囲気下で行なつた。重合終
了後、重合反応液に1%苛性ソーダ250g、キシ
レン250gを加えて中和した後、水層を分離、油
層をそれと同量の水で洗浄した。得られた油層
は、窒素気流中180〜190℃に加熱し、未反応油を
留出除去した。 得られる樹脂の諸物性を測定した結果を表−1に
示した。 実施例 2 実施例1と同様にして表−1記載の重合成分組
成に調製した原料油を実施例1に準じて操作を行
なつた。得られた樹脂の物性を表−1に示した。 実施例 3 実施例1と同様にして表−1記載の重合成分組
成に調製した原料油を40℃で重合した以外は全て
実施例1に準じて操作を行なつた。得られた樹脂
の物性を表−1に示した。 実施例 4 実施例1と同様にして表−1記載の重合成分組
成に調製した原料油を、触媒を2.0g添加した以外
は実施例3に準じて操作を行なつた。得られた樹
脂の物性を表−1に示した。 比較例 1,2,5 実施例1と同様にして表−1記載の重合成分組
成に調製した原料油を実施例3に準じて操作を行
なつた。得られた樹脂の物性を表−1に示した。 比較例 3 実施例1と同様にして表−1記載の重合成分組
成に調製した原料油を50℃で重合した以外は全て
実施例1に準じて操作を行なつた。得られた樹脂
の物性を表−1に示した。 比較例 4 実施例1と同様にして表−1記載の重合成分組
成に調製した原料油を65℃で重合した以外は全て
実施例1に準じて操作を行なつた。得られた樹脂
の物性を表−1に示した。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention involves cracking and distilling a fraction having a boiling point within the range of 140 to 240°C among cracked oil fractions obtained by thermally decomposing petroleum. polymerize,
The present invention relates to a method for producing a hydrocarbon resin having excellent weather resistance and suitability for top coating. A method for producing hydrocarbon resins by polymerizing unsaturated hydrocarbon-containing fractions obtained during thermal decomposition of petroleum products in the presence of a Friedel-Crafts type catalyst is well known. At this time, if a large amount of dicyclopentadiene (DCPD) is present in the raw material oil, the hydrocarbon resin polymerized using it will have a high bromine number, and when used as a paint, it will have poor topcoat compatibility. However, the weather resistance will deteriorate. Furthermore, if the polymerization temperature is high as a condition for producing the resin, the molecular weight of the resin obtained will be low, the overcoat compatibility and weather resistance will be poor, and the hue will also be poor. On the other hand, if the temperature is too low, the resulting resin will have a high molecular weight and will have good overcoat compatibility and weather resistance, but will have a high softening point and will be difficult to use as a paint. Furthermore, when the amount of conjugated diolefin in the polymerization raw material exceeds wt%, the resulting resin has good overcoat compatibility, but has poor weather resistance and poor solubility. Furthermore, if the aromatic unsaturated component in the polymerization raw material is less than 30%, the molecular weight of the resin obtained by polymerization will be low, and if this is used in a paint, satisfactory results will not be obtained in terms of top coat compatibility and weather resistance. do not have. The present inventors have discovered that the material has excellent weather resistance and topcoat compatibility, which are important physical properties for paints, and has a softening point of 110 to 140.
As a result of studying methods for producing hydrocarbon resins for paints in the temperature range of 140 to 240 degrees Celsius, we found that conjugated diolefins in the fraction with a boiling point of 140 to 240 degrees Celsius are less than 1wt% aromatic. We have discovered that the above objectives can be achieved by polymerizing the group unsaturated hydrocarbon component at 30 to 55 wt%, adjusting the concentration of DCPD in the raw material and the polymerization temperature during polymerization using this within a certain range. . That is, it is essential that the DCPD concentration and polymerization temperature fall within a range that satisfies the following equation. x/10-2<y<-x/4+20 where x is the polymerization temperature (℃) and y is the DCPD concentration (wt
%). However, y is greater than 0. In order to adjust the raw material oil so that it has the above-mentioned composition range, for example, it can be thermally decomposed under pressure, and then the boiling point range can be adjusted by fractional distillation. Examples of the polymerization catalyst used in the present invention include Friedel-Crafts type catalysts such as boron trifluoride or its phenol and ether complexes, and aluminum trichloride. The resin can be obtained by a general method, except that the raw material oil adjusted to the above range is used and the polymerization temperature is in the range of 0 to 60°C. After the reaction is completed, the mixture is deactivated by adding water, alkaline aqueous solution, etc. to the reaction product according to a conventional method, and then deashed by washing with water, etc., and unreacted hydrocarbon oil is distilled off. The polymer can be obtained in a yield of 35-55% based on the raw material oil used. The features of the present invention are listed below. (1) By adjusting the DCPD concentration in the raw material oil and the polymerization temperature, it is possible to obtain a resin with excellent weather resistance and topcoat compatibility, which are important physical properties for paints. (2) Even if the raw material oil components vary greatly, the desired resin can be obtained by using the above method, that is, by using one in which the raw material composition is adjusted. (3) Resin with good color and solubility can be obtained by decomposing and refining raw material oil. Examples will be shown below, but these are just examples, and the present invention is not limited to these examples unless it goes against the spirit thereof. In the Examples and Comparative Examples, the hydrocarbon resins were evaluated by the following method. (1) Softening point Measured by the ring and ball method according to JIS K-2531. (2) Color: 5 g of hydrocarbon resin was dissolved in 5 g of toluene, compared with Gardner standard color, and expressed as Gardner value. (ASTM D-1544-58T) (3) Bromine number Measured by ASTM D-1158-57T. (4) Paint Preparation Method After mixing hydrocarbon resin, linseed oil, and mineral spirits in the specified proportions, add and disperse the dryer, Bengara, calcium carbonate, and glass beads in the specified amounts in that order, then add an anti-settling agent and heat at 45℃. A uniform composition was prepared by standing for 2 hours. (5) Weather resistance of coating film A coating test report was prepared from the coating prepared in (4) according to the method described in JIS K-5400. The test method was performed using a Sunshine Weatherometer at a black panel temperature of 65℃ and a spray cycle.
An accelerated deterioration test was conducted under conditions of 18 min/2 hr and a light resistance time of 100 hr. As a result, changes in appearance were displayed in the following four stages. A: No cracks were observed at all. B: Cracks of about 1 mm are observed in some parts. C: Cracks of about 5 mm are observed in some areas. D: Many cracks are observed throughout. This evaluation represents the weather resistance of the coating film. (5) Topcoat compatibility The paint prepared in (4) was applied using a 4 mil doctor blade, and after drying, oozing of the topcoat (White Marine Paint, manufactured by Shinto Paint Industry KK) was observed. Judgment was made by the number of times of coloring. A: Number of times oozing was observed: 9 to 10 times B: 〃 5 to 8 times C: 〃 4 times or less Example 1 A cracked oil fraction with a boiling point range of 140 to 240°C was heated under pressure.
After thermally decomposing DCPD, the low boiling point fraction and high boiling point fraction were removed to prepare the polymerization component composition shown in Table 1. Put 500g of this raw oil into the 2 separable flask.
Polymerization was carried out at 20°C for 1 hour. The catalyst is 2.5g of boron trifluoride phenol complex (30% concentration)
was added to the reaction system within 30 minutes after the start of the reaction. Note that the polymerization was performed under a dry nitrogen atmosphere. After the polymerization was completed, 250 g of 1% caustic soda and 250 g of xylene were added to the polymerization reaction solution to neutralize it, the aqueous layer was separated, and the oil layer was washed with the same amount of water. The obtained oil layer was heated to 180 to 190°C in a nitrogen stream, and unreacted oil was distilled off. Table 1 shows the results of measuring various physical properties of the resulting resin. Example 2 The raw material oil prepared in the same manner as in Example 1 to have the polymerization component composition shown in Table 1 was operated in accordance with Example 1. The physical properties of the obtained resin are shown in Table 1. Example 3 All operations were carried out in accordance with Example 1, except that raw oil prepared to have the polymerization component composition shown in Table 1 in the same manner as in Example 1 was polymerized at 40°C. The physical properties of the obtained resin are shown in Table 1. Example 4 The same procedure as in Example 3 was carried out, except that 2.0 g of a catalyst was added to a raw material oil prepared in the same manner as in Example 1 to have the polymerization component composition shown in Table 1. The physical properties of the obtained resin are shown in Table 1. Comparative Examples 1, 2, 5 The raw material oil prepared in the same manner as in Example 1 to have the polymerization component composition shown in Table 1 was operated in accordance with Example 3. The physical properties of the obtained resin are shown in Table 1. Comparative Example 3 All operations were carried out in accordance with Example 1, except that raw material oil prepared to have the polymerization component composition shown in Table 1 in the same manner as in Example 1 was polymerized at 50°C. The physical properties of the obtained resin are shown in Table 1. Comparative Example 4 All operations were carried out in accordance with Example 1, except that raw material oil prepared to have the polymerization component composition shown in Table 1 in the same manner as in Example 1 was polymerized at 65°C. The physical properties of the obtained resin are shown in Table 1. 【table】

Claims (1)

【特許請求の範囲】 1 石油類の熱分解の際に生成する分解油留分の
うち、140〜240℃の範囲内の沸点留分を分解蒸留
して、共役ジオレフインを1wt%以下、芳香族不
飽和炭化水素成分を30〜55wt%で、ジシクロペ
ンタジエンを下記の式で表わされる範囲に調整し
た留分を原料とし、フリーデルクラフツ型触媒の
存在下に0〜60℃の温度で重合することを特徴と
する炭化水素樹脂の製造方法 x/10−2<y<−x/4+20 (但し、y>0) y;ジシクロペンタジエン濃度 wt% x;重合温度 ℃
[Claims] 1. Of the cracked oil fractions produced during the thermal decomposition of petroleum, the boiling point fraction within the range of 140 to 240°C is decomposed and distilled to contain conjugated diolefins of 1 wt% or less, aromatic A fraction containing 30 to 55 wt% of unsaturated hydrocarbon components and dicyclopentadiene adjusted to the range expressed by the formula below is used as a raw material, and is polymerized at a temperature of 0 to 60°C in the presence of a Friedel-Crafts type catalyst. A method for producing a hydrocarbon resin characterized by x/10-2<y<-x/4+20 (y>0) y: dicyclopentadiene concentration wt% x: polymerization temperature ℃
JP8688981A 1981-06-08 1981-06-08 Preparation of hydrocarbon resin Granted JPS57202314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8688981A JPS57202314A (en) 1981-06-08 1981-06-08 Preparation of hydrocarbon resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8688981A JPS57202314A (en) 1981-06-08 1981-06-08 Preparation of hydrocarbon resin

Publications (2)

Publication Number Publication Date
JPS57202314A JPS57202314A (en) 1982-12-11
JPS6138922B2 true JPS6138922B2 (en) 1986-09-01

Family

ID=13899397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8688981A Granted JPS57202314A (en) 1981-06-08 1981-06-08 Preparation of hydrocarbon resin

Country Status (1)

Country Link
JP (1) JPS57202314A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63196610A (en) * 1987-02-12 1988-08-15 Showa Denko Kk Manufacture of petroleum resin
KR100366972B1 (en) * 2000-03-07 2003-01-09 코오롱유화주식회사 A copolymerized petroleum-resin for the adhesive and a process of preparing for the same

Also Published As

Publication number Publication date
JPS57202314A (en) 1982-12-11

Similar Documents

Publication Publication Date Title
US2625523A (en) Polymer composition and process of preparing same
US4210733A (en) Composite resinous composition
CA1039673A (en) Petroleum resins
US2039364A (en) Protective coating
JP3464504B2 (en) Petroleum resin composition for printing ink and method for producing the same
JP2004502839A (en) Maleated liquid C5 hydrocarbon resin
JPS6138922B2 (en)
US3993626A (en) Production of ethyl cellulose-compatible phenol-modified hydrocarbon resins for use in printing inks
US4205145A (en) Resins for printing inks
US2750298A (en) Solution of resin in blown oil treated with friedel-crafts catalyst to produce varnish
US3803079A (en) Copolymers of alpha-methylstyrene and vinyltoluene and process for their preparation
US2578214A (en) Drying oil composition
US3048562A (en) Process for oxidizing polymeric butadiene drying oil in the presence of steam-cracked petroleum resin, and resulting product
US4983682A (en) Process for the manufacture of petroleum resins suitable for the manufacture of printing inks, varnishes and paints
US2549558A (en) Asphalt resin compositions
US3876575A (en) Process for producing resins of weather resistance
US4283518A (en) Process for manufacturing a petroleum resin
Madhusudhan et al. Polyfunctional compounds from cardanol
US2863784A (en) Hydroxylated conjugated diolefin polymers in drying oil compositions and a method ofpreparing the same
JPH1081718A (en) Modified hydrocarbon resin
US1292908A (en) Paint or varnish and method of making the same.
JP3021468B2 (en) Method for producing hydrocarbon resin
US2395076A (en) Coating compositions
US1292907A (en) Paint or varnish and method of making the same.
US1959408A (en) Coating composition