JPS6131482A - Bonding method - Google Patents

Bonding method

Info

Publication number
JPS6131482A
JPS6131482A JP15117384A JP15117384A JPS6131482A JP S6131482 A JPS6131482 A JP S6131482A JP 15117384 A JP15117384 A JP 15117384A JP 15117384 A JP15117384 A JP 15117384A JP S6131482 A JPS6131482 A JP S6131482A
Authority
JP
Japan
Prior art keywords
adhesive
pressure
microcapsules
bonding
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15117384A
Other languages
Japanese (ja)
Inventor
Makoto Tanaka
誠 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP15117384A priority Critical patent/JPS6131482A/en
Publication of JPS6131482A publication Critical patent/JPS6131482A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an adhesive containing microcapsules having specific relationship between the particle diameter of the capsule and the properties of the adhesive, having long pot life and high adhesion stability, suitable for dry lamination process, and capable of firmly bonding almost all kinds of materials. CONSTITUTION:An adhesive (preferably a urethane-based adhesive) containing microcapsules (having a maximum particle dimension of gammamax, average diameter of (m) and standard deviation of sigma) having a crosslinking and curing catalyst (preferably dibutyltin laurate) as a core, is applied to the surface of an adherend at a specific application pressure (A), and dried to form a dried coating film having an average thickness of (t). The other adherend is pressed to the adhesive film under a pressure (B) to effect the bonding of the adherends. The bonding process is carried out under the following conditions: t<=gammamax; 1/10m<= t<=m+3sigma, and 2/5m<=t<=m. Preferably, m is about 1-20mum, the application pressure (A) is lower than the critical pressure to break the microcapsule, and the pressure (B) is higher than the critical pressure.

Description

【発明の詳細な説明】 (le業−ヒの利用分野) 本発明は、マイクロカプセルを含有せしめた接着剤を使
用する接着方法に関し、特に、硬化反応型接着剤に、触
媒を芯物質とするマイクロカプセルを混合しで、良好な
接着を可能にする接着方法を提供しようとするものであ
り、特に、ドライラミネーション法に好適な接着方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application of Le Industry) The present invention relates to an adhesion method using an adhesive containing microcapsules, and in particular, to a curing reaction type adhesive using a catalyst as a core material. The present invention aims to provide an adhesion method that enables good adhesion by mixing microcapsules, and particularly relates to an adhesion method suitable for dry lamination.

(従来の技術) ドライラミネーション法は、溶剤型接着剤を−方のフィ
ルム等の被接着材に塗布して、乾燥後、もう一方のフィ
ルム等の被接着材と貼り合わせていく方法であるが、殆
ど全ての素材に摘用可能であるため、素材の組み合わせ
が自由に選択でき、また処理スピードが速く、接着力も
安定しているため、特に包材分野で広く普及している。
(Prior art) The dry lamination method is a method in which a solvent-based adhesive is applied to a material to be bonded, such as one film, and after drying, it is laminated to a material to be bonded, such as the other film. Since it can be applied to almost all materials, combinations of materials can be freely selected, processing speed is fast, and adhesive strength is stable, so it is widely used, especially in the field of packaging materials.

(発明が解決しようとしている問題点)しかし、近年包
材分野では、多品種少量、短納期化傾向が進み、処理ス
ピードの向上と共に接着安定化時間の短縮化が望まれて
いる。
(Problems to be Solved by the Invention) However, in recent years, in the field of packaging materials, there has been a trend toward high-mix, low-volume production and short delivery times, and it is desired to improve processing speed and shorten adhesion stabilization time.

ドライラミネーション法は、確かに処理スピードは速い
が、その硬化機構が、化学反応を利用した架橋反応であ
るため、接着安定化に多くの時間を必要とし、そのため
、納期のあわない仕事は受けることができず、特に、近
頃、その種の仕事が増えている。また、従来より、接着
安定化に時間を要するため、接着力の確認が遅れ、仮に
接着力不足等の問題が起だ時には、それが判明した時点
では、納期上から、取り返しがきかず、作業者の重大な
不安となっていた。この接着力安定化時間、いわゆるエ
ージング時間を短縮するには、接着剤の硬化機構が、化
学反応を利用した架橋反応であるため、温度を上昇させ
る方法と触媒を使用する方法が考えられる。温度につい
ては、貼り合わせ素材の後加工性の問題があり、45℃
前後に上限がある。この制限内では、接着力安定化に、
70〜250時間という長時間を必要とするため、さら
に触媒による促進効果が考えられている。
The dry lamination method is certainly fast in processing speed, but since its curing mechanism is a crosslinking reaction using a chemical reaction, it requires a lot of time to stabilize the adhesion. Especially recently, the number of such jobs is increasing. In addition, since it takes time to stabilize the adhesive, there is a delay in checking the adhesive strength, and if a problem such as insufficient adhesive strength occurs, once it is discovered, it cannot be taken back due to delivery deadlines and workers This was a serious concern. In order to shorten this adhesive force stabilization time, so-called aging time, the curing mechanism of the adhesive is a crosslinking reaction using a chemical reaction, so methods of increasing the temperature and using a catalyst can be considered. Regarding the temperature, there is a problem with the post-processing of the bonded materials, so the temperature was 45℃.
There are upper limits before and after. Within this limit, adhesion stabilization requires
Since the process requires a long time of 70 to 250 hours, the catalyst is considered to have an accelerating effect.

しかし、触媒の使用には、常に接着剤のポットライフの
問題が附随し、その使用を困難にしていた。
However, the use of catalysts has always been accompanied by problems with the pot life of the adhesive, making their use difficult.

そこで、本発明者は、以前、触媒を芯物質としてマイク
ロカプセル化し、このマイクロカプセルを接着剤に混合
する接着方法を開発した。この方法によれば、接着剤の
ポットライフに影響を与えず、接着時の硬化を促進する
ことができる。しかし、」二記方法では、推定触媒量か
ら考えうる促進効果の比べ、実際にはその能力は必ずし
も十分ではなかった。このため、原因の究明の勉め、そ
の原因がマイクロカプセルの破壊率の低さによることが
わかった。破壊率を上げるには、破壊圧、つまりドライ
ラミネーション時のニップ圧を上げればよいが、単にニ
ップ圧を上げると、ラミネート品にシワ等の外観上の問
題が新たに生じるため、十分な解決方法とはならない。
Therefore, the present inventor previously developed an adhesive method in which a catalyst is microencapsulated as a core material and the microcapsules are mixed into an adhesive. According to this method, curing during adhesion can be promoted without affecting the pot life of the adhesive. However, in the second method, its ability was not necessarily sufficient when compared with the promoting effect that could be considered based on the estimated amount of catalyst. Therefore, we worked hard to find out the cause, and found that the cause was the low destruction rate of microcapsules. In order to increase the fracture rate, it is possible to increase the fracture pressure, that is, the nip pressure during dry lamination, but simply increasing the nip pressure will cause new appearance problems such as wrinkles in the laminate, so this is not a sufficient solution. It is not.

(問題点を解決するための手段) そこで、本発明者は、上記問題点に鑑み、種々鋭意検討
した結果、接着剤の塗布量とマイクロカプセルの粒子径
との関係を特定の関係とすることにより、上述の従来技
術の欠点が十分に解決し得ることを知見して本発明を完
成した。
(Means for Solving the Problems) Therefore, in view of the above problems, the inventors of the present invention have made various intensive studies and determined that the relationship between the amount of adhesive applied and the particle size of the microcapsules is a specific relationship. The present invention was completed based on the finding that the above-mentioned drawbacks of the prior art can be sufficiently solved.

すなわち、本発明は、架橋硬化触媒を芯物質とするマイ
クロカプセル(最大粒径γ■aX、平均粒径m、標準偏
差σ)を含有する接着剤を、被接着表面に所定の塗布圧
力(A)で塗布および乾燥して平均厚さく1)の乾燥被
膜を形成し、次い〒他の被接着材を所定圧力(B)で圧
着することからなる接着方法において、上記のγ腫aX
とtとの関係を、t≦γ鵬aXとすることを特徴とする
接着方法である。
That is, the present invention applies an adhesive containing microcapsules (maximum particle size γ■aX, average particle size m, standard deviation σ) containing a crosslinked curing catalyst as a core material to a surface to be adhered at a predetermined application pressure (A ) and drying to form a dry film with an average thickness of 1), and then press-bonding another adherend material with a predetermined pressure (B).
This bonding method is characterized in that the relationship between and t is t≦γpengaX.

次に、本発明を更に詳細に説明すると、本発明方法にお
いて使用する接着剤は、溶液型または無溶剤型の接着剤
であり、これらの接着剤自体は、いずれも公知であり、
例えば、ポリウレタン系、アクリル系、エポキシ系等の
接着剤が挙げられ、特に、ポリエステルポリオール等の
多価アルコールおよびトリレンジイソシアネートその他
のポリイソシアネートを適当な溶剤に溶解したポリウレ
タン系接着剤等の如き架橋硬化型接着剤が好適である。
Next, to explain the present invention in more detail, the adhesive used in the method of the present invention is a solution type or a solvent-free type adhesive, and these adhesives themselves are all known.
Examples include polyurethane-based, acrylic-based, and epoxy-based adhesives, particularly cross-linked polyurethane-based adhesives prepared by dissolving polyhydric alcohols such as polyester polyol, and tolylene diisocyanate and other polyisocyanates in an appropriate solvent. Curable adhesives are preferred.

このような接着剤はいずれも市場から容易に入手し得る
ものであり、従来公知のものは本発明においていずれも
使用することができる。
All such adhesives are readily available on the market, and any conventionally known adhesives can be used in the present invention.

このような接着剤は、例えば、ポリオールとポリイソシ
アネートの反応の如く、硬化成分の反応が貯蔵中に徐々
に進行するため、接着剤のポットライフの問題が生じる
In such adhesives, the reaction of the curing component, such as the reaction between a polyol and a polyisocyanate, proceeds gradually during storage, resulting in problems with the pot life of the adhesive.

前述の如く、本発明者は、以前にこのようなポットライ
フの問題を解決すべく、添加する触媒として、マイクロ
カプセル化した触媒を採用したものであるが、本発明は
該方法を更に改良し、優れた接着性能を与える接着方法
を提供するものである。
As mentioned above, the present inventor previously adopted a microencapsulated catalyst as the catalyst to be added in order to solve such pot life problems, but the present invention further improves this method. , provides an adhesive method that provides excellent adhesive performance.

本発明方法における好ましい実施態様の主たる特徴点は
、 (1)従来の架橋硬化型接着剤に、マイクロカプセル化
した触媒を添加すること、 (2)上記マイクロカプセルの最大粒径を、約IBm 
〜約100 gm 、好マシくは約IILm〜約2o1
1゜厘とすること、 (3)上記触媒を含有する接着剤を被接着材に塗布、乾
燥して乾燥被膜を形成する際に、乾燥被膜の平均厚さく
1)を、マイクロカプセルの最大粒子径(γmax)以
下とすること、であり、更に望ましい態様では、 (4)乾燥被膜の平均厚さ(t)、マイクロカプセルの
平均粒子径(m)およびその標準偏差(σ)との関係を
、l/10+w≦t≦m+3 cr、最も好ましくは2
15 m≦t≦mとすること、である。
The main features of a preferred embodiment of the method of the present invention are: (1) adding a microencapsulated catalyst to a conventional cross-linked curing adhesive; (2) setting the maximum particle size of the microcapsules to about IBm;
~ about 100 gm, preferably about IILm ~ about 2o1
(3) When applying the adhesive containing the above catalyst to the adhered material and drying it to form a dry film, the average thickness of the dry film (1) should be determined by the maximum particle size of the microcapsules. (4) The relationship between the average thickness of the dry film (t), the average particle diameter of the microcapsules (m), and its standard deviation (σ) , l/10+w≦t≦m+3 cr, most preferably 2
15 m≦t≦m.

本発明方法は以上の如き構成とすることにょって、架橋
硬化型接着剤を、被接着材に塗布するときには、接着剤
は通常は多量の溶剤からなっているので、接着剤中のマ
イクロカプセルは、通常の塗布手段のコーティング圧力
(A)によって破壊されることが殆どなく、溶剤が除去
されて、乾燥被膜が形成されると、この被膜中のマイク
ロカプセルの最大径(γmax)が、被膜の厚さく1)
より大となるので1次いで他の被接着材をその表面に所
定圧(B)で圧着することによって、マイクロカプセル
が破壊され、そこで始めて触媒効果を発揮する。従って
、使用前は触媒が作用しないから、接着剤は優れたポッ
トライプを有し、使用昨に優れた接着能力を発揮するこ
とができる。
By having the method of the present invention as described above, when applying a cross-linked curing adhesive to a material to be bonded, since the adhesive usually consists of a large amount of solvent, the microcapsules in the adhesive are is hardly destroyed by the coating pressure (A) of ordinary application means, and when the solvent is removed and a dry film is formed, the maximum diameter (γmax) of the microcapsules in this film is Thickness 1)
Since the size of the microcapsules becomes larger, the microcapsules are destroyed by first pressing another adherend material onto the surface of the microcapsules at a predetermined pressure (B), and only then do they exhibit a catalytic effect. Therefore, since the catalyst does not act before use, the adhesive has excellent pot-ripe and can exhibit excellent adhesion ability before use.

また、更に望ましい態様では、乾燥被膜の厚さ(t)、
マイクロカプセルの平均粒径(m)およびその標準偏差
(σ)との関係を、1/lOm≦t≦m + 3σ、最
も好ましくは、215■≦t≦mとする態様である。
In a more desirable embodiment, the thickness (t) of the dry film,
The relationship between the average particle diameter (m) of the microcapsules and its standard deviation (σ) is such that 1/lOm≦t≦m + 3σ, most preferably 215≦t≦m.

このような構成とすることによって、接着剤中のマイク
ロカプセルは接着剤の塗布時のコーティング圧力によっ
て、実質的に何ら破壊せず、乾燥後の膜中におけるマイ
クロカプセルの平均粒子径が、平均膜厚よりも大となる
ので、他の被接着材をその表面に圧着することにより、
その圧力(B)によって大部分のマイクロカプセルが破
壊し、その結果十分な触媒作用が得られ、優れた接着能
力が発揮されるものである。
By adopting such a structure, the microcapsules in the adhesive are not substantially destroyed by the coating pressure during application of the adhesive, and the average particle size of the microcapsules in the film after drying is equal to that of the average film. Since it is larger than the thickness, by pressing another material to the surface,
Most of the microcapsules are destroyed by the pressure (B), and as a result, sufficient catalytic action is obtained and excellent adhesive ability is exhibited.

従って、上記の好ましい態様におけるマイクロカプセル
の壁材は、接着剤中の溶剤、例えば酢酸エチル、イソプ
ロパツール、メチルエチルケトン等に対して耐久性であ
る必要がある。このようなマイクロカプセルの壁材とし
て好ましいものは、ポリアミド、ポリウレタン、ポリエ
ステル、ポリ尿素、エポキシ樹脂あるいはそれらの架橋
物等であり、その他接着剤中の溶剤により浸されないも
のであればいずれでもよい。
Therefore, the wall material of the microcapsule in the preferred embodiment described above needs to be durable against solvents in adhesives, such as ethyl acetate, isopropanol, methyl ethyl ketone, and the like. Preferred wall materials for such microcapsules include polyamide, polyurethane, polyester, polyurea, epoxy resin, or crosslinked products thereof, and any other material that is not soaked by the solvent in the adhesive may be used.

また、マイクロカプセル中に封入される触媒は、接着剤
を架橋硬化させる機能のある化合物であればいかなるも
のでもよいが1例えば、ドライライミネート法に多く使
用されるポリウレタン系接着剤用としては、ジブチルチ
ンジラウレートが特に好ましい、マイクロカプセルの製
法は、すでにほぼ確立されており、界面重合法、 1n
situ重合法、水系及び有機溶剤系・からの相分離法
、液中乾燥法、融解分散冷却法、液中硬化被覆法等があ
る0本発明におけるマイクロカプセルは耐溶剤性が要求
されることから、界面重合法、in+itu重合法、液
中硬化被覆法の重合型及び融解分散冷却法が好ましいが
、耐性が要求される溶剤によって壁材を選ぶことにより
、相分離法、液中乾燥法も使用可能である。
The catalyst encapsulated in the microcapsules may be any compound as long as it has the function of crosslinking and curing the adhesive. For example, for polyurethane adhesives often used in dry lamination methods, The method for producing microcapsules, in which dibutyltin dilaurate is particularly preferred, has already been almost established, and includes an interfacial polymerization method, 1n
There are in-situ polymerization methods, phase separation methods from aqueous and organic solvent systems, in-liquid drying methods, melt-dispersion cooling methods, in-liquid curing coating methods, etc. Since the microcapsules used in the present invention are required to have solvent resistance, , interfacial polymerization method, in + in situ polymerization method, polymerization type of in-liquid curing coating method, and melt dispersion cooling method are preferable, but phase separation method and in-liquid drying method can also be used by selecting the wall material depending on the solvent that requires resistance. It is possible.

本発明におけるマイクロカプセルは、その粒子径が重要
であり、本発明においては、被接着材への付着率、接着
時の破壊率や接着剤の被膜の厚さ等からして、一般的に
は平均粒径が約lJJ、■〜約1001L腸、好ましく
は約1#L閤〜約20#L腸である0粒子径が大きすぎ
ると、接着時の破壊性は良好であるが、被接着材への付
着率が不十分となり、また少なすぎると圧着時に十分な
破壊性が得られないという問題が生じる。
The particle size of the microcapsules used in the present invention is important, and in the present invention, in general, from the viewpoint of the adhesion rate to the adhered material, the destruction rate during adhesion, the thickness of the adhesive film, etc. If the average particle size is about 1JJ, ~1001L, preferably about 1#L~20#L, the breakability during adhesion is good, but the adhesive material If the adhesion rate is too low, there will be a problem that sufficient destructibility will not be obtained during pressure bonding.

本発明では、このような付着率と破壊率との関係を、接
着剤の乾燥被膜との相互関係において種々検討した結果
、マイクロカプセルの最大直径(γwam ) 、平均
粒径(m)、標準偏差(σ)および被膜厚さく1)の関
係が、まず、第一に〇くt≦γ−a!にすると、マイク
ロカプセルの粒度分布において、大きいカプセルが確実
に破壊されるので、従来技術よりすぐれた効果を示し1
次いで1/10■≦t≦m+3σの関係では、十分な作
用効果を示し、更に、215■≦t≦mのときに最高の
作用効果が得られることを知見したものである。すなわ
ちtが215mより薄くなると、マイクロカプセルの被
接着材への付着率が低下し、また乾燥被膜のレベリング
性が低下し、かえって接着性能が十分でなくなる。一方
、tがmの値をはるかに超えると圧着時のマイクロカプ
セルの破壊率が著しく低下する。従って、使用上問題の
ない範囲で粒径をそろえたマイクロカプセルであれば、
乾燥被膜の厚さく1)を、マイクロカプセルの平均粒径
にその標準の3倍を加えた厚み以下、好ましくは平均粒
径(m)以下にすることにより、マイクロカプセルの被
接着材への付着率と破壊率を同時に十分に達成できるこ
とを見い出したものである。
In the present invention, as a result of various studies on the relationship between the adhesion rate and the destruction rate in relation to the dry film of the adhesive, we found that the maximum diameter (γwam), average particle size (m), and standard deviation of the microcapsules The relationship between (σ) and film thickness 1) is, first of all, t≦γ−a! By using this method, larger capsules in the particle size distribution of microcapsules are reliably destroyed, which is superior to the conventional technology.
Next, it was found that the relationship of 1/10■≦t≦m+3σ shows sufficient action and effect, and furthermore, the highest action and effect can be obtained when 215■≦t≦m. That is, when t becomes thinner than 215 m, the adhesion rate of the microcapsules to the adhered material decreases, the leveling property of the dried film decreases, and the adhesive performance becomes insufficient. On the other hand, if t far exceeds the value of m, the destruction rate of microcapsules during compression will be significantly reduced. Therefore, if the microcapsules have a uniform particle size within a range that poses no problems in use,
The adhesion of the microcapsules to the material to be adhered can be improved by reducing the thickness of the dry film (1) to the average particle diameter of the microcapsules plus three times the standard thickness, preferably to the average particle diameter (m) or less. It has been discovered that it is possible to simultaneously achieve sufficient efficiency and destruction rate.

マイクロカプセルの接着剤への配合量は、希望する硬化
併進時間に合わせればよいのであるが、触媒としての使
用上、効果および価格等からして、自ずから制限があり
、通常は接着剤の樹脂分の10重量%以下、好ましくは
、約0.i〜1.0重量%に相当する量である。
The amount of microcapsules added to the adhesive can be adjusted to the desired curing time, but there are limitations due to the effectiveness and cost of using it as a catalyst, and usually the resin content of the adhesive is limited. 10% by weight or less, preferably about 0. The amount corresponds to i~1.0% by weight.

以上、本発明方法の特徴部分を主として説明したが、本
発明方法は上述のような理由からして、特にドライラミ
ネート接着法の如く、溶液型で架橋硬化型の接着剤を被
接着材に塗布し、乾燥し、他の被接着材を重ね合せ、圧
力ローラー等で連続的に圧着して接着する接着方法に最
も好適であるが、ドライラミネート法に限らず、同様な
機構を使用する他接着方法のはいずれも応用可能である
The characteristics of the method of the present invention have been mainly explained above, but for the reasons mentioned above, the method of the present invention is particularly suitable for applying a solution-type, cross-linking and curing adhesive to a material to be adhered, such as the dry lamination adhesive method. This method is most suitable for bonding, drying, overlapping other materials to be bonded, and bonding by continuously pressing with a pressure roller, etc. However, it is not limited to the dry lamination method, and other bonding methods that use a similar mechanism are also suitable. All methods are applicable.

従って、接着剤自体もウレタン系接着剤に限られす、ま
た触媒もジブチルチンジラウレートに限られず、同様な
機構で接着する限り他のいかなる接着剤も触媒も使用し
得るものである。
Therefore, the adhesive itself is limited to urethane adhesives, and the catalyst is not limited to dibutyltin dilaurate, but any other adhesive or catalyst may be used as long as it adheres by the same mechanism.

次に1本発明方法のプロセスを説明すると、このような
プロセス自体は、全〈従来公知のプロセスでもよいので
あるが1例えば、上述の如きマイクロカプセルを配合し
た接着剤を被接着材のいずれか一方、あるいは両方にコ
ーティングし、乾燥させて乾燥被膜を形成する。コーテ
ィング方法は、例えば、グラビアコート、ロールコート
、キスコート等その他いかなる方法でもよい。但し、コ
ーティング時のニップ圧等、コーティング圧力により、
マイクロカプセルが実質的に破壊されないように、コー
ティング圧力か、マイクロカプセルの粒径あるいは壁厚
を適当に選択する必要がある。
Next, to explain the process of the method of the present invention, such a process itself may be a conventionally known process, but for example, an adhesive containing microcapsules as described above may be applied to any of the adhered materials. Coat one or both and dry to form a dry film. The coating method may be, for example, gravure coating, roll coating, kiss coating, or any other method. However, due to coating pressure such as nip pressure during coating,
The coating pressure or the particle size or wall thickness of the microcapsules must be appropriately selected so that the microcapsules are not substantially destroyed.

次に、被接着材を重ね合せて、圧着することにより、そ
の時の圧力でマイクロカプセルが実質的に破壊され、触
媒作用が発現し、良好の架橋硬化が生じて十分な接合が
達成される。従って、マイクロカプセルの破壊強度は、
コーティング時のコーティング圧力に耐え、且つ、圧着
時の圧力により破壊されるように、マイクロカプセルの
強度と、コーティング圧力および圧着時の圧力を調整す
べきである。
Next, by overlapping the materials to be adhered and pressing them together, the pressure at that time substantially destroys the microcapsules, a catalytic action is developed, and good crosslinking and curing occurs to achieve sufficient bonding. Therefore, the breaking strength of microcapsules is
The strength of the microcapsules and the coating pressure and pressure during crimping should be adjusted so that they can withstand the coating pressure during coating and are destroyed by the pressure during crimping.

接合が終了後、接合物を例えばロール等に巻き取ること
によって、本発明方法が完了する。
After the bonding is completed, the method of the present invention is completed by winding up the bonded product, for example, on a roll.

(作用・効果) ゛以上の如き本発明方法によれば、上述の如き構成をと
ることによって、使用する接着剤のポットライフは十分
となり、使用時には十分な触媒作用が発現されるので、
十分な接着が生じ、安定した接着安定性を得ることがで
き、前述の従来技術の問題点が十分に解決される。また
、本発明方法は、上述の構成の故に、既存装置を何一つ
改良することなく、また同一工程で、従来方法に比べて
すぐれた接合を達成できるという経済的利点も有する。
(Function/Effect) According to the method of the present invention as described above, by adopting the above-described configuration, the pot life of the adhesive used is sufficient, and sufficient catalytic action is exerted during use.
Sufficient adhesion occurs, stable adhesion stability can be obtained, and the problems of the prior art described above are fully solved. Further, because of the above-described structure, the method of the present invention has an economical advantage in that superior bonding can be achieved compared to conventional methods without any modification of existing equipment and in the same process.

次に実施例をあげて本発明の好ましい態様を具体的に説
明する。尚、文中%とあるのは重量基準である。
Next, preferred embodiments of the present invention will be specifically explained with reference to Examples. Note that % in the text is based on weight.

実施例 l ウレタン系接着剤(固形分25%)中に、ジブチルチン
ジラウレートをポリ尿素殻に内封したマイクロカプセル
[触媒量/殻材料X (100) =702、平均粒子
径5JIIl、標準偏差値2経■]を、接着剤中の固形
分の0.Oz、0.5zに相当する量で添加し、合成樹
脂フィルム表面に平均乾燥厚が4終璽となるようにコー
ティング時のニップ圧(線圧)2Kg/mで塗布し、乾
燥した0次いで別の合成樹脂フィルムを連続的に、ニッ
プ圧(線圧)7Kgl腸で圧着し、得られたラミネー物
の接着強度(ON/CPP)を求めたところ、触奴酸0
 = 850g/15層■、0.5$=880g/15
m■であった。また触媒使用による接着剤の硬化促進効
果な、被膜中のインシアネートの減少によって調べたと
ころ、第1図の如くであった。
Example 1 Microcapsules containing dibutyltin dilaurate encapsulated in a polyurea shell in a urethane adhesive (solid content 25%) [catalyst amount/shell material 2 times ■] with a solid content of 0. It was added in an amount equivalent to 0.5 Oz, and applied to the surface of the synthetic resin film with a nip pressure (linear pressure) of 2 kg/m so that the average dry thickness was 4. The synthetic resin film was continuously crimped with a nip pressure (linear pressure) of 7 kg, and the adhesive strength (ON/CPP) of the resulting laminate was determined.
= 850g/15 layers■, 0.5$=880g/15
It was m■. Further, when the reduction of incyanate in the film, which is the effect of accelerating the hardening of the adhesive by using a catalyst, was investigated, and the results were as shown in Fig. 1.

実施例 2 実施例1における乾燥被膜の厚さを。10=m、5ル■
および3IL■としたことを除き、他は実施例1と同様
に接着を行い、硬化速度をイソシアネートの減少から調
べたところ、第2図の如くであった。但し、ブランクは
触媒無添加で、塗布駿は4経mである)。
Example 2 The thickness of the dried film in Example 1. 10=m, 5le ■
Adhesion was carried out in the same manner as in Example 1, except that 3IL and 3IL■ were used, and the curing speed was examined from the decrease in isocyanate, as shown in FIG. However, the blank had no catalyst added, and the coating time was 4 m).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、触媒の使用による接着剤の硬化促進効果を示
し、第2図は、接着剤層の厚さと硬化速度との関係を示
す。
FIG. 1 shows the effect of accelerating the curing of an adhesive by using a catalyst, and FIG. 2 shows the relationship between the thickness of the adhesive layer and the curing rate.

Claims (7)

【特許請求の範囲】[Claims] (1)架橋硬化触媒を芯物質とするマイクロカプセル(
最大粒径γmax、平均粒径m、標準偏差σ)を含有す
る接着剤を、被接着表面に所定の塗布圧力(A)で塗布
および乾燥して平均厚さ(t)の乾燥被膜を形成し、次
いで他の被接着材を所定圧力(B)で圧着することから
なる接着方法において、上記γmaxとtとの関係を、
t≦γmaxとすることを特徴とする接着方法。
(1) Microcapsules with a crosslinked curing catalyst as the core material (
An adhesive containing maximum particle size γmax, average particle size m, standard deviation σ) is applied to the surface to be bonded at a predetermined application pressure (A) and dried to form a dry film with an average thickness (t). In the bonding method that consists of then pressing another bonded material at a predetermined pressure (B), the relationship between γmax and t is expressed as follows:
An adhesion method characterized in that t≦γmax.
(2)m、σおよびtの関係を、1/10m≦t≦m+
3σとする特許請求の範囲第(1)項に記載の接着方法
(2) The relationship between m, σ and t is 1/10m≦t≦m+
The bonding method according to claim (1), wherein the bonding temperature is 3σ.
(3)mとtとの関係を、2/5m≦t≦mとする特許
請求の範囲第(1)項に記載の接着方法。
(3) The bonding method according to claim (1), wherein the relationship between m and t is 2/5m≦t≦m.
(4)mが、約1μm〜約100μmである特許請求の
範囲第(1)項に記載の接着方法。
(4) The bonding method according to claim (1), wherein m is about 1 μm to about 100 μm.
(5)mが、約1μm〜約20μmである特許請求の範
囲第(1)項に記載の接着方法。
(5) The bonding method according to claim (1), wherein m is about 1 μm to about 20 μm.
(6)塗布圧力(A)が、マイクロカプセルを破壊しな
い圧力であり、且つ圧着時の圧力(B)が、マイクロカ
プセルを破壊する圧力である特許請求の範囲第(1)項
に記載の接着方法。
(6) The adhesive according to claim (1), wherein the application pressure (A) is a pressure that does not destroy the microcapsules, and the pressure during pressure bonding (B) is a pressure that destroys the microcapsules. Method.
(7)接着剤が、ポリウレタン系、アクリル系、エポキ
シ系等の1液型または2液型の接着剤であり、硬化触媒
がジブチルチンジラウレートである特許請求の範囲第(
1)項に記載の接着方法。
(7) The adhesive is a one-component or two-component adhesive such as polyurethane, acrylic, or epoxy, and the curing catalyst is dibutyltin dilaurate (
Adhesion method described in section 1).
JP15117384A 1984-07-23 1984-07-23 Bonding method Pending JPS6131482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15117384A JPS6131482A (en) 1984-07-23 1984-07-23 Bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15117384A JPS6131482A (en) 1984-07-23 1984-07-23 Bonding method

Publications (1)

Publication Number Publication Date
JPS6131482A true JPS6131482A (en) 1986-02-13

Family

ID=15512903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15117384A Pending JPS6131482A (en) 1984-07-23 1984-07-23 Bonding method

Country Status (1)

Country Link
JP (1) JPS6131482A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0785243A3 (en) * 1996-01-18 1998-06-03 Loctite (Ireland) Limited A method of sealing two abutting surfaces in face-to-face contact
EP1647587A1 (en) * 2004-10-12 2006-04-19 Henkel Kommanditgesellschaft auf Aktien Laminating adhesives containing microencapsulated catalysts
DE102005042035A1 (en) * 2005-09-02 2007-03-08 Infineon Technologies Ag Plastic housing material for embedding semiconductor devices in a plastic housing and using the plastic housing material
EP3156434A1 (en) * 2015-10-12 2017-04-19 Henkel AG & Co. KGaA Nanocapsules as thermolatent polymerization catalysts or initiators

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0785243A3 (en) * 1996-01-18 1998-06-03 Loctite (Ireland) Limited A method of sealing two abutting surfaces in face-to-face contact
EP1647587A1 (en) * 2004-10-12 2006-04-19 Henkel Kommanditgesellschaft auf Aktien Laminating adhesives containing microencapsulated catalysts
DE102005042035A1 (en) * 2005-09-02 2007-03-08 Infineon Technologies Ag Plastic housing material for embedding semiconductor devices in a plastic housing and using the plastic housing material
US7728053B2 (en) 2005-09-02 2010-06-01 Infineon Technologies, Ag Plastic housing composition for embedding semiconductor devices in a plastic housing and use of the plastic housing composition
DE102005042035B4 (en) * 2005-09-02 2020-11-05 Infineon Technologies Ag Device for using a plastic housing compound for embedding semiconductor components in a plastic housing and method for producing a plastic housing
EP3156434A1 (en) * 2015-10-12 2017-04-19 Henkel AG & Co. KGaA Nanocapsules as thermolatent polymerization catalysts or initiators
WO2017063900A1 (en) * 2015-10-12 2017-04-20 Henkel Ag & Co. Kgaa Nanocapsules as thermolatent polymerisation catalysts or initiators

Similar Documents

Publication Publication Date Title
US4080238A (en) One-liquid cold setting adhesive with encapsulated catalyst initiator
DE19614620C2 (en) Pressure-sensitive, double-sided self-adhesive tape based on polyurethane and its use
EP3057162A1 (en) Pressure-sensitive adhesive sheet for conveying electrolyte membrane and method using said pressure-sensitive adhesive sheet to manufacture fuel-cell membrane electrode assembly
US6686416B2 (en) Storage-stable isocyanate dispersions
US3666597A (en) Method of catalyzing adhesive cure
JPS6131482A (en) Bonding method
JPH0222775B2 (en)
CN111334214B (en) Novel protective film containing thermal viscosity-reducing adhesive and preparation method thereof
DE10113422A1 (en) Removable adhesive strip, e.g. for fixing posters, comprises flexible film base coated with polyurethane-based adhesive material containing aliphatic polyol-isocyanate system, filler and activator
JPH07133467A (en) Acrylic adhesive tape
GB2400104A (en) Adhesive comprising surface-protected polyisocyanate particles
JP4576095B2 (en) Double-sided adhesive sheet and abrasive cloth laminate
CA1246981A (en) Process for preparing a composite laminate film utilizing hardener-accelerator microcapsules
CN110462816A (en) The manufacturing method and bonding sheet of semiconductor device
JPH11116927A (en) Acrylic pressure-sensitive adhesive composition, pressure-sensitive adhesive tape, and formation of pressure-sensitive adhesive layer
JP2008248065A (en) Adhesive and adhesive sheet
CN109135607A (en) A kind of lamination fabrication Film laminated substrate and the manufacturing process of durability
EP0171919B1 (en) Process for laminating heat shrinkable films
JPS63268783A (en) Production of tacky tapes
JP2003253236A (en) Adhesive composition
JPS6060173A (en) Microencapsulated adhesive
US3967028A (en) Sealed foam web
JP3034627B2 (en) Laminated postcards and pseudo-adhesive laminated films
JPH10183078A (en) Self-adhesive tape or sheet
CN111218229A (en) Thermal viscosity-reducing protective film and preparation method thereof