JPS6134747A - Photoelectromagnetic multilayered film medium - Google Patents

Photoelectromagnetic multilayered film medium

Info

Publication number
JPS6134747A
JPS6134747A JP15522084A JP15522084A JPS6134747A JP S6134747 A JPS6134747 A JP S6134747A JP 15522084 A JP15522084 A JP 15522084A JP 15522084 A JP15522084 A JP 15522084A JP S6134747 A JPS6134747 A JP S6134747A
Authority
JP
Japan
Prior art keywords
film
interference
photoelectromagnetic
magneto
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15522084A
Other languages
Japanese (ja)
Inventor
Shinji Takayama
高山 新司
Toshio Niihara
敏夫 新原
Katsuhiro Kaneko
金子 克弘
Ken Sugita
杉田 愃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15522084A priority Critical patent/JPS6134747A/en
Publication of JPS6134747A publication Critical patent/JPS6134747A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Abstract

PURPOSE:To obtain the titled compact recording medium with improved recording, reproducing, and erasing performances of information and especially with improved S/N by constituting the protective film or the interference film of a photoelectromagnetic recording medium, wherein a protective film, a photoelectromagnetic recording film, and an interference film, if necessary, are provided on a substrate, of a transparent semiconductor film. CONSTITUTION:An amorphous photoelectromagnetic recording layer of Tb25Fe85 etc. is provided directly on a transparent substrate of glass, polymethyl methacrylate or on an interference film which is formed on the substrate as required. A protective layer is provided on the recording layer to form a photoelectromagnetic multilayered film medium. The interference layer or the protective layer is formed of an element semiconductor film of Ge, amorphous Ge-Si, and amorphous carbon, and oxide film among Y2O3, Ta2O5, SiO2-TiO2, LiNb2O3, etc., a sulfide film of CdS, etc., a boride film of ZrB2, etc., a carbide film of SiC, a nitride film of BN, etc., and a semiconductor film of an intermetallic compd. such as GaAs or a transparent organic material film such as polyvinyl carbazole having >=200 deg.C vitrification temp. Consequently, a recording medium with improved photoelectromagnetic characteristic and S/N and having excellent durability is obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はレーザー光を用いて情報の記録・再生・消去を
行う光磁気記録に係り、特に性能指数を改善し、再生S
/N比を向上させた光磁気多層膜媒体に関するものであ
る。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to magneto-optical recording for recording, reproducing, and erasing information using laser light, and particularly improves the figure of merit and improves reproduction speed.
The present invention relates to a magneto-optical multilayer film medium with improved /N ratio.

〔発明の背景〕[Background of the invention]

情報量の増大2機器のコンパクト化と共に記録密度は今
後益々高密度化の傾向にあり、高密度・大容量・情報の
任意読み出し、書き換え等が可能な光磁気記録が最近注
目を浴びている。光磁気記録においては、膜面に垂直な
方向に磁化容易軸のある磁性薄膜(垂直磁化膜)が用い
られ、光ビームによって任意の位置に反転磁区を作るこ
とによって、それらの磁化の向きに対応して、it 1
 ip。
Increasing amount of information 2 As devices become more compact, recording density will continue to increase, and magneto-optical recording, which has high density, large capacity, and allows arbitrary reading and rewriting of information, has recently been attracting attention. In magneto-optical recording, a magnetic thin film (perpendicular magnetization film) with an axis of easy magnetization perpendicular to the film surface is used, and by creating reversed magnetic domains at arbitrary positions with a light beam, the direction of magnetization can be adjusted. then it 1
ip.

110 #lの2値情報が記録される。一方、かかる反
転記録を行なった2値信号の読み出しは、通常ポーラ−
・カー効果あるいはファラデー効果を利用して行なう。
110 #l binary information is recorded. On the other hand, reading out a binary signal that has undergone such inversion recording is usually done using a polar
・Use Kerr effect or Faraday effect.

従来、これら光磁気記録用磁性薄膜として、MnB1系
結晶質膜、希土類−遷移金属系非晶質薄膜等の垂直磁化
膜が提案されている。例えば、第7回日本応用磁気学会
学術講演概要集(1983,11)p、224記載のも
のがある。中でも希土類−遷移金属系非晶質薄膜は、結
晶粒界がないので媒体ノイズが小さく、大面積作製が容
易であることから現在量も有望視されている。しかしこ
れら非晶質垂直磁化膜から、反射光、透過光を利用して
ポーラ−・カー効果及びファラデー効果でそれぞれ情報
を読み出す方式においては、膜自体のカー回転角、ある
いはファラデー回転角が小さいため、再生信号(S/N
あるいはC/N比)が低いという欠点がある。そこでこ
の再生信号レベルを高めるため、干渉膜としてS 10
− S iO2t T 102 。
Conventionally, perpendicularly magnetized films such as MnB1-based crystalline films and rare earth-transition metal-based amorphous thin films have been proposed as these magnetic thin films for magneto-optical recording. For example, there is one described in the 7th Japanese Society of Applied Magnetics Academic Lecture Abstracts (1983, 11), p. 224. Among them, rare earth-transition metal-based amorphous thin films have no grain boundaries, have low media noise, and are easy to manufacture over large areas, so their current availability is considered promising. However, in the method of reading information from these amorphous perpendicularly magnetized films using reflected light and transmitted light through the polar Kerr effect and Faraday effect, the Kerr rotation angle or Faraday rotation angle of the film itself is small. , playback signal (S/N
Another disadvantage is that the C/N ratio is low. Therefore, in order to increase the level of this reproduced signal, S10 was used as an interference film.
- S iO2t T 102 .

Bi、O,、ZrO,、Si、a−8t、AQN+Si
、N4等の薄膜と非晶質垂直磁化膜とを組み合わせて多
層化することによりS/N比向上が試みられている。ま
た希土類−遷移金属系非晶質膜は酸化されやすく、その
ため特性劣化が生じるので、上記干渉膜の中で、SiO
,、AnN。
Bi, O,, ZrO,, Si, a-8t, AQN+Si
Attempts have been made to improve the S/N ratio by combining thin films such as , N4, and amorphous perpendicularly magnetized films to form a multilayer structure. In addition, rare earth-transition metal-based amorphous films are easily oxidized, resulting in deterioration of characteristics, so SiO
,,AnN.

Si、N、等は保護膜としても用いられている。Si, N, etc. are also used as a protective film.

しかし、上記報告されている多層膜構造では、カー回転
角は約1.5倍程度に増加するが、媒体自体の反射率が
垂直磁化膜単独の場合と比べて約20%以下に低下して
しまい、結果的には再生S/N比の大きな増加が得られ
ないか、あるいは保護膜としての寿命が短かく、酸化等
により垂直磁化膜の特性自体が劣化する問題があった。
However, in the multilayer film structure reported above, although the Kerr rotation angle increases by about 1.5 times, the reflectance of the medium itself decreases to about 20% or less compared to the case of a perpendicularly magnetized film alone. As a result, there is a problem that either a large increase in reproduction S/N ratio cannot be obtained, or the life of the protective film is short, and the characteristics of the perpendicularly magnetized film itself deteriorate due to oxidation or the like.

本発明の目的は緻密で硬度、屈折率の高い半導体薄膜を
、あるいはガラス化温度が200℃以上の透明有機物を
干渉膜および/もしくは保護膜に用いることにより、経
時変化の少ない実用に十分適したS/N比のある光磁気
多層膜媒体を提供することにある。
The purpose of the present invention is to use a semiconductor thin film that is dense, hard, and has a high refractive index, or a transparent organic substance with a vitrification temperature of 200°C or higher as an interference film and/or a protective film, thereby creating a film that is sufficiently suitable for practical use with little change over time. The object of the present invention is to provide a magneto-optical multilayer film medium with a high S/N ratio.

〔発明の概要〕[Summary of the invention]

上記目的を達成するための本発明の構成は、保護膜およ
び/もしくは干渉膜として、Qe、アモルファスGe−
Si、アモルファスカーボン、ダイヤモンド薄膜から選
ばれた元素半導体膜、Y2O,l、AQ20.、’Ta
2O,,,Nb2O5tZnO,Bad、MgO,Cr
2O,、Fe、O,。
The structure of the present invention for achieving the above object uses Qe, amorphous Ge-
Elemental semiconductor film selected from Si, amorphous carbon, diamond thin film, Y2O,l, AQ20. ,'Ta
2O,,,Nb2O5tZnO, Bad, MgO, Cr
2O,,Fe,O,.

フェライト、pbo、Sin、−Tie。Ferrite, pbo, Sin, -Tie.

S’ i 0 、− T a 20 、 、PbTi0
. 、 LiNb0. 、LiTaO3゜BaTiO3
から選ばれた酸化物膜、CdS、PbSから選ばれた硫
化物膜、テトラポライドg Z r B 2pTiB2
から選ばれた硼化物膜、 S i C* Ba Ctア
ルミカーバイドから選ばれた炭化物、BN。
S' i 0 , - T a 20 , , PbTi0
.. , LiNb0. , LiTaO3゜BaTiO3
oxide film selected from CdS, sulfide film selected from PbS, tetrapolide g Z r B 2pTiB2
A boride film selected from S i C* Ba Ct A carbide selected from aluminum carbide, BN.

TiN、ZrN、NbN、VN、TaNから選ばれた窒
化物膜、GaAs等の金属間化合物等々の半導体薄膜を
用いることにある。
A semiconductor thin film such as a nitride film selected from TiN, ZrN, NbN, VN, and TaN, and an intermetallic compound such as GaAs is used.

一般に、光磁気記録媒体はガラス、PMMA。Generally, magneto-optical recording media are glass or PMMA.

UVあるいはAQ等から成る基板を用いて、その上にス
パッタ法、蒸着法で記録膜の垂直磁化膜を干渉膜と保護
膜とでサンドインチした多層膜構造からなっている。情
報の記録・再生は、基板側か、あるいは基板と反対の記
録膜側から半導体レーザ光をあてて行なう。それ故、干
渉膜は半導体レーザ光に対して透明である必要があり、
保護膜も干渉膜として用いる場合は透明である必要があ
る。
It has a multilayer film structure in which a perpendicularly magnetized recording film is sandwiched between an interference film and a protective film using a substrate made of UV or AQ, etc., on which a perpendicularly magnetized film is sandwiched between an interference film and a protective film by sputtering or vapor deposition. Information is recorded and reproduced by applying semiconductor laser light from either the substrate side or the recording film side opposite to the substrate. Therefore, the interference film must be transparent to the semiconductor laser light.
The protective film also needs to be transparent when used as an interference film.

一般に記録膜の希土類−鉄族系非晶質膜の特性の劣化は
、酸化が主な原因であるため、保護膜としては、耐酸化
性、耐食性に優れ、緻密で硬度の高い透明度の良い安定
な膜が要求される。一方、一般に用いられている透明な
ディスク基板(ガラス、UVあるいはPMMA等)の屈
折率nは約1.5であることから、干渉膜では、カー回
転角の増幅を図るにはnが1.5と異なる透明度の良い
膜であることが望ましく、さらにより大きなカー回転角
の増幅を図るには、nの大きな透明膜が望ましい。
In general, the main cause of deterioration of the characteristics of rare earth-iron group amorphous recording films is oxidation, so as a protective film, it is recommended to use a dense, hard, highly transparent, and stable protective film with excellent oxidation resistance and corrosion resistance. A suitable membrane is required. On the other hand, since the refractive index n of commonly used transparent disk substrates (glass, UV, PMMA, etc.) is about 1.5, in order to amplify the Kerr rotation angle with an interference film, n is about 1.5. It is desirable to use a film with good transparency, which is different from 5. In order to further amplify the Kerr rotation angle, a transparent film with a large n is desirable.

従って本発明者等は、このような条件を満足する膜を得
るために、基板としてガラスを、記録膜として代表的な
Tb−Fe非晶質膜を用い、種々の単元素あるいは化合
物膜をスパッタ法あるいは蒸着法で作製して、上記した
多層膜構造を形成し、光磁気記録媒体としてのカー回転
角の干渉効果、経時変化等の評価を行なった。その結果
以下に示す半導体薄膜が従来材よりも耐食性、耐酸化性
が優れ、カー回転角の増幅率も約2倍以上に大きくなる
ことがわかり、光磁気多層膜媒体の干渉膜、保護膜とし
て極めて優れていることがわかった。
Therefore, in order to obtain a film that satisfies these conditions, the present inventors used glass as a substrate and a typical Tb-Fe amorphous film as a recording film, and sputtered various single element or compound films. The above-mentioned multilayer film structure was formed using a method or a vapor deposition method, and the interference effect of the Kerr rotation angle as a magneto-optical recording medium, changes over time, etc. were evaluated. As a result, it was found that the semiconductor thin film shown below has better corrosion resistance and oxidation resistance than conventional materials, and the amplification factor of the Kerr rotation angle is more than twice as large. It turned out to be extremely good.

以下にその半導体薄膜を記す。The semiconductor thin film is described below.

(1)元素半導体膜として、Ge、a−Go、、S 1
x(0<x<1)、a−c  (アモルファスカーボン
)、ダイヤモンド薄膜。
(1) Ge, a-Go, S 1 as an elemental semiconductor film
x (0<x<1), a-c (amorphous carbon), diamond thin film.

(2)酸化物として、Y、Oa、AQ、O,。(2) Y, Oa, AQ, O, as oxides.

Ta205 l Nb2O5tZnot Bad。Ta205l Nb2O5tZnot Bad.

Mg0g Cr 20.p F Iil x On p
 フェライト。
Mg0gCr20. p F Iil x On p
Ferrite.

PbO,Sin、−Tie、、Sin、−T a 、 
O,、PbTi0jt LiNb0i * LiTa0
a saTiOa (3)硫化物として、CdS、Pb5 (4)硼化物として、ZrB2.TiB2.テトラポラ
イド (5)炭化物として、S i C,B4Ct 7/L/
ミカーバイド (6)窒化物として、B N、 T i N、 Z r
 N、N b NV N y T a N (7)金属間化合物として、G a A sさらにポリ
ビニルカルバゾル及びその誘導体の透明有機物等を蒸着
法と、干渉膜および/もしくは保護膜として形成するこ
とにより、上記半導体薄膜と同様の効果が得られること
がわかった。
PbO,Sin,-Tie,,Sin,-T a ,
O,, PbTi0jt LiNb0i * LiTa0
a saTiOa (3) Sulfide: CdS, Pb5 (4) Boride: ZrB2. TiB2. As tetrapolide (5) carbide, S i C, B4Ct 7/L/
As micarbide (6) nitride, B N, T i N, Z r
N, N b NV N y Ta N (7) As an intermetallic compound, Ga As and transparent organic substances such as polyvinyl carbazole and its derivatives are formed by vapor deposition and as an interference film and/or a protective film. It was found that the same effect as the above semiconductor thin film can be obtained.

〔発明の実施例〕[Embodiments of the invention]

以下実施例により本発明の詳細な説明する。 The present invention will be explained in detail below with reference to Examples.

〔実施例1〕 厚さ0.3 am、径10mmのガラス基板上にスパッ
タ法、蒸着法により特許、、請求の範囲第二項記載の薄
膜を干渉膜として厚さ20〜150nm形成し、その上
にT b 15F ets非晶質膜を同じスパッタ法あ
るいは蒸着法で配設することにより光磁気記録媒体を作
製した。これらの光磁気記録媒体を用いて、ガラス基板
側からHe−Neレーザ光(波長λ=633nm)を照
射して、干渉層膜の干渉効果を測定した。この時、干渉
膜は各薄膜で干渉効果が最も大きいことが期待される膜
厚d (=λ/4n、は屈折率)をねらって作製した。
[Example 1] The thin film described in claim 2 of the patent was formed as an interference film to a thickness of 20 to 150 nm on a glass substrate with a thickness of 0.3 am and a diameter of 10 mm by sputtering or vapor deposition. A magneto-optical recording medium was produced by disposing a T b 15F ets amorphous film thereon by the same sputtering method or vapor deposition method. Using these magneto-optical recording media, the interference effect of the interference layer film was measured by irradiating He--Ne laser light (wavelength λ = 633 nm) from the glass substrate side. At this time, the interference film was produced by aiming at a film thickness d (=λ/4n, where refractive index) is expected to have the largest interference effect for each thin film.

その結果Tb  Fe  非晶質膜のカー回転角は干渉
層膜なしでは0.2〜0.25° であったのが、上記
の干渉膜層を形成するとカー回転角は約2倍以上に増大
し、干渉膜として適していることが分った。第1図は本
発明の一実施例としての概略図、及び、これを用いた概
略特性図である。図において、試料媒体は、ガラス基板
上に各種の透明干渉膜層を膜厚dを変えて形成し、その
上に厚さ〜1000人のT b 25 F e ts非
晶質膜を配設した。その多層膜媒体を用いて、ガラス基
板側からHe −N eレーザ光(λ=63−3nm)
を照射して測定したカー回転角θ、の干渉膜の膜厚に対
する変化を示す。図中、1はGe膜、2はTa、O,膜
、3はSiC膜、4はM g O膜、5はAρ203膜
、6はBN膜の膜厚dに対するカー回転角依存性を示す
。図から明らかなように、厚さdを最適化することによ
り、約2倍以上のカー回転角の増大が得られることがわ
かる。
As a result, the Kerr rotation angle of the Tb Fe amorphous film was 0.2 to 0.25° without the interference layer, but when the above interference layer was formed, the Kerr rotation angle increased by more than twice. It was found that it is suitable as an interference film. FIG. 1 is a schematic diagram as an embodiment of the present invention and a schematic characteristic diagram using the same. In the figure, the sample medium was formed by forming various transparent interference film layers with different film thicknesses d on a glass substrate, and disposing an amorphous film with a thickness of ~1000 T b 25 Fe ts on top of it. . Using the multilayer film medium, He-Ne laser light (λ = 63-3 nm) was emitted from the glass substrate side.
The graph shows the change in the Kerr rotation angle θ measured by irradiating the interference film with respect to the thickness of the interference film. In the figure, 1 represents the Ge film, 2 represents the Ta, O, film, 3 represents the SiC film, 4 represents the MgO film, 5 represents the Aρ203 film, and 6 represents the dependence of the Kerr rotation angle on the film thickness d of the BN film. As is clear from the figure, by optimizing the thickness d, the Kerr rotation angle can be increased by about twice or more.

〔実施例2〕 厚さ1.4 m+a、径10mm(7)ガラス基板上に
、スパッタ法、蒸着法により干渉膜、Tb  Fe  
非晶25   7s 質膜、保護膜の順に形成し、これら媒体の膜特性の安定
性を検討した。干渉膜と保護膜両方に厚さ約1000人
のQe、a−c、Ta 、05.MgO。
[Example 2] An interference film, Tb Fe, was formed on a glass substrate with a thickness of 1.4 m+a and a diameter of 10 mm (7) by sputtering or vapor deposition.
An amorphous 25 7s film and a protective film were formed in this order, and the stability of the film properties of these media was examined. Both the interference film and the protective film have a thickness of about 1000 people, Qe, a-c, Ta, 05. MgO.

PbTi0g、CdS、ZrB2.Sac、BN。PbTi0g, CdS, ZrB2. Sac, B.N.

TiN等の膜を各々用い、TbFe  非晶質膜の膜厚
も約1000人とした。このように作製した多層膜媒体
を温度60℃、湿度95%の雰囲気中で加速試験を行な
い、カー回転角の経時変化を調べた。その結果、従来の
840□膜を用いた媒体は2ケ月後約10%以上も劣化
するのに対して、上記の膜を用いた場合のそれは約5%
以下と極めて小さいことが分かった。
A film of TiN or the like was used, and the thickness of the TbFe amorphous film was also about 1000. The thus produced multilayer film medium was subjected to an accelerated test in an atmosphere at a temperature of 60° C. and a humidity of 95% to examine changes in Kerr rotation angle over time. As a result, the media using the conventional 840□ membrane deteriorated by more than 10% after two months, while the deterioration of the media using the above membrane was about 5%.
It turned out to be extremely small.

〔実施例3〕 厚さ0.3 aIll、径10II+1φのガラス基板
を用いて、蒸着法により、その上にポリビニルカルバゾ
ル(厚さ850人) −T bss F f3ts非晶
質膜(厚さ〜1000人)、ポリビニルカルバゾルの順
に膜形成を行ない、光磁気多層膜記録媒体を作製した。
[Example 3] Using a glass substrate with a thickness of 0.3 aIll and a diameter of 10II + 1φ, a polyvinyl carbazole (thickness of 850 mm) -T bss F f3ts amorphous film (thickness ~ A magneto-optical multilayer recording medium was prepared by forming films in the order of 1,000 people) and polyvinyl carbazole.

それら多層膜記録媒体のガラス基板側から測定したカー
回転角は0。41度(H e −N eレーザ波長)と
高く、T b2s F e,、非晶質膜単層の場合(θ
, =0.22度)と比べて、約2倍高い値が得られた
。また、温度60℃,湿度95%の雰囲気で加速試験を
行なったところ、カー回転角の劣化は2ケ月後も約5%
以下であり、高い耐候性を示した。
The Kerr rotation angle measured from the glass substrate side of these multilayer film recording media is as high as 0.41 degrees (H e -N e laser wavelength), and T b2s F e,, in the case of a single amorphous film (θ
, = 0.22 degrees), a value approximately twice as high was obtained. In addition, when we conducted an accelerated test in an atmosphere with a temperature of 60°C and humidity of 95%, the deterioration of the Kerr rotation angle was approximately 5% even after 2 months.
or less, indicating high weather resistance.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明の透明半導体薄
膜及びガラス化温度が200℃以上の透明有機物薄膜は
光磁気記録媒体の干渉膜および/もしくは保護膜として
用いた場合、カー回転角増幅効果が大きく、しかも熱安
定性,耐食性,耐酸化性に優れていることがわかり、光
磁気記録媒体の構成膜として極めて優れていることがわ
かった。
As is clear from the above explanation, when the transparent semiconductor thin film of the present invention and the transparent organic thin film with a vitrification temperature of 200°C or higher are used as an interference film and/or a protective film of a magneto-optical recording medium, the Kerr rotation angle amplification effect can be achieved. It was found that the film had a large surface area, and also had excellent thermal stability, corrosion resistance, and oxidation resistance, and was found to be extremely excellent as a constituent film of a magneto-optical recording medium.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例としての概略断面図と、各種
透明半導体膜を干渉層膜として用いた時の該干渉層膜の
膜厚dとカー回転角θ、の関係を示す線図である。
FIG. 1 is a schematic cross-sectional view as an embodiment of the present invention, and a diagram showing the relationship between the thickness d of the interference layer and the Kerr rotation angle θ when various transparent semiconductor films are used as the interference layer. It is.

Claims (1)

【特許請求の範囲】 1、光磁気記録媒体膜と保護膜および/もしくは干渉膜
と基板とからなる光磁気多層膜媒体において、上記保護
膜および/もしくは干渉膜は透明半導体薄膜であること
を特徴とする光磁気多層膜媒体。 2、特許請求の範囲第1項において、上記保護膜および
/もしくは干渉膜として、Ge、アモルファスGe−S
i、アモルファスカーボン、ダイヤモンド薄膜から選ば
れた元素半導体膜、Y_2O_3、Al_2O_3、T
a_2O_5、Nb_2O_5、ZnO、BaO、Mg
O、Cr_2O_3、Fe_2O_3、フェライト、P
bO、SiO_2−TiO_2、SiO_2−Ta_2
O_5、PbTiO_3、LiNbO_3、LiTaO
_3、BaTiO_3から選ばれた酸化物膜、CdS、
PbSから選ばれた硫化物膜、テトラボライド、ZrB
_2、TiB_2から選ばれた硼化物膜、SiC、B_
4C、アルミカーバイドから選ばれた炭化物、BN、T
iN、ZrN、NbN、VN、TaNから選ばれた窒化
物膜、GaAs等の金属間化合物等々の半導体薄膜を用
いたことを特徴とする光磁気多層膜媒体。 3、特許請求の範囲第1項において、上記保護膜および
/もしくは干渉膜として、ガラス化温度が200℃以上
の透明有機物を用いたことを特徴とする光磁気多層膜媒
体。
[Claims] 1. A magneto-optical multilayer film medium comprising a magneto-optical recording medium film, a protective film and/or an interference film, and a substrate, characterized in that the protective film and/or interference film is a transparent semiconductor thin film. Magneto-optical multilayer film media. 2. In claim 1, as the protective film and/or interference film, Ge, amorphous Ge-S
i, amorphous carbon, elemental semiconductor film selected from diamond thin film, Y_2O_3, Al_2O_3, T
a_2O_5, Nb_2O_5, ZnO, BaO, Mg
O, Cr_2O_3, Fe_2O_3, ferrite, P
bO, SiO_2-TiO_2, SiO_2-Ta_2
O_5, PbTiO_3, LiNbO_3, LiTaO
_3, oxide film selected from BaTiO_3, CdS,
Sulfide film selected from PbS, tetrabolide, ZrB
_2, boride film selected from TiB_2, SiC, B_
4C, carbide selected from aluminum carbide, BN, T
A magneto-optical multilayer film medium characterized by using a semiconductor thin film such as a nitride film selected from iN, ZrN, NbN, VN, and TaN, and an intermetallic compound such as GaAs. 3. A magneto-optical multilayer film medium according to claim 1, characterized in that the protective film and/or the interference film is made of a transparent organic substance with a vitrification temperature of 200° C. or higher.
JP15522084A 1984-07-27 1984-07-27 Photoelectromagnetic multilayered film medium Pending JPS6134747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15522084A JPS6134747A (en) 1984-07-27 1984-07-27 Photoelectromagnetic multilayered film medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15522084A JPS6134747A (en) 1984-07-27 1984-07-27 Photoelectromagnetic multilayered film medium

Publications (1)

Publication Number Publication Date
JPS6134747A true JPS6134747A (en) 1986-02-19

Family

ID=15601146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15522084A Pending JPS6134747A (en) 1984-07-27 1984-07-27 Photoelectromagnetic multilayered film medium

Country Status (1)

Country Link
JP (1) JPS6134747A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6139955A (en) * 1984-07-31 1986-02-26 Ricoh Co Ltd Optomagnetic recording medium
JPS6145441A (en) * 1984-08-10 1986-03-05 Canon Inc Optical recording medium
JPS6231049A (en) * 1985-08-01 1987-02-10 Pioneer Electronic Corp Photomagnetic recording medium
JPS6233350A (en) * 1985-08-05 1987-02-13 Sumitomo Metal Mining Co Ltd Photomagnetic disk
JPS62170050A (en) * 1986-01-22 1987-07-27 Sumitomo Electric Ind Ltd Photomagnetic disk
JPS62239351A (en) * 1986-04-09 1987-10-20 Sumitomo Electric Ind Ltd Magneto-optical recording medium
EP0265204A2 (en) * 1986-10-20 1988-04-27 Matsushita Electric Industrial Co., Ltd. Protective layer for optical information recording medium
JPS63167450A (en) * 1986-12-29 1988-07-11 Mitsubishi Kasei Corp Magneto-optical recording medium
JPS63184941A (en) * 1987-01-27 1988-07-30 Sumitomo Metal Mining Co Ltd Magneto-optical disk
JPH01173454A (en) * 1987-12-28 1989-07-10 Mitsubishi Kasei Corp Magneto-optical recording medium
JPH01204245A (en) * 1988-02-09 1989-08-16 Nec Corp Magneto-optical recording medium
JPH0237549A (en) * 1988-07-28 1990-02-07 Semiconductor Energy Lab Co Ltd Magneto-optical memory medium
JPH03242843A (en) * 1990-01-31 1991-10-29 Internatl Business Mach Corp <Ibm> Magneto-optic storage medium and dielectric layer thereof
JPH07182711A (en) * 1994-01-17 1995-07-21 Mitsubishi Chem Corp Production of magneto-optical recording medium
US5521006A (en) * 1992-10-29 1996-05-28 Canon Kabushiki Kaisha Magneto-optical recording medium
US5560998A (en) * 1990-03-27 1996-10-01 Teijin Limited Magneto-optical recording medium
EP1158507A1 (en) * 1999-02-09 2001-11-28 Japan Science and Technology Corporation Magneto-optical recording medium and magneto-optical recording device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6139955A (en) * 1984-07-31 1986-02-26 Ricoh Co Ltd Optomagnetic recording medium
JPS6145441A (en) * 1984-08-10 1986-03-05 Canon Inc Optical recording medium
JPS6231049A (en) * 1985-08-01 1987-02-10 Pioneer Electronic Corp Photomagnetic recording medium
JPS6233350A (en) * 1985-08-05 1987-02-13 Sumitomo Metal Mining Co Ltd Photomagnetic disk
JPS62170050A (en) * 1986-01-22 1987-07-27 Sumitomo Electric Ind Ltd Photomagnetic disk
JPS62239351A (en) * 1986-04-09 1987-10-20 Sumitomo Electric Ind Ltd Magneto-optical recording medium
EP0265204A2 (en) * 1986-10-20 1988-04-27 Matsushita Electric Industrial Co., Ltd. Protective layer for optical information recording medium
JPS63167450A (en) * 1986-12-29 1988-07-11 Mitsubishi Kasei Corp Magneto-optical recording medium
JPS63184941A (en) * 1987-01-27 1988-07-30 Sumitomo Metal Mining Co Ltd Magneto-optical disk
JPH01173454A (en) * 1987-12-28 1989-07-10 Mitsubishi Kasei Corp Magneto-optical recording medium
JPH01204245A (en) * 1988-02-09 1989-08-16 Nec Corp Magneto-optical recording medium
JPH0237549A (en) * 1988-07-28 1990-02-07 Semiconductor Energy Lab Co Ltd Magneto-optical memory medium
JPH03242843A (en) * 1990-01-31 1991-10-29 Internatl Business Mach Corp <Ibm> Magneto-optic storage medium and dielectric layer thereof
US6214482B1 (en) * 1990-01-31 2001-04-10 Information Business Machines Corporation Dielectric-layer for magneto-optic storage media structures
US5560998A (en) * 1990-03-27 1996-10-01 Teijin Limited Magneto-optical recording medium
US5521006A (en) * 1992-10-29 1996-05-28 Canon Kabushiki Kaisha Magneto-optical recording medium
JPH07182711A (en) * 1994-01-17 1995-07-21 Mitsubishi Chem Corp Production of magneto-optical recording medium
EP1158507A1 (en) * 1999-02-09 2001-11-28 Japan Science and Technology Corporation Magneto-optical recording medium and magneto-optical recording device
EP1158507A4 (en) * 1999-02-09 2006-07-26 Japan Science & Tech Agency Magneto-optical recording medium and magneto-optical recording device

Similar Documents

Publication Publication Date Title
JPS6134747A (en) Photoelectromagnetic multilayered film medium
JPS6129437A (en) Photomagnetic recording medium
US4975339A (en) Magneto-optical recording medium with at least one protective layer containing platinum and/or palladium
JPS62119760A (en) Photomagnetic recording material
GB2158281A (en) Optical recording medium
JPS61258353A (en) Photomagnetic recording medium
JPS60219655A (en) Optical recording medium
JPS62289948A (en) Magneto-optical recording medium
JPS60197966A (en) Optical recording medium
JPH057775B2 (en)
JPH0664761B2 (en) Magneto-optical recording medium
JPH0583971B2 (en)
KR950006415B1 (en) Making method of optical magneto
JP2729962B2 (en) Magneto-optical recording medium
JPS63119049A (en) Magneto-optical recording medium
JP2582059B2 (en) Magneto-optical recording medium
JPS61278061A (en) Photomagnetic recording medium
JPH06325419A (en) Magneto-optical recording medium
JPS6151638A (en) Optomagnetic information recording medium
JPH056584A (en) Magneto-optical recording medium
KR970001976B1 (en) Magneto-optical recording medium
KR910006146B1 (en) 4-layered tb-fe magnetic recording medium
JPS62267949A (en) Magneto-optical recording medium
JP2653520B2 (en) Magneto-optical recording medium
JPS6189605A (en) Metal oxide magnetic substance and magnetic film