JPS6131726B2 - - Google Patents

Info

Publication number
JPS6131726B2
JPS6131726B2 JP53124342A JP12434278A JPS6131726B2 JP S6131726 B2 JPS6131726 B2 JP S6131726B2 JP 53124342 A JP53124342 A JP 53124342A JP 12434278 A JP12434278 A JP 12434278A JP S6131726 B2 JPS6131726 B2 JP S6131726B2
Authority
JP
Japan
Prior art keywords
foam
urethane
equivalent
producing
organic polyisocyanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53124342A
Other languages
Japanese (ja)
Other versions
JPS5552313A (en
Inventor
Hiroo Yoshinaga
Shoichi Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Chemical Industries Ltd filed Critical Takeda Chemical Industries Ltd
Priority to JP12434278A priority Critical patent/JPS5552313A/en
Publication of JPS5552313A publication Critical patent/JPS5552313A/en
Publication of JPS6131726B2 publication Critical patent/JPS6131726B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】 本発明はりレタン倉性硬質む゜シアヌレヌトフ
オヌムの補造方法に関し、詳しくは、脆性が小さ
いず共に耐熱性、難燃性にすぐれた均質な埮现セ
ル構造を有するりレタン倉性硬質む゜シアヌレヌ
トフオヌムの補造方法に関する。 ポリむ゜シアネヌトを觊媒の存圚䞋に䞉量化さ
せお、む゜シアヌレヌト環を含む硬質む゜シアヌ
レヌトフオヌムを補造するこずは既に知られおい
る。この硬質フオヌムはむ゜シアヌレヌト環を有
するために、䞀般に耐熱性、難燃性においおりレ
タンフオヌムよりすぐれおいる。反面、埓来のむ
゜シアヌレヌト硬質フオヌムは、脆性が倧きいば
かりでなく、補造時の反応の制埡が困難であり、
フオヌム圢成反応が䞍均䞀に起るので、均質な埮
现セル構造を有せず、殆ど実甚に耐えなか぀た。 䞊蚘の欠点を改良するために、ポリむ゜シアネ
ヌトを䞉量化させる際に、そのむ゜シアネヌト基
の圓量以䞋の氎酞基を含むポリオヌルを共存させ
るこずにより、ポリマヌ鎖䞭にりレタン結合を導
入しお、りレタン倉性硬質む゜シアヌレヌトフオ
ヌムを補造するこずが提案されおいる。しかし、
この補造方法においおも、埗られる硬質フオヌム
は脆性が十分には改良されおおらず、曎に、補造
時においお、反応性の制埡が困難であ぀お、特
に、フオヌム内郚の硬化に比范しおフオヌム衚面
の硬化が遅いために、均質で埮现なセル構造を有
するフオヌムが埗られなか぀た。倚量のポリオヌ
ルを甚いお、これらの欠点を改良するこずも詊み
られおいるが、耐熱性、難燃性が䜎䞋するずいう
問題が生じる。 本発明は䞊蚘の諞問題を解決するためになされ
たものであ぀お、脆性が小さく、䞔぀、耐熱性、
難燃性にすぐれた均質な埮现セル構造を有する硬
質フオヌムを埗るこずができ、曎に、その際、そ
の硬質フオヌムの甚途に応じお、硬化反応の反応
性を調節するこずができるりレタン倉性硬質む゜
シアヌレヌトフオヌムの補造方法を提䟛するこず
を目的ずする。 本発明は、ポリプニレンポリメチレンポリむ
゜シアネヌトずゞプニルメタンゞむ゜シアネヌ
トずよりなる矀から遞ばれる少なくずも䞀皮の有
機ポリむ゜シアネヌトず、゚チレングリコヌルず
ゞ゚チレングリコヌルずよりなる矀から遞ばれる
少なくずも䞀皮のグリコヌルず、トリメチロヌル
プロパンに゚チレンオキシドを付加させお埗られ
る氎酞基䟡200〜1000mgKOH/のポリ゚ヌテル
トリオヌルずを、䞊蚘有機ポリむ゜シアネヌトの
む゜シアネヌト基圓量に察する䞊蚘グリコヌル
の氎酞基圓量ず䞊蚘ポリ゚ヌテルトリオヌルの氎
酞基圓量がそれぞれ0.05〜0.8であり、䞔぀、䞡
者合わせおを越えないように、トリ゚チレンゞ
アミンず゚ポキシ化合物ずからなる觊媒ず発泡剀
ず敎泡剀ずの存圚䞋に反応させるこずを特城ずす
る。 本発明においお甚いる有機ポリむ゜シアネヌト
はポリプニレンポリメチレンポリむ゜シアネヌ
ト、ゞプニルメタンゞむ゜シアネヌト及びこれ
らの混合物であるが、奜たしくはポリプニレン
ポリメチレンポリむ゜シアネヌトである。ここ
に、ポリプニレンポリメチレンポリむ゜シアネ
ヌトは所謂クルヌドMDI−MDIずもいわれ
おいるもので、次匏で衚わされる倚栞性ポリむ゜
シアネヌトの混合物であり、の平均倀は通垞、
0.1〜1.3である。 たた、䞊蚘したこれら有機ポリむ゜シアネヌト
を皮々の掻性氎玠化合物、奜たしくは埌述するポ
リオヌルずむ゜シアネヌト基過剰の状態で反応さ
せお埗られるプレポリマヌや、これら有機ポリむ
゜シアネヌトを郚分的にアロフアネヌト化、トリ
マヌ化、カヌボゞむミド化した倉性む゜シアネヌ
ト類も奜適に䜿甚される。䞊蚘特定した有機ポリ
む゜シアネヌト以倖のむ゜シアネヌトは、本発明
に埓぀おすぐれた物性を有する硬質フオヌムを補
造するのに適さない。 本発明においお甚いられるポリオヌルは、゚チ
レングリコヌル及びゞ゚チレングリコヌルよりな
る矀から遞ばれる少なくずも䞀皮のグリコヌル
ず、トリメチロヌルプロパンに゚チレンオキシド
を付加させお埗られる氎酞基䟡200〜1000mgKO
、特に奜たしくは300〜500mgKOH/のポ
リ゚ヌテルトリオヌルずの合物であり、これらの
ポリオヌルは、む゜シアネヌト基の圓量に察
し、䞊蚘グリコヌルが0.05〜0.8圓量、奜たしく
は0.1〜0.5圓量、䞊蚘ポリ゚ヌテルトリオヌルが
0.05〜0.8圓量、奜たしくは0.1〜0.5圓量で、䞡者
合わせお圓量を越えない量、奜たしくは0.1〜
0.85圓量、特に奜たしくは0.2〜0.7圓量が甚いら
れる。 プロピレングリコヌル、ゞプロピレングリコヌ
ル、ポリプレピレングリコヌル等のようなアルキ
レングリコヌル、ポリアルキレングリコヌルや、
ポリ゚ステルポリオヌルは反応性に乏しく、有機
ポリむ゜シアネヌトずの反応に際しお、倚量の觊
媒を芁するず共に、均質で埮现なセル構造を有す
る硬質フオヌムを圢成しない。たた、氎酞基䟡が
200mgKOH/以䞋のポリ゚ヌテルポリオヌルも
フオヌム圢成に必芁な反応性を埗るためには倚量
のポリ゚ヌテルポリオヌルたたは觊媒を必芁ず
し、埗られる硬質フオヌムの耐熱性、難燃性を䜎
䞋させるので、本発明においお甚いるに適さな
い。 本発明においおは、䞊蚘特定したポリオヌル
は、硬質フオヌムの甚途等に応じお、有機ポリむ
゜シアネヌトに察する配合割合が䞊蚘範囲内で適
宜に遞されるが、特に、゚チチレングリコヌルの
䜿甚はフオヌム圢成反応を隠やかにし、䞀方、ゞ
゚チレングリコヌルの䜿甚はフオヌム圢成反応を
速くするので、䞡者を適宜組み合わせるこずによ
りフオヌムの物性をそこなうこずなく反応系の反
応性を目的に応じお広範囲に調敎するのに圹立
぀。たた、トリメチロヌルプロパンぞの゚チレン
オキシド付加物はフオヌム衚面の硬化性を向䞊さ
せるのに圹立぀。 䞀般に、硬化む゜シアヌレヌトフオヌムの圢成
反応においおは、フオヌムの内郚に比范しお衚面
での反応が遅く、緩やかな反応でフオヌムを圢成
しようずすれば、フオヌム衚面の硬化が䞍十分ず
な぀お均質なフオヌムが埗られない。たた、埗ら
れたフオヌムは脆い。䞀方、急激な反応でフオヌ
ムを圢成しようずするず、型枠ぞ暹脂液を泚入し
にくくなり、発泡圧も高くなるので泚型成圢ぞの
応甚が困難ずなる。本発明によれば、トリメチロ
ヌルプロパンぞの゚チレンオキシド付加物により
フオヌム衚面の硬化性を向䞊させるず同時に、゚
チレングリコヌルずゞ゚チレングリコヌルずによ
り反応系の反応性を調敎し埗るので、圢成される
フオヌムの甚途に応じお適床の反応性を確保し぀
぀、均質な硬質フオヌムを補造するこずができる
のである。 次に、本発明においお甚いる䞉量化觊媒は、゚
ポキシ化合物ずトリ゚チレンゞアミンずの組合せ
からなる觊媒である。甚いる゚ポキシ化合物は特
に限定されない。具䜓䟋ずしお−ブチルグリシ
ゞル゚ヌテル、アリルグリシゞル゚ヌテル、グリ
セリントリグリシゞル゚ヌテル等のアルコヌル類
のグリシゞル゚ヌテル、プニルグリシゞル゚ヌ
テル、レゟルミングリシゞル゚ヌテル、ビスプ
ノヌルのゞグリシゞル゚ヌテル等のプノヌル
類のグリシゞル゚ヌテル、メタアクリル酞グリシ
ゞル等のカルボン酞類のグリシゞル゚ヌテル、ビ
ニルシクロヘキセンゞ゚ポキサむド、ブタゞ゚ン
゚ポキサむド、゚ポキシ化倧豆油、スチレンオキ
サむド等が挙げられるが、特に奜たしいのはプ
ニルグリシゞル゚ヌテル及び又はビスプノヌ
ルのゞクリシゞル゚ヌテルである。このような
觊媒は、゚ポキシ化合物がむ゜シアネヌト基圓
量に察しお奜たしくは0.005〜0.1圓量甚いられ、
たた、トリ゚チレンゞアミンは有機ポリむ゜シア
ネヌト100重量郚に察しお0.01〜重量郚甚いら
れる。この゚ポキシ化合物−トリ゚チレンゞアミ
ン觊媒は反応系に察し比范的穏やかな反応性を䞎
える。 必芁ならば、䞊蚘゚ポキシ化合物−トリ゚チレ
ンゞアミン觊媒にカルボン酞のアルカリ金属塩及
び又はアルカリ土類金属塩が䜵甚される。カル
ボン酞ずしおは、䟋えば、酢酞、プロピオン酞、
−゚チルヘキサン酞、アゞピン酞等の脂肪族モ
ノ及びゞカルボン酞、安息銙酞、フタル酞等の芳
銙族モノ及びゞカルボン酞等が挙げられるが、こ
れらに限定されるものではない。たた、カルボン
酞塩を圢成すべきアルカリ金属ずしおはナトリり
ム及びカリりムが、たた、アリカリ土類金属ずし
おカルシりムがそれぞれ奜たしい䟋ずしお挙げら
れるが、勿論、これらに限定されない。しかし、
本発明においお、特にに奜に甚いられるカルボン
酞塩は酢酞カリりムである。䞊蚘のようなカルボ
ン酞塩觊媒は、む゜シアネヌト基圓量あたり、
奜たしくは0.03圓量以䞋甚いられる。尚、ゞカル
ボン酞の堎合、䞭性塩、酞性塩のいずれであ぀お
もよい。 カルボン酞塩觊媒ぱポキシ化合物−トリ゚チ
レンゞアミン觊媒ず䜵甚した堎合、反応系の硬化
性を速めるず共に、フオヌム衚面の硬化性を改善
し、曎に、トリ゚チレンゞアミンの䜿甚量を枛少
させる効果がある。 曎に、所望ならば、本発明においおは、䞊蚘觊
媒に公知の䞉量化觊媒やりレタン化觊媒を䜵甚し
おもよい。 発泡剀や敎泡剀は埓来より䞀般に䜿甚されおい
るものが適宜に䜿甚され、特に限定されない。発
泡剀ずしおは、䟋えば、トリクロロフルオロメタ
ン、トリクロロトリフルオロ゚タン、塩化メチレ
ン等の䞍掻性䜎沞点ハロゲン化炭化氎玠が甚いら
れる。氎もたた甚いられる。敎泡剀ずしおは、䟋
えば、りレタンフオヌムの補造に甚いられる各皮
のシリコン系界面掻性剀が䟋瀺される。 難燃化剀、充填剀等の添加物も必芁に応じお甚
いられる。難燃化剀ずしおは、通垞、りレタンフ
オヌムを難燃化するためのリン系難燃剀、ハロゲ
ン系難燃剀その他公知の難燃剀が甚いられる。充
填剀ずしおは、䟋えば、合成暹脂粉末、ガラス粉
末やシリカ、アルミナ、氎酞化アルミニりム、炭
酞カルシりム、リン酞アンモニりム、酞化アンチ
モン等の粉末、発泡ガラス粒、発泡パヌラむト、
発泡バヌミキナラむト、シラスバルヌン等の無機
質粒状発泡䜓、ガラス繊維、炭玠繊維、合成繊
維、セルロヌス繊維等の繊維物質等、各皮のもの
が硬質フオヌムの甚途その他に応じ適宜に甚いら
れる。 本発明によりりレタン倉性硬質む゜シアヌレヌ
トフオヌムを補造するに際し、各成分は埓来より
䞀般に知られおいる方法ず装眮ずにより混合し、
フオヌムに圢成するこずができるが、盞互に予め
䞍掻性な成分の混合物を調補しおおき、フオヌム
成圢時に二重の混合物を甚いるようにすれば䟿利
である。䟋えば、有機ポリむ゜シアネヌト、゚ポ
キシ化合物及び発泡剀の所芁量の䞀郚からなる混
合物ず、トリ゚チレンゞアミン、カルボン酞塩、
ポリオヌル、発泡剀の残郚及び敎泡剀からなる混
合物を別々に調敎しおおき、フオヌム成圢時にこ
れら二皮の混合物を混合するのである。このよう
に個々に各成分の混合物を調補するこずは、個々
の混合物が通垞、週間以䞊の貯蔵安定性をも぀
点から有利である。 以䞋実斜䟋により本発明を曎に詳现に説明する
が、本発明の方法は、特定の有機ポリむ゜シアネ
ヌトず特定のポリオヌルを特定の觊媒の存圚䞋に
反応されおこずにより、フオヌム成圢における反
応を調敎し぀぀、フオヌム衚面の硬化性をを改善
し、脆性が小さく、䞔぀、独立気泡率の高い均質
な埮现セル構造を有するりレタン倉性硬質む゜シ
アヌレヌトフオヌムの補造を可胜にしたものであ
る。曎に、本発明の方法により埗られる硬質フオ
ヌムは、む゜シアヌレヌトフオヌムの有するすぐ
れた耐熱性、難燃性を保持しおいる。 実斜䟋 ポリプニレンポリメチレンポリむ゜シアネヌ
ト商品名「タケネヌトRL−15P」、歊田薬品工
業株匏䌚瀟ずビスプノヌルのゞグリシゞル
゚ヌテル商品名「プロミネ−トYD−128」、歊
田薬品工業株匏䌚瀟ずを重量比100で混合
した混合液以䞋、液ずいう。を調補した。
別に、䞋衚に瀺す凊方に埓い、混合液以䞋、
液ずいう。を調補した。 この液ず液ずを䞋衚に瀺す量のフレオンず
10秒間撹拌混合した埌、盎ちに25cm立方のケヌキ
ボツクスに泚入し、宀枩で自由発泡させおりレタ
ン倉性硬質む゜シアヌレヌトフオヌムを補造し
た。この堎合のむ゜シアネヌト基ず氎酞基䟡の圓
量比も衚に瀺されおいる。 以䞊のようにしお埗られた硬質フオヌムの物性
を衚にたずめお瀺す。 埌述する比范䟋においお埗られる硬質フオヌム
に比范すれば明らかなように、本発明により埗ら
れる硬質フオヌムは、特に倧きい衝撃倀を有し、
脆性が著しく改善されおいるほか、衚面硬化性に
すぐれ、曎に、セル状態は均質䞔぀埮现であ぀
た。たた、觊媒ずしおカルボン酞塩が反応性を高
めおいるこずは、実斜䟋及びを実斜䟋ず比
范すれば明らかである。 尚、衝撃倀はデナポン衝撃詊隓機により枬定し
た。盎埄2.5cmの円柱状撃芯を厚さcmのフオヌ
ム詊料䞊に眮き、この䞊に50cmの高さから500
の重錘を萜䞋させ、フオヌム詊料に圢成された穎
の深さcmを枬定し、次匏により衝撃倀を求め
た。 衝撃倀lb・in/in 比范䟋 実斜䟋ず党く同様にしお、衚に瀺す組成を有す
る液を液ず共にフレオンず撹拌混合した埌、
盎ちに自由発泡させお硬質フオヌムを補造した。
物性を衚に瀺す。 【衚】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a urethane-modified rigid isocyanurate foam, and more specifically, a urethane-modified rigid isocyanurate foam having a homogeneous fine cell structure with low brittleness and excellent heat resistance and flame retardance. Relating to a manufacturing method. It is already known to trimerize polyisocyanates in the presence of catalysts to produce rigid isocyanurate foams containing isocyanurate rings. Since this hard foam has isocyanurate rings, it is generally superior to urethane foam in terms of heat resistance and flame retardancy. On the other hand, conventional hard isocyanurate foams are not only highly brittle but also difficult to control reactions during manufacturing.
Since the foam-forming reaction occurs non-uniformly, it does not have a homogeneous fine cell structure and is hardly of practical use. In order to improve the above-mentioned drawbacks, when trimerizing polyisocyanate, by coexisting a polyol containing hydroxyl groups less than the equivalent of the isocyanate group, urethane bonds are introduced into the polymer chain, and urethane-modified hard isocyanate It has been proposed to produce nurate foams. but,
Even with this manufacturing method, the brittleness of the hard foam obtained is not sufficiently improved, and furthermore, it is difficult to control the reactivity during manufacturing, and in particular, the hardening of the foam surface is difficult compared to the hardening of the inside of the foam. Because of the slow curing, a foam with a homogeneous and fine cell structure could not be obtained. Attempts have been made to improve these drawbacks by using a large amount of polyol, but this results in a problem of reduced heat resistance and flame retardancy. The present invention was made to solve the above-mentioned problems, and has low brittleness, heat resistance,
A urethane-modified hard isocyanate that can obtain a hard foam with a homogeneous fine cell structure with excellent flame retardancy, and also allows the reactivity of the curing reaction to be adjusted depending on the use of the hard foam. An object of the present invention is to provide a method for manufacturing Nurate foam. The present invention provides at least one organic polyisocyanate selected from the group consisting of polyphenylene polymethylene polyisocyanate and diphenylmethane diisocyanate, at least one glycol selected from the group consisting of ethylene glycol and diethylene glycol, and trimethylol. A polyether triol with a hydroxyl value of 200 to 1000 mgKOH/g obtained by adding ethylene oxide to propane is used, and the hydroxyl equivalent of the glycol and the hydroxyl equivalent of the polyether triol are each 0.05 to 1,000 to 1 equivalent of the isocyanate group of the organic polyisocyanate. 0.8, and the reaction is carried out in the presence of a catalyst consisting of triethylenediamine and an epoxy compound, a blowing agent, and a foam stabilizer such that the total value of both does not exceed 1. The organic polyisocyanate used in the present invention is polyphenylene polymethylene polyisocyanate, diphenylmethane diisocyanate, and mixtures thereof, preferably polyphenylene polymethylene polyisocyanate. Here, polyphenylene polymethylene polyisocyanate is also called crude MDI (C-MDI), and is a mixture of polynuclear polyisocyanates represented by the following formula, and the average value of n is usually:
It is 0.1-1.3. In addition, prepolymers obtained by reacting these organic polyisocyanates described above with various active hydrogen compounds, preferably polyols described below, in a state with an excess of isocyanate groups, partial allophanatization, trimerization, etc. of these organic polyisocyanates, Carbodiimidized modified isocyanates are also preferably used. Isocyanates other than the organic polyisocyanates specified above are not suitable for producing rigid foams with excellent physical properties according to the present invention. The polyol used in the present invention has a hydroxyl value of 200 to 1000 mgKO obtained by adding ethylene oxide to at least one glycol selected from the group consisting of ethylene glycol and diethylene glycol, and trimethylolpropane.
H/g, particularly preferably 300 to 500 mgKOH/g, and these polyols contain 0.05 to 0.8 equivalents, preferably 0.1 to 0.5 equivalents of the above glycol per equivalent of isocyanate group. , the above polyether triol is
0.05 to 0.8 equivalents, preferably 0.1 to 0.5 equivalents, and the amount does not exceed 1 equivalent in total, preferably 0.1 to 0.5 equivalents.
0.85 equivalents are used, particularly preferably 0.2 to 0.7 equivalents. Alkylene glycols, polyalkylene glycols such as propylene glycol, dipropylene glycol, polypropylene glycol, etc.
Polyester polyols have poor reactivity, require a large amount of catalyst when reacting with organic polyisocyanates, and do not form a rigid foam having a homogeneous and fine cell structure. In addition, the hydroxyl value
A polyether polyol of 200 mgKOH/g or less also requires a large amount of polyether polyol or catalyst to obtain the reactivity necessary for foam formation, which reduces the heat resistance and flame retardance of the resulting hard foam. Not suitable for use in In the present invention, the blending ratio of the above-specified polyol to the organic polyisocyanate is appropriately selected within the above-mentioned range depending on the use of the rigid foam. On the other hand, the use of diethylene glycol speeds up the foam-forming reaction, so by appropriately combining the two, it is useful to adjust the reactivity of the reaction system over a wide range according to the purpose without impairing the physical properties of the foam. Ethylene oxide adducts to trimethylolpropane also help improve the hardenability of the foam surface. Generally, in the formation reaction of a cured isocyanurate foam, the reaction on the surface is slower than that inside the foam, and if a gradual reaction is attempted to form the foam, the surface of the foam will be insufficiently hardened and the surface will not be homogeneous. I can't get the form. Also, the resulting foam is brittle. On the other hand, if a foam is formed by rapid reaction, it becomes difficult to inject the resin liquid into the mold and the foaming pressure increases, making it difficult to apply to cast molding. According to the present invention, the hardenability of the foam surface can be improved by adding an ethylene oxide adduct to trimethylolpropane, and at the same time, the reactivity of the reaction system can be adjusted by using ethylene glycol and diethylene glycol. Accordingly, a homogeneous rigid foam can be manufactured while ensuring appropriate reactivity. Next, the trimerization catalyst used in the present invention is a catalyst consisting of a combination of an epoxy compound and triethylenediamine. The epoxy compound used is not particularly limited. Specific examples include glycidyl ethers of alcohols such as n-butyl glycidyl ether, allyl glycidyl ether, and glycerin triglycidyl ether; glycidyl ethers of phenols such as phenyl glycidyl ether, resolming glycidyl ether, and diglycidyl ether of bisphenol A; Examples include glycidyl ether of carboxylic acids such as glycidyl methacrylate, vinylcyclohexene diepoxide, butadiene epoxide, epoxidized soybean oil, styrene oxide, etc., but particularly preferred are phenyl glycidyl ether and/or dicrycidyl of bisphenol A. It is ether. In such a catalyst, the epoxy compound is preferably used in an amount of 0.005 to 0.1 equivalent per equivalent of isocyanate group,
Further, triethylenediamine is used in an amount of 0.01 to 2 parts by weight per 100 parts by weight of the organic polyisocyanate. This epoxy compound-triethylenediamine catalyst imparts relatively mild reactivity to the reaction system. If necessary, an alkali metal salt and/or alkaline earth metal salt of carboxylic acid is used in combination with the epoxy compound-triethylenediamine catalyst. Examples of carboxylic acids include acetic acid, propionic acid,
Examples include, but are not limited to, aliphatic mono- and dicarboxylic acids such as 2-ethylhexanoic acid and adipic acid, and aromatic mono- and dicarboxylic acids such as benzoic acid and phthalic acid. Preferable examples of the alkali metals to form the carboxylic acid salt include sodium and potassium, and preferable examples of the alkaline earth metal include calcium, but of course the metals are not limited to these. but,
In the present invention, the carboxylic acid salt particularly preferably used is potassium acetate. The carboxylate catalyst as described above has, per equivalent of isocyanate group,
Preferably, 0.03 equivalent or less is used. In addition, in the case of dicarboxylic acid, it may be either a neutral salt or an acidic salt. When used in combination with an epoxy compound-triethylenediamine catalyst, the carboxylate catalyst has the effect of accelerating the curing of the reaction system, improving the curing of the foam surface, and further reducing the amount of triethylenediamine used. Further, if desired, in the present invention, a known trimerization catalyst or urethanization catalyst may be used in combination with the above catalyst. Foaming agents and foam stabilizers that have been commonly used in the past can be used as appropriate, and are not particularly limited. As the blowing agent, for example, inert low-boiling halogenated hydrocarbons such as trichlorofluoromethane, trichlorotrifluoroethane, and methylene chloride are used. Water is also used. Examples of the foam stabilizer include various silicone surfactants used in the production of urethane foam. Additives such as flame retardants and fillers are also used as necessary. As the flame retardant, phosphorus-based flame retardants, halogen-based flame retardants, and other known flame retardants are usually used to make urethane foam flame retardant. Examples of the filler include synthetic resin powder, glass powder, silica, alumina, aluminum hydroxide, calcium carbonate, ammonium phosphate, antimony oxide powder, foamed glass particles, foamed perlite, etc.
Various materials such as inorganic granular foams such as expanded vermiculite and shirasu balloons, and fibrous materials such as glass fibers, carbon fibers, synthetic fibers, and cellulose fibers can be used as appropriate depending on the purpose of the rigid foam. In producing the urethane-modified rigid isocyanurate foam according to the present invention, each component is mixed by conventionally known methods and equipment,
Although it can be formed into a foam, it is convenient to prepare a mixture of mutually inert components in advance and use a double mixture when forming the foam. For example, a mixture consisting of an organic polyisocyanate, an epoxy compound and a portion of the required amount of a blowing agent, and triethylenediamine, a carboxylic acid salt,
A mixture consisting of the polyol, the remainder of the blowing agent, and the foam stabilizer is prepared separately, and these two mixtures are mixed during foam molding. Preparing mixtures of each component individually in this manner is advantageous in that the individual mixtures usually have a storage stability of two weeks or more. The present invention will be explained in more detail with reference to Examples below. The method of the present invention allows the reaction in foam molding to be controlled by reacting a specific organic polyisocyanate and a specific polyol in the presence of a specific catalyst. At the same time, it has improved the hardenability of the foam surface, making it possible to produce a urethane-modified rigid isocyanurate foam that is less brittle and has a homogeneous fine cell structure with a high closed cell ratio. Furthermore, the rigid foam obtained by the method of the present invention retains the excellent heat resistance and flame retardancy possessed by isocyanurate foam. Examples Polyphenylene polymethylene polyisocyanate (trade name "Takenate RL-15P", Takeda Pharmaceutical Company Limited) and diglycidyl ether of bisphenol A (trade name "Prominate YD-128", Takeda Pharmaceutical Company Limited) ) at a weight ratio of 100:5 (hereinafter referred to as P solution) was prepared.
Separately, prepare a mixed solution (hereinafter referred to as R
It's called liquid. ) was prepared. This P liquid and R liquid are combined with Freon in the amounts shown in the table below.
After stirring and mixing for 10 seconds, the mixture was immediately poured into a 25 cm cubic cake box and allowed to freely foam at room temperature to produce a urethane-modified rigid isocyanurate foam. The equivalent ratio of isocyanate groups to hydroxyl values in this case is also shown in the table. The physical properties of the hard foam obtained as described above are summarized in a table. As is clear from comparison with the hard foam obtained in the comparative example described below, the hard foam obtained by the present invention has a particularly large impact value,
In addition to significantly improved brittleness, the surface hardening properties were excellent, and the cell state was homogeneous and fine. Furthermore, it is clear from a comparison of Examples 2 and 3 with Example 1 that the carboxylic acid salt as a catalyst increases the reactivity. Incidentally, the impact value was measured using a DuPont impact tester. A cylindrical striking core with a diameter of 2.5 cm is placed on a foam sample with a thickness of 5 cm, and 500 g is placed on top of the foam sample from a height of 50 cm.
The depth of the hole formed in the foam sample (1 cm) was measured by dropping a weight, and the impact value was determined using the following formula. Impact value = 55.2/l (lb・in/in) Comparative example In exactly the same manner as in the example, R liquid having the composition shown in the table was stirred and mixed with Freon together with P liquid, and then
Immediate free expansion was carried out to produce a rigid foam.
The physical properties are shown in the table. 【table】

Claims (1)

【特蚱請求の範囲】  ポリプニレンポリメチレンポリむ゜シアネ
ヌトずゞプニルメタンゞむ゜シアネヌトずより
なる矀から遞ばれる少なくずも䞀皮の有機ポリむ
゜シアネヌトず、゚チレングリコヌルずゞ゚チレ
ングリコヌルずよりなる矀から遞ばれる少なくず
も䞀皮のグリコヌルず、トリメチロヌルプロパン
に゚チレンオキシドを付加させお埗られる氎酞基
䟡200〜1000mgKOH/のポリ゚ヌテルトリオヌ
ルずを、䞊蚘有機ポリむ゜シアネヌトのむ゜シア
ネヌト基圓量に察する䞊蚘グリコヌルの氎酞基
圓量ず䞊蚘ポリ゚ヌテルトリオヌルの氎酞基圓量
ずがそれぞれ0.05〜0.8であり、䞔぀、䞡者合わ
せおを越えないように、トリ゚チレンゞアミン
ず゚ポキシ化合物ずを䞻成分ずする觊媒ず発泡剀
ず敎泡剀の存圚䞋に反応させるこずを特城ずする
りレタン倉性硬質む゜シアヌレヌトフオヌムの補
造方法。  100重量郚の有機ポリむ゜シアネヌトに察し
お0.01〜重量郚のトリ゚チレンゞアミンず、有
機ポリむ゜シアネヌトのむ゜シアネヌト基圓量
に察しお0.005〜0.1圓量の゚ポキシ化合物ずを甚
いるこずを特城ずする特蚱請求の範囲第項蚘茉
のりレタン倉性硬質む゜シアヌレヌトフオヌムの
補造方法。  ゚ポキシ化合物がビスプノヌルのゞグリ
シゞル゚ヌテルであるこずを特城ずする特蚱請求
の範囲第項又は第項蚘茉のりレタン倉性硬質
む゜シアヌレヌトフオヌムの補造方法。  觊媒がトリ゚チレンゞアミンず゚ポキシ化合
物ずカルボン酞のアルカリ金属塩又はアルカリ土
類金属塩ずからなるこずを特城ずする特蚱請求の
範囲第項乃至第項いずれかに蚘茉のりレタン
倉性硬質む゜シアヌレヌトフオヌムの補造方法。  有機ポリむ゜シアネヌトのむ゜シアネヌト基
圓量に察しお0.03圓量以䞋のカルボン酞金属塩
を甚いるこずを特城ずする特蚱請求の範囲第項
蚘茉のりレタン倉性硬質む゜シアヌレヌトフオヌ
ムの補造方法。  カルボン酞金属塩が酢酞カリりムであるこず
を特城ずする特蚱請求の範囲第項乃至第項い
ずれかに蚘茉のりレタン倉性硬質む゜シアヌレヌ
トフオヌムの補造方法。
[Scope of Claims] 1. At least one organic polyisocyanate selected from the group consisting of polyphenylene polymethylene polyisocyanate and diphenylmethane diisocyanate, and at least one glycol selected from the group consisting of ethylene glycol and diethylene glycol. , a polyether triol with a hydroxyl value of 200 to 1000 mgKOH/g obtained by adding ethylene oxide to trimethylolpropane, and the hydroxyl equivalent of the glycol and the hydroxyl equivalent of the polyether triol based on 1 equivalent of isocyanate group of the organic polyisocyanate. is 0.05 to 0.8, respectively, and the total of both does not exceed 1. The reaction is carried out in the presence of a catalyst containing triethylenediamine and an epoxy compound as main components, a blowing agent, and a foam stabilizer. A method for producing urethane-modified rigid isocyanurate foam. 2. A patent claim characterized in that 0.01 to 2 parts by weight of triethylene diamine is used with respect to 100 parts by weight of organic polyisocyanate, and 0.005 to 0.1 equivalent of an epoxy compound is used with respect to 1 equivalent of isocyanate group of the organic polyisocyanate. A method for producing a urethane-modified rigid isocyanurate foam according to Item 1. 3. The method for producing a urethane-modified rigid isocyanurate foam according to claim 1 or 2, wherein the epoxy compound is diglycidyl ether of bisphenol A. 4. The urethane-modified hard isocyanurate according to any one of claims 1 to 3, wherein the catalyst comprises triethylenediamine, an epoxy compound, and an alkali metal salt or alkaline earth metal salt of a carboxylic acid. Method of manufacturing foam. 5. The method for producing a urethane-modified rigid isocyanurate foam according to claim 4, characterized in that 0.03 equivalent or less of the carboxylic acid metal salt is used per equivalent of the isocyanate group of the organic polyisocyanate. 6. The method for producing a urethane-modified rigid isocyanurate foam according to any one of claims 4 to 6, wherein the carboxylic acid metal salt is potassium acetate.
JP12434278A 1978-10-09 1978-10-09 Manufacture of urethane-modified rigid isocyanurate foam Granted JPS5552313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12434278A JPS5552313A (en) 1978-10-09 1978-10-09 Manufacture of urethane-modified rigid isocyanurate foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12434278A JPS5552313A (en) 1978-10-09 1978-10-09 Manufacture of urethane-modified rigid isocyanurate foam

Publications (2)

Publication Number Publication Date
JPS5552313A JPS5552313A (en) 1980-04-16
JPS6131726B2 true JPS6131726B2 (en) 1986-07-22

Family

ID=14882975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12434278A Granted JPS5552313A (en) 1978-10-09 1978-10-09 Manufacture of urethane-modified rigid isocyanurate foam

Country Status (1)

Country Link
JP (1) JPS5552313A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5565214A (en) * 1978-11-10 1980-05-16 Bridgestone Corp Preparation of flame-resistant polyisocyanurate foam
JPS6215216Y2 (en) * 1980-05-30 1987-04-17
KR20180059491A (en) * 2015-09-23 2018-06-04 바슀프 에슀읎 Rigid polyurethane foam with improved insulation and mechanical properties

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50114393A (en) * 1974-01-30 1975-09-08
JPS52103495A (en) * 1976-02-24 1977-08-30 Bayer Ag Process for producing thermally moldable polyisocyanurate foam

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50114393A (en) * 1974-01-30 1975-09-08
JPS52103495A (en) * 1976-02-24 1977-08-30 Bayer Ag Process for producing thermally moldable polyisocyanurate foam

Also Published As

Publication number Publication date
JPS5552313A (en) 1980-04-16

Similar Documents

Publication Publication Date Title
JP3618188B2 (en) Method for producing low-smoke hard polyurethane foam
CA1042004A (en) Trimerization of aromatic isocyanates catalyzed by certain ammonium salts
KR101179405B1 (en) Rigid polyurethane-isocyanurate reinforcing foams
EP1924619B1 (en) Attached, high reactivity rigid polyurethane foams containing oxazolidone groups
US4067833A (en) Urethane-modified polyisocyanurate foams from oxyalkylated aniline and aromatic polyisocyanates
IE42661B1 (en) A process for the production of inorganic-organic plastics
EP0560154B1 (en) Rigid polyurethane foams containing lithium salts for energy absorbing applications, and methods of preparing same
JP3919824B2 (en) Method for producing rigid polyurethane foam
US4094869A (en) Thermally stable, rigid, cellular isocyanurate polyurethane foams
JPH0616859A (en) Open-cell rigid isocyanurate foam and its production
US5453455A (en) Rigid polyurethane foams containing lithium salts for energy absorbing applications
JPH054389B2 (en)
US5621051A (en) Process for preparation of polyurethane-polycarbodiimide foam
US4271273A (en) Rigid isocyanurate polyurethane foams and method for preparing same
JP4373005B2 (en) Rigid polyurethane foam and method for forming said foam using low molecular weight diol and triol
US4390641A (en) Flame-retardant benzylic-ether phenolic modified foam and method of preparing same
US4829097A (en) Process for the preparation of an isocyanurate modified polyurethane foam and the resulting foam
JPS6131726B2 (en)
US20040192802A1 (en) Composition for preparing rigid polyurethane foam having good demolding property
FI103281B (en) Process for making molds made of polyurethane foam and molds obtained by this process
JPH0689102B2 (en) Method for manufacturing rigid polyurethane foam
JPH0440369B2 (en)
EP1254187B1 (en) Low monomer foam
JP3643246B2 (en) Insulating panel manufacturing method and insulating panel
US4239916A (en) Isocyanurate foam catalyst