JPS61295527A - Single-core bidirectional optical device - Google Patents

Single-core bidirectional optical device

Info

Publication number
JPS61295527A
JPS61295527A JP13829185A JP13829185A JPS61295527A JP S61295527 A JPS61295527 A JP S61295527A JP 13829185 A JP13829185 A JP 13829185A JP 13829185 A JP13829185 A JP 13829185A JP S61295527 A JPS61295527 A JP S61295527A
Authority
JP
Japan
Prior art keywords
optical
optical fiber
beam splitter
light
collimator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13829185A
Other languages
Japanese (ja)
Inventor
Yoshihisa Hagami
喜久 葉上
Hirochika Sato
弘親 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP13829185A priority Critical patent/JPS61295527A/en
Publication of JPS61295527A publication Critical patent/JPS61295527A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To obtain a large quantity of light and small crosstalk while eliminating a waste of an optical fiber and optical fiber connectors by mounting a light emitting element and a photodetecting element directly on branch ports of an optical branching device. CONSTITUTION:Two through holes which are precise in hole diameter and perpendicularity are bored in an enclosure 1 at right angles to each other. An LED collimator 4, a collimator 2, a polarization beam splitter base 7 where a polarization beam splitter 6 is supported by an adhering method, etc., and the photodetecting element 5 are inserted into four opening parts. An electric signal inputted to one LED is collimated by the LED collimator 4 into parallel light, which is radiated in a space and then enters an optical fiber 8 after passing through the polarization beam splitter 6. Then, it is reflected by the other polarization beam splitter 6' and converted into an electric signal by a photodetecting element 5'. Similarly, an electric signal inputted to the LED collimator 4' passes through an optical fiber 8 having the same diameter and reaches the photodetecting element 5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、送受信機能を持つ端末間を結ぶ光データウェ
イ、特に単心双方向光通信に用いられる単心双方向用光
デバイスに関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an optical dataway connecting terminals having transmitting and receiving functions, and in particular to a single-fiber bidirectional optical device used for single-fiber bidirectional optical communication. be.

〔発明の概要〕[Summary of the invention]

本発明は、光分岐器の分岐ボートに直接発光及び受光素
子を搭載することより、光ファイバー及び光フアイバー
コネクターのムダを省き、大きな光N(信号)と小さな
りロストークを得ることのできる単心双方向光通信用の
単心双方向用光デバイスを提供するものである。
The present invention eliminates the waste of optical fibers and optical fiber connectors by directly mounting light emitting and light receiving elements on the branching boat of an optical branching device, and achieves both a single fiber and a single fiber that can obtain a large optical N (signal) and a small loss talk. The present invention provides a single-fiber bidirectional optical device for optical communication.

〔従来の技術〕[Conventional technology]

単心双方向光通信に用いられるデバイスとしては、従来
技術として実願59−19882に示すような光分岐器
があった。この光分岐器の構造を第5図により説明する
。第5図のうち、1は筺体、15〜17は光ファイバー
、18〜20は光ファイバーより出射した光を平行光に
するコリメーター、6は偏光ビームスプリッタ−17は
偏光ビームスプリンター6を接着等の手段により支持す
る偏光ビームスプリッタ−支持体である。筺体7には穴
径、真直度などの精度の良い2本の貫通穴が互いに直交
しておいていて、2本の貫通穴の3つの開口部にコリメ
ーター18〜20が精密嵌合し、残り1つの開口部に偏
光ビームスプリンター支持体7が精密嵌合する構造とな
っている0次に、この光分岐器が単心双方向光通信に用
いられた時の動作を第6図により説明する。23及び2
3′は従来例によるところの光分岐器、21及び21′
はLEDなとの発光素子、22及び22′はPINフォ
トダイオードなどの受光素子、8及び24〜27は光フ
ァイバーである。発光素子21に入力された電気信号は
光信号に変換され、光ファイバー24に入射し、光分岐
器23及び光ファイバー8を通過後、もう一つの光分岐
器23′の偏光ビームスプリンター29′で反射し光フ
ァイバー26に入射する。この光信号は受光素子22′
によって電気信号に変換される。同様に、発光素子21
′に入力された電気信号は、同じ経路である光ファイバ
ー8を通り、受光素子22に到達する。
As a device used for single-fiber bidirectional optical communication, there is an optical branching device as shown in U.S. Patent Application No. 59-19882 as a prior art. The structure of this optical splitter will be explained with reference to FIG. In Fig. 5, 1 is a housing, 15 to 17 are optical fibers, 18 to 20 are collimators that convert the light emitted from the optical fibers into parallel beams, 6 is a polarizing beam splitter, and 17 is a means for attaching the polarizing beam splinter 6, such as by gluing it. A polarizing beam splitter support supported by a polarizing beam splitter. The housing 7 has two through holes with high precision in hole diameter and straightness, which are perpendicular to each other, and collimators 18 to 20 are precisely fitted into the three openings of the two through holes. The structure is such that the polarizing beam splinter support 7 is precisely fitted into the remaining opening.Next, the operation when this optical splitter is used for single-core bidirectional optical communication will be explained with reference to Fig. 6. do. 23 and 2
3' is a conventional optical splitter, 21 and 21'
is a light emitting element such as an LED, 22 and 22' are light receiving elements such as a PIN photodiode, and 8 and 24 to 27 are optical fibers. The electrical signal input to the light emitting element 21 is converted into an optical signal, enters the optical fiber 24, passes through the optical splitter 23 and the optical fiber 8, and is reflected by the polarization beam splinter 29' of another optical splitter 23'. The light enters the optical fiber 26. This optical signal is transmitted to the light receiving element 22'
is converted into an electrical signal by Similarly, the light emitting element 21
The electrical signal inputted to ' passes through the optical fiber 8, which is the same route, and reaches the light receiving element 22.

すなわち、この光分岐器を2個使用することにより、1
本の光ファイバー8で双方向の通信を可能とするもので
ある。
In other words, by using two of these optical splitters, 1
Two-way communication is possible using optical fiber 8.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

単心双方向通信を可能とするためには、信号対雑音比(
SN比)がよくなければならないのは自明の理である。
In order to enable single-core bidirectional communication, the signal-to-noise ratio (
It is a truism that the signal-to-noise ratio) must be good.

ところが従来の技術においては、発光素子21と光ファ
イバー28との間で結合ti失が生じ、さらに光分岐器
23においても光が減衰するため、相手側に到達する信
号が弱くなり、SN比が大きくとれないという欠点があ
った。また、発光素子と光ファイバーを結合するための
発光モジュール、及び受光素子と光ファイバーを結合す
るための受光モジュールが2個ずつ必要となる。それに
加え、前記発光モジュールと光分岐器を連結するための
両端コネクタープラグつきの光フアイバーケーブル、及
び受光モジュールと光分岐器を連結するための両端コネ
クタープラグつきの光フアイバーケーブルが2本ずつ必
要となる。
However, in the conventional technology, coupling loss occurs between the light emitting element 21 and the optical fiber 28, and the light is further attenuated at the optical splitter 23, so the signal reaching the other side becomes weaker and the S/N ratio increases. There was a drawback that it could not be removed. Further, two light emitting modules for coupling the light emitting element and the optical fiber, and two light receiving modules for coupling the light receiving element and the optical fiber are required. In addition, two optical fiber cables with connector plugs at both ends are required to connect the light emitting module and the optical splitter, and two optical fiber cables with connector plugs at both ends to connect the light receiving module and the optical splitter.

以上の如くこの単心双方向光通信システムを構成するた
めの部品点数が多く、非常にコストが高くついてしまう
という欠点があった。
As described above, the number of parts required to construct this single-fiber bidirectional optical communication system is large, resulting in a very high cost.

〔問題点を解決するための手段〕[Means for solving problems]

そこで本発明においては、LEDからの発光光をいった
ん光ファイバーに入れないで、直接平行光とするLED
コリメーターと、受光素子とを1つの筺体に具備するこ
とによって、SN比が大きくとれるように、かつ部品点
数を最小限にとどめコストの安い単心双方向光通信シス
テムを構成できるようにした。
Therefore, in the present invention, the light emitted from the LED is directly converted into parallel light without entering the optical fiber.
By providing a collimator and a light-receiving element in one housing, a single-fiber bidirectional optical communication system can be configured with a high signal-to-noise ratio and a low cost by minimizing the number of parts.

〔実施例〕〔Example〕

本発明の実施例を第1図により説明する。筺体1には穴
径、真直度などの精度の良い2本の貫通穴が互いに直交
しておいている。4つの開口部にはそれぞれLEDコリ
メーター4、コリメーター2、偏光ビームスプリンター
6を接着等の手段により支持した偏光ビームスプリッタ
−支持体7、及び受光素子5が第1図に示すように挿入
される。
An embodiment of the present invention will be described with reference to FIG. The housing 1 has two through holes with good precision in hole diameter and straightness, which are perpendicular to each other. A polarizing beam splitter support 7 supporting an LED collimator 4, a collimator 2, and a polarizing beam splitter 6 by adhesive or other means, and a light receiving element 5 are inserted into each of the four openings as shown in FIG. Ru.

3は光ファイバーである。3 is an optical fiber.

LEDコリメーター4は例えば第3図に示すような構成
である。このLEDコリメーターの構成に関しては本発
明者が既に提案している。
The LED collimator 4 has a configuration as shown in FIG. 3, for example. The present inventor has already proposed the configuration of this LED collimator.

第3図において、10はLED、11は光学レンズ、1
2は出射光を平行光に制限するだめの絞り、9は全体を
固定するための枠である。LEDloの発光部は光学レ
ンズ11のほぼ焦点に位置している。故に、LEDIO
から発光した拡散光のうち光学レンズ11を通過した光
は平行光となって絞り12を通って出射する。また、発
光光のうち光学レンズ11を通らない光線や通っても光
軸に対して角度を持った光線は絞り12でカットされる
。結局、光軸とほぼ平行な光線のみ絞り12を通って出
射するのである。
In Fig. 3, 10 is an LED, 11 is an optical lens, 1
2 is a diaphragm for restricting the emitted light to parallel light, and 9 is a frame for fixing the whole. The light emitting part of LEDlo is located almost at the focal point of the optical lens 11. Therefore, LEDIO
Of the diffused light emitted from the optical lens 11, the light that passes through the optical lens 11 becomes parallel light and exits through the aperture 12. Furthermore, out of the emitted light, rays that do not pass through the optical lens 11 and rays that pass at an angle to the optical axis are cut off by the diaphragm 12. As a result, only light rays substantially parallel to the optical axis pass through the aperture 12 and exit.

偏光ビームスブリフタ−支持体7は筺体1の1つの開口
部に挿入されたのち、第4図における矢印の円柱軸の方
向と回転方向とに調整される。その際に筺体lの穴が案
内となっているので、調節作業は非常に楽である。すな
わち、光ファイバー3より光を入射し、受光素子5の端
子に流れる電流をモニターしながら、偏光ビームスプリ
ッタ−支持体7を上下及び回転させ、電流値がもっとも
大きくなったところで偏光ビームスプリンター支持体7
を接着剤等により筺体】に固定するのである。
After the polarizing beam subrifter support 7 is inserted into one opening of the housing 1, it is adjusted in the direction of the cylindrical axis and the direction of rotation indicated by the arrow in FIG. At that time, the holes in the housing l serve as guides, making the adjustment work very easy. That is, light is input from the optical fiber 3, and while monitoring the current flowing to the terminal of the light receiving element 5, the polarizing beam splitter support 7 is rotated up and down, and when the current value becomes the largest, the polarizing beam splitter support 7 is rotated.
is fixed to the housing with adhesive or the like.

次に、本発明による単心双方向用光デバイスが単心双方
向光通信に用いられた時の動作を第2図により説明する
。4及び4′はLEDコリメーター、5及び5′は受光
素子、6及び6′は偏光ビームスプリッタ−58は伝送
路としての光ファイバーである。一方の本発明による単
心双方向用光デバイスのしE9に入力された電気信号は
LEDコリメーター4によってただちに平行光として空
間に放射され、偏光ビームスプリッタ−6を通過後光フ
ァイバー8に入射する。そして、もう一方の本発明によ
る単心双方向用光デバイスの偏光ビームスプリッタ−6
′で反射し、受光素子5′によって電気信号に変換され
る。同様にして、LEDコリメーター4′に人力された
電気信号は、同じ径路である光ファイバー8を通り、受
光素子5に到達する。すなわち、本発明による単心双方
向用光デバイスを2個使用することにより、1本の光フ
ァイバー8で双方向の通信が可能となる。LEDコリメ
ーター4からの平行光は効率よ(光ファイバー8に入射
するため、SN比が大きく取れるのである。
Next, the operation when the single-fiber bidirectional optical device according to the present invention is used for single-fiber bidirectional optical communication will be explained with reference to FIG. 4 and 4' are LED collimators, 5 and 5' are light receiving elements, 6 and 6' are polarization beam splitters, and 58 is an optical fiber as a transmission path. On the other hand, the electrical signal input to the single-core bidirectional optical device E9 according to the present invention is immediately radiated into space as parallel light by the LED collimator 4, and after passing through the polarizing beam splitter 6, enters the optical fiber 8. And the other polarizing beam splitter 6 of the single-core bidirectional optical device according to the present invention.
', and is converted into an electrical signal by the light receiving element 5'. Similarly, the electric signal manually applied to the LED collimator 4' passes through the optical fiber 8, which is the same path, and reaches the light receiving element 5. That is, by using two single-core bidirectional optical devices according to the present invention, bidirectional communication is possible with one optical fiber 8. The parallel light from the LED collimator 4 is efficient (because it enters the optical fiber 8, a high signal-to-noise ratio can be achieved).

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明による単心双方向用光デバ
イスを使用すれば、SN比が大きく取れるため、単心双
方向光通信システムを構成するのに非常に有利である。
As explained above, the use of the single-fiber bidirectional optical device according to the present invention provides a large signal-to-noise ratio, which is very advantageous in constructing a single-fiber bidirectional optical communication system.

また、LEDコリメーターと受光素子とを1との筺体に
具備しているため、従来例のように発光モジュール、受
光モジュール及びそれらと光分岐器を連結するための両
端コネクタープラグつきの光フアイバーケーブルが不用
となる。その結果、非常に簡便に安く単心双方向光通信
システムを構成することが可能となる。
In addition, since the LED collimator and the light receiving element are provided in the housing 1, an optical fiber cable with connector plugs at both ends for connecting the light emitting module, the light receiving module and the optical branching device with the light emitting module and the light receiving module is required as in the conventional example. It becomes unnecessary. As a result, it becomes possible to construct a single-fiber bidirectional optical communication system very simply and inexpensively.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による単心双方向光デバイスの実施例を
示す断面図、第2図は本発明による単心双方向光デバイ
スが単心双方向光通信システムに用いられた時の動作を
示す図、第3図はLEDコリメーターの一例を示す断面
図、第4図は偏光ビームスプリッタ−支持体の一例を示
す斜面図、第5図及び第6図は従来の単心双方向光通信
システムに使用される光分岐器とその動作を説明する図
である。 1−・−・−筺体    2−・−一−−−コリメータ
ー4 、 4 ’−−−−−・LEDコリメーター5−
−一・−受光素子 6−・・−偏光ビームスブリッター 7−・−・偏光ビームスプリンター支持体以上 す 噛すフイ矢説明d 第2図
FIG. 1 is a sectional view showing an embodiment of a single-fiber bidirectional optical device according to the present invention, and FIG. 2 shows the operation of the single-fiber bidirectional optical device according to the present invention when used in a single-fiber bidirectional optical communication system. Figure 3 is a sectional view showing an example of an LED collimator, Figure 4 is a perspective view showing an example of a polarizing beam splitter support, and Figures 5 and 6 are conventional single-core bidirectional optical communication. FIG. 2 is a diagram illustrating an optical branching device used in the system and its operation. 1--- Housing 2--- Collimator 4, 4'-- LED collimator 5-
-1.-Photo-receiving element 6--Polarized beam splitter 7--Polarized beam splinter support Explanation d Figure 2

Claims (1)

【特許請求の範囲】 (a)互いに直交する2つの貫通穴を有する筺体と、(
b)外径が該筺体の一方の貫通穴の片方の開口部に固定
し、光ファイバーからの出射光を平行光に変換するコリ
メーターと、 (c)偏光ビームスプリッターを前記コリメーターから
の平行光に対応するように保持し、外径が前記筺体の他
方の貫通穴の片方の開口部に精密嵌合する偏光ビームス
プリッター支持体と、 (d)LEDを具備し、外径が前記筺体の残り2つの開
口部のうちの1つの開口部に精密嵌合するLEDコリメ
ーターと、 (e)前記筺体の残り1つの開口部に挿入される受光素
子よりなることを特徴とする単心双方向用光デバイス。
[Claims] (a) A casing having two through holes orthogonal to each other, (
b) a collimator whose outer diameter is fixed to one opening of one of the through holes of the housing and which converts the light emitted from the optical fiber into parallel light; (c) a polarizing beam splitter which converts the light emitted from the optical fiber into parallel light from the collimator; (d) a polarizing beam splitter support having an outer diameter that is a precision fit in one opening of the other through hole of the housing; A single-core bidirectional device characterized by comprising: an LED collimator that precisely fits into one of the two openings; and (e) a light receiving element inserted into the remaining one opening of the housing. optical device.
JP13829185A 1985-06-25 1985-06-25 Single-core bidirectional optical device Pending JPS61295527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13829185A JPS61295527A (en) 1985-06-25 1985-06-25 Single-core bidirectional optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13829185A JPS61295527A (en) 1985-06-25 1985-06-25 Single-core bidirectional optical device

Publications (1)

Publication Number Publication Date
JPS61295527A true JPS61295527A (en) 1986-12-26

Family

ID=15218454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13829185A Pending JPS61295527A (en) 1985-06-25 1985-06-25 Single-core bidirectional optical device

Country Status (1)

Country Link
JP (1) JPS61295527A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174946A (en) * 1981-04-20 1982-10-27 Nippon Telegr & Teleph Corp <Ntt> Bidirectional optical transmission method
JPS6051805A (en) * 1983-08-31 1985-03-23 Seiko Instr & Electronics Ltd Optical branching device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174946A (en) * 1981-04-20 1982-10-27 Nippon Telegr & Teleph Corp <Ntt> Bidirectional optical transmission method
JPS6051805A (en) * 1983-08-31 1985-03-23 Seiko Instr & Electronics Ltd Optical branching device

Similar Documents

Publication Publication Date Title
JP3698393B2 (en) Structure of optical transceiver module and manufacturing method thereof
US4904043A (en) Optical data link dual wavelength coupler
RU2638979C1 (en) Hermetic assembly for alignment of optical fibre, which has integrated optical element
US4932742A (en) Fiber optic wavelength division multiplexing module
US4472797A (en) Optical multiplexer
JPH04212110A (en) Electronic and optical module of optical fiber
JP3287773B2 (en) Method for manufacturing optical waveguide device
US4842355A (en) Multichannel optical rotary joint for well logging usage
US6612751B1 (en) Optical repeating device with monitoring function
US6874949B2 (en) In-line optoelectronic device packaging
CA2363242A1 (en) Optical circuit module and method for assembling the same
CN216052307U (en) Light receiving device
US6498875B1 (en) Optical connector for connecting a plurality of light sources to a plurality of light sinks
US6614963B2 (en) Module for optical signal transmission
JPS61295527A (en) Single-core bidirectional optical device
KR0170329B1 (en) Optical wavelength division multiplexer for optical communication
JP2865789B2 (en) Optical transmission module
JPS63225206A (en) Hybride multiplexer/demultiplexer
EP0064784A2 (en) Optical branch coupler
KR102684078B1 (en) Optical engine having transparent wire type optical interconnection
JPH09297247A (en) Optical module
KR0165495B1 (en) Wavelength division multiplexer for otpcial telecommunication
CN218917712U (en) Wavelength division multiplexer
JPH10227928A (en) Device and system for parallel optical transmission
JPH08271760A (en) Optical circuit module