JPS6133130B2 - - Google Patents

Info

Publication number
JPS6133130B2
JPS6133130B2 JP11550578A JP11550578A JPS6133130B2 JP S6133130 B2 JPS6133130 B2 JP S6133130B2 JP 11550578 A JP11550578 A JP 11550578A JP 11550578 A JP11550578 A JP 11550578A JP S6133130 B2 JPS6133130 B2 JP S6133130B2
Authority
JP
Japan
Prior art keywords
thin film
hydrogen gas
current
diode
voltage characteristics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11550578A
Other languages
Japanese (ja)
Other versions
JPS5542049A (en
Inventor
Kentaro Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11550578A priority Critical patent/JPS5542049A/en
Publication of JPS5542049A publication Critical patent/JPS5542049A/en
Publication of JPS6133130B2 publication Critical patent/JPS6133130B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は高性能水素ガス検出素子に関する。[Detailed description of the invention] The present invention relates to a high performance hydrogen gas detection element.

従来ガス検知半導体素子は、酸化物半導体の焼
結体、薄膜など多結晶を用いているのでその結晶
粒界、不純物を制御することが不可能であり、信
頼性、互換性を欠いていた。また、この素子にお
おけるガス検知機構は不明である。この素子は約
300℃で実用的感度を示すので加熱部を設ける必
要があつた。
Conventional gas detection semiconductor devices use polycrystals such as sintered bodies and thin films of oxide semiconductors, so it is impossible to control their crystal grain boundaries and impurities, and they lack reliability and compatibility. Furthermore, the gas detection mechanism in this element is unknown. This element is approximately
Since it exhibits practical sensitivity at 300°C, it was necessary to provide a heating section.

この発明はガス漏れ検知器、火災警報器、ガス
濃度計において、被検ガス中の微量な水素ガスを
室温で安定に検出でき、しかも互換性を有する水
素ガス検出素子を得ることを目的とする。
The purpose of this invention is to obtain a hydrogen gas detection element that can stably detect a small amount of hydrogen gas in a test gas at room temperature and is compatible with gas leak detectors, fire alarms, and gas concentration meters. .

この発明を図面にもとづいて説明すると、第1
図において半導体たとえば酸化亜鉛、酸化スズな
どの結晶1に表面処理を施して加工層、不均一
層、汚れを取り除き、これに絶縁膜2たとえば窒
化シリコン膜を被着したのち、写真蝕刻法により
膜2に穴をあけ、真空蒸着法によりオーム性接触
用電極3たとえばインジウム膜、および水素吸収
により仕事関数が変化する金属薄膜4たとえばパ
ラジウム薄膜、ニツケル薄膜などを堆積する。電
極3および薄膜4に導線5および導線6をとりつ
けダイオードを得る。被検ガスにさらしたこのダ
イオードにおいて、電流、電圧、抵抗、容量、半
導体の禁止帯巾より小さいエネルギーをもつ光子
を薄膜4の上方または下方から入射させたときに
生じる光電流、光起電圧などを測定する。
To explain this invention based on the drawings, the first
In the figure, a crystal 1 of a semiconductor such as zinc oxide or tin oxide is subjected to surface treatment to remove processed layers, non-uniform layers, and dirt, and an insulating film 2 such as a silicon nitride film is deposited thereon. A hole is made in 2, and an ohmic contact electrode 3 such as an indium film and a metal thin film 4 whose work function changes due to hydrogen absorption such as a palladium thin film or a nickel thin film are deposited by vacuum evaporation. A conductive wire 5 and a conductive wire 6 are attached to the electrode 3 and the thin film 4 to obtain a diode. In this diode exposed to the test gas, the photocurrent, photovoltage, etc. that occur when photons with energy smaller than the current, voltage, resistance, capacitance, and bandgap of the semiconductor are incident from above or below the thin film 4. Measure.

厚さ十〜百nmの薄膜4の使用により、その表
面に吸着された水素が迅速に金属半導体界面に達
して薄膜4下面の仕事関数を迅速、敏感、可逆的
に変化させることができる。カーテイン
(Kurtin)等がフイジカル・レビユー・レターズ
(Physical Review Letters)第22巻、1433頁に
おいて示したように、化合物元素間の電気陰性度
の差が0.8以上の半導体と金属の接触における障
壁の高さは金属の仕事関数に依存するので、被検
ガス中の水素ガスが薄膜4に吸収されるとこの障
壁の高さは薄膜4の仕事関数の変化量に対して直
線的に変化する。周知のように酸素は最も大きな
電気陰性度を持つ元素の一つであるので、酸化亜
鉛、酸化スズのほか金属酸化物からなる半導体は
一般に化合物元素間の電気陰性度の差に対する上
記の条件を満足し、上記第1図の半導体結晶1が
金属酸化物の時、第1図の素子は水素ガス検出素
子として良好な特性を示す。被検ガス中の水素ガ
ス濃度が低い場合、上記変化量は水素ガス濃度に
ほぼ比例する。このような障壁の高さの変化はダ
イオードの電流−電圧特性、容量−電圧特性、光
起電圧特性の一意的変化をもたらす。かくしてダ
イオードにおけるこれら特性値の変化量のいずれ
か一つを測定することにより水素ガス濃度を検出
することができる。なお、電気陰性度の差が0.8
以上の半導体たとえばシリコン、ガリウムひ素な
どを用いた場合においても、金属薄膜4を堆積す
る前にこれら半導体に適当な処理を施して表面に
絶縁性極薄膜を形成し、表面準位密度を低下させ
ると、上記効果が認められる。この処理方法を例
示すれば次の通りである。シリコン表面を化学腐
蝕してのち、400℃で酸素雰囲気に10分間さら
す。
By using the thin film 4 with a thickness of 10 to 100 nm, hydrogen adsorbed on its surface can quickly reach the metal-semiconductor interface, and the work function of the lower surface of the thin film 4 can be changed quickly, sensitively, and reversibly. As shown by Kurtin et al. in Physical Review Letters, Vol. 22, p. 1433, the high barrier in contact between semiconductors and metals where the difference in electronegativity between compound elements is 0.8 or more is Since the barrier height depends on the work function of the metal, when hydrogen gas in the test gas is absorbed by the thin film 4, the height of this barrier changes linearly with the amount of change in the work function of the thin film 4. As is well known, oxygen is one of the elements with the highest electronegativity, so semiconductors made of zinc oxide, tin oxide, and other metal oxides generally meet the above conditions for the difference in electronegativity between compound elements. When the semiconductor crystal 1 shown in FIG. 1 is a metal oxide, the device shown in FIG. 1 exhibits good characteristics as a hydrogen gas detection device. When the hydrogen gas concentration in the test gas is low, the amount of change is approximately proportional to the hydrogen gas concentration. Such a change in barrier height brings about a unique change in the current-voltage characteristics, capacitance-voltage characteristics, and photovoltage characteristics of the diode. Thus, by measuring the amount of change in any one of these characteristic values in the diode, the hydrogen gas concentration can be detected. In addition, the difference in electronegativity is 0.8
Even when using the above semiconductors, such as silicon or gallium arsenide, these semiconductors are subjected to appropriate treatment to form an extremely thin insulating film on the surface before depositing the metal thin film 4, thereby reducing the surface state density. The above effect is recognized. An example of this processing method is as follows. After chemically etching the silicon surface, it is exposed to an oxygen atmosphere at 400℃ for 10 minutes.

この発明の一実施例である種々の濃度の水素ガ
スを含む空気にさらした室温におけるパラジウム
薄膜−n型酸化亜鉛単結晶接触ダイオードにおい
て、導線6と導線5の間に負の電圧を印加した
時、いいかえると導線6を導線5に対して負にバ
イアスした時、すなわち逆バイアス時の電流−電
圧特性および容量−電圧特性をそれぞれ第2図お
よび第3図に導線6と導線5の間に正の電圧を印
加した時、すなわち導線6を導線5に対して正に
バイアスした時の電流−電圧特性を第4図に示し
た。従つて、第2図に示した電流は導線5から導
線6へ向かう電流であり、第4図に示した電流は
導線6から導線5へ向かう電流である。また交流
微小信号を印加してダイオードの抵抗または容量
を測定することにより、水素ガスを検出できる。
素子温度を高めることにより素子の応答速度およ
び感度が増大するので、加熱部を付加して水素ガ
ス検出特性を改善できる。第5図は種々の素子温
度においてこの発明の一実施例であるパラジウム
薄膜−n型酸化亜鉛単結晶接触ダイオードに1V
の逆バイアスを印加し、素子の雰囲気を通常の空
気から水素を含む空気に変えた場合および水素を
含む空気から通常の空気に変えた場合のダイオー
ド電流の過渡的変化を示す。第6、第7、第8お
よび第9図は、それぞれ、この発明の一実施例で
あるパラジウム薄膜−n型シリコン接触ダイオー
ドに対する室温における順方向電流−電圧特性、
逆方向電流−電圧特性、容量−電圧特性および
種々の温度において素子の雰囲気を通常の空気か
ら0.05%H2を含む空気に変えた場合とその逆にし
た場合、順方向バイアス0.1V印加時のダイオー
ド電流の過渡的変化を示す。図面中の記号%は水
素ガスの体積百分率を表わす。
When a negative voltage is applied between conductive wire 6 and conductive wire 5 in a palladium thin film-n-type zinc oxide single crystal contact diode at room temperature exposed to air containing various concentrations of hydrogen gas, which is an embodiment of the present invention. In other words, when the conductor 6 is negatively biased with respect to the conductor 5, that is, when the conductor 6 is biased negatively, the current-voltage characteristics and the capacitance-voltage characteristics at the time of reverse bias are shown in Figs. 2 and 3, respectively. FIG. 4 shows the current-voltage characteristics when a voltage of 1 is applied, that is, when the conducting wire 6 is positively biased with respect to the conducting wire 5. Therefore, the current shown in FIG. 2 is the current flowing from the conducting wire 5 to the conducting wire 6, and the current shown in FIG. 4 is the current flowing from the conducting wire 6 to the conducting wire 5. Hydrogen gas can also be detected by applying a minute AC signal and measuring the resistance or capacitance of the diode.
Since increasing the element temperature increases the response speed and sensitivity of the element, the hydrogen gas detection characteristics can be improved by adding a heating section. Figure 5 shows the voltage of 1V applied to a palladium thin film-n-type zinc oxide single crystal contact diode, which is an embodiment of the present invention, at various device temperatures.
This shows the transient changes in the diode current when applying a reverse bias of , and changing the atmosphere of the device from normal air to air containing hydrogen, and when changing from air containing hydrogen to normal air. 6, 7, 8 and 9 respectively show forward current-voltage characteristics at room temperature for a palladium thin film-n-type silicon contact diode, which is an embodiment of the present invention;
Reverse current-voltage characteristics, capacitance-voltage characteristics, and when the device atmosphere is changed from normal air to air containing 0.05% H2 at various temperatures and vice versa, when a forward bias of 0.1V is applied. Shows transient changes in diode current. The symbol % in the drawings represents the volume percentage of hydrogen gas.

ドナおよびアクセプタ濃度が均一で結晶欠陥の
少ない半導体結晶1を用いることによりダイオー
ドの電流−電圧特性、容量−電圧特性、光起電圧
特性は良好な再現性を示すので素子の互換性が確
保される。また膜2は雰囲気に対して半導体結晶
表面を不活性化するので素子の動作を安定化す
る。
By using the semiconductor crystal 1 with uniform donor and acceptor concentrations and few crystal defects, the diode's current-voltage characteristics, capacitance-voltage characteristics, and photovoltage characteristics exhibit good reproducibility, ensuring device compatibility. . Furthermore, the film 2 inactivates the semiconductor crystal surface against the atmosphere, thereby stabilizing the operation of the device.

この発明は以上説明したように互換性と良好な
再現性を有する小型簡便な金属半導体接触により
高感度、高安定、室温で水素ガスを検出する効果
がある。
As explained above, the present invention is effective in detecting hydrogen gas at room temperature with high sensitivity and high stability using a small and simple metal-semiconductor contact having compatibility and good reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る素子の側断面図、第
2、第4、第6、第7図は素子の電流−電圧特
性、第3、第8図は素子の容量−電圧特性、第
5、第9図素子の温度特性および過渡応答を示
す。 1は半導体結晶、2は絶縁膜、4は金属薄膜。
FIG. 1 is a side sectional view of the device according to the present invention, FIGS. 2, 4, 6, and 7 are current-voltage characteristics of the device, and FIGS. 3 and 8 are capacitance-voltage characteristics of the device. , FIG. 9 shows the temperature characteristics and transient response of the device. 1 is a semiconductor crystal, 2 is an insulating film, and 4 is a metal thin film.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体結晶1面上の相異なる位置において、
水素吸収により仕事関数が変化する金属薄膜4と
オーム性接触用電極3を前記半導体結晶1に接触
させ、前記金属薄膜4と前記オーム性接触用電極
3を電気的特性検出用端子とすることを特徴とす
る水素ガス検出素子。
1 At different positions on one surface of the semiconductor crystal,
The metal thin film 4 whose work function changes due to hydrogen absorption and the ohmic contact electrode 3 are brought into contact with the semiconductor crystal 1, and the metal thin film 4 and the ohmic contact electrode 3 are used as terminals for detecting electrical characteristics. Characteristic hydrogen gas detection element.
JP11550578A 1978-09-20 1978-09-20 Hydrogen gas detecting element Granted JPS5542049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11550578A JPS5542049A (en) 1978-09-20 1978-09-20 Hydrogen gas detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11550578A JPS5542049A (en) 1978-09-20 1978-09-20 Hydrogen gas detecting element

Publications (2)

Publication Number Publication Date
JPS5542049A JPS5542049A (en) 1980-03-25
JPS6133130B2 true JPS6133130B2 (en) 1986-07-31

Family

ID=14664172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11550578A Granted JPS5542049A (en) 1978-09-20 1978-09-20 Hydrogen gas detecting element

Country Status (1)

Country Link
JP (1) JPS5542049A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5386715A (en) * 1993-12-06 1995-02-07 Motorola, Inc. Gas vapor sensor

Also Published As

Publication number Publication date
JPS5542049A (en) 1980-03-25

Similar Documents

Publication Publication Date Title
US5362975A (en) Diamond-based chemical sensors
Ito Hydrogen-sensitive Schottky barrier diodes
Brattain et al. The interface between germanium and a purified neutral electrolyte
US4836012A (en) Gas sensor
EP0274890B1 (en) Stable ohmic contacts to thin films of p-type tellurium-containing II-VI semiconductors
US6109094A (en) Method and device for gas sensing
CN107430086B (en) Gas sensor and sensor device
JPH07134110A (en) Combination type semiconductor gas sensitive element
Moiz et al. Effects of temperature and humidity on electrical properties of organic semiconductor orange dye films deposited from solution
Mizsei et al. Resistivity and work function measurements on Pd-doped SnO2 sensor surface
Flinn et al. Surface measurements on gallium arsenide
JPS6133130B2 (en)
JP6536592B2 (en) Gas sensor and sensor device
US5403748A (en) Detection of reactive gases
Gurbuz et al. Current conduction mechanism and gas adsorption effects on device parameters of the Pt/SnO/sub x//diamond gas sensor
Ham Surface charge effects on the resistivity and Hall coefficient of thin silicon‐on‐sapphire films
Dzhafarov et al. Hydrogen sensing characteristics of Cu–PS–Si structures
US3138495A (en) Semiconductor device and method of manufacture
JPS62124454A (en) Hetero junction type gas sensor
Matsushima et al. CO sensitive Pt/SnO2 diode type gas sensor
Turner HgTe contacts to p‐HgCdTe
Campos Gas sensing properties based on a doped conducting polymer/inorganic semiconductor
CN113406161A (en) Hydrogen sensor core body and preparation method thereof and hydrogen sensor
KR960010681B1 (en) Semiconductor junction gas sensor
Wurfl et al. Field and Temperature Dependent Life-Time Limiting Effects of Metal-GaAs Interfaces of Device Structures Studied by XPS and Electrical Measurements